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Preface

This book is a derivative product.

It represents a one-semester graduate-level course taught by A.G.
at UC Berkeley based on Chapters 1 and 2 of the textbook [2] by
D.F. as well as on A.G.’s own student notes in the courses taught by
D.F. at the Moscow State University in 1976-78.

It should not therefore be surprising that here homology and co-
homology, in agreement with [2] (and in contrast with the popular
textbook [8] by A. Hatcher), come only after the basics of homotopy
theory are developed, the former being often treated merely as effi-
cient tools for handling problems of the latter. To a reader who is
content with this paradigm we would still recommend the far more
substantial original [2], but suspect that for an intensive one-semester
or less intensive two-quarter course in algebraic topology, a student
and instructor might find the present more selective and concise ex-
position also useful.

Beside its scope and size, our presentation deviates from [2] in
some other ways. We are less concerned with the needs of alge-
braic topology per se than with potential applications of it in more
general geometric contexts. For instance, instead of piecewise linear
techniques of [2], we resort here to smooth approximations. Respec-
tively, we assume some basic familiarity with analysis on manifolds
(Riemannian metrics, gradient flows), quote Sard’s lemma on sev-
eral important occasions, and follow a Morse-theoretic approach to
Poincaré duality and intersection theory.

Also, we refrain from delegating any essential aspects of proofs
to exercises, and honestly hope that our misprints (for which the
authors of [2], obviously, bear no responsibility) are complementary
to theirs.
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Prologue

Lecture 1. Dramatis personae

We begin with some examples of topological spaces which, as we will
see in the future, play key roles in our theory.

A. Vector spaces, disks, spheres. We use the notation Rn, Cn,
Hn for the coordinate n-dimensional real, complex, and quaternionic
vector spaces.

The subset in Rn

Dn := {(x1, . . . , xn) | x21 + · · ·+ x2n ≤ 1}

is called the n-dimensional disk, and its boundary

∂Dn = Sn−1 = {(x1, . . . , xn) | x21 + · · · + x2n = 1}

is the (n− 1)-dimensional sphere.

Consider the nested sequence R1 ⊂ R2 ⊂ . . .Rk ⊂ . . . of vector
spaces. The union

R∞ = {(x1, x2, . . . , xk, . . . ) | all but finitely many xk = 0 }

is the version of infinite dimensional vector spaces we will usually
need. It is equipped with the topology of direct limit: A subset in
R∞ is closed (open) if and only if its intersection with each Rk is
closed (resp. open). One can similarly define C∞,H∞ as well as
S∞ ⊂ D∞ ⊂ R∞.

B. Classical groups. The orthogonal group On is defined as
the group of linear transformations in Rn preserving the standard
Euclidean inner product 〈x,y〉 :=∑n

k=1 xkyk. It consists of real n×n-
matrices U satisfying U tU = I (here I is the identity n × n-matrix,
and “ t” denotes transposition), and inherits the topology from the
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ambient space Rn2
of all n × n-matrices. The space On has two

connected components formed by the matrices with determinants ±1.
Those with detU = 1 form the special orthogonal group SOn.

The unitary group Un is similarly defined as the group of lin-
ear transformations of Cn preserving the standard Hermitian in-
ner product 〈z,w〉 =

∑n
k=1 zkw̄k. It consists of complex n × n-

matrices satisfying U
t
U = I. The kernel of the group homomorphism

det : Un → U1 = {u ∈ C | |u| = 1} is called the special unitary group
and denoted SUn.

We have: O1 = {±1} ≃ S0, SO2
∼= U1 ≃ S1 (where “≃” stands

for “homeomorphic”).

The quaternionic version of the orthogonal and unitary groups is
called the compact symplectic group and denoted Spn. To introduce
it properly, let us first recall what quaternions are.

C. Quaternions. By definition,

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}
is an associative R-algebra with the basis 1, i, j, k obeying the rela-
tions i2 = j2 = k2 = ijk = −1. The relations imply k = ij =
−ji, which allows one to rewrite the quaternions in complex nota-
tion: H = {z + wj | z, w ∈ C}, where j2 = −1, and z = a + bi,
w = c + di. The quaternion conjugated to q = z + wj is introduced
as q∗ = a− bi− cj − dk = z̄ − wj, and one can easily check that

q∗q = qq∗ = |z|2 + |w|2 = a2 + b2 + c2 + d2 =: ‖q‖2.
This makes H a division algebra: 1/q = q∗/‖q‖2 is well-defined for all
q 6= 0. This shows that the Gaussian elimination algorithm, and along
with it all basic linear algebra carry over to vector spaces over H in
the role of scalars. One only needs to remember that if multiplication
in Hn by quaternionic scalars acts on the left: q 7→ λq, then an H-
linear transformation of Hn is described as the multiplication of a
row q = (q1, . . . , qn) by a quaternionic n× n-matrix on the right.

By definition, the group Spn consists of such linear transforma-
tions preserving the Hamiltonian inner product 〈q′,q〉 :=∑n

k=1 q
′
kq

∗
k.

Note that it is H-valued, and is H-linear in q′ and anti-linear in q:
〈λq′, µq〉 = λ〈q′,q〉µ∗.

Consider now the case n = 1 and examine the right multiplication
of q = (x+ yj) by µ = z +wj on the right, taking into account that
j anti-commutes with i:

(x+ yj)(z + wj) = (xz − yw̄) + (xw + yz̄)j.
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This can be interpreted as the multiplication of a row (x, y) ∈ C2

on the right by the complex matrix

[
z w

−w̄ z̄

]
. (By the way, this

establishes the existence of H.) Note that the rows of this 2 × 2-
complex matrix are Hermitian orthogonal. The group Sp1 consists of
such matrices with ‖z+wj‖2 = |z|2+ |w|2 = 1. The last relation has
triple meaning: It shows that the two rows of the matrix are unit in
the Hermitian sense, and also that its determinant equals 1, i.e. that
such matrices form the special unitary group SU2. We conclude that
SU2

∼= Sp1 ≃ S3, the 3-sphere of unit quaternions.

Consider now the action of Sp1 on H = R4 by conjugations. They
preserve the lengths of all vectors in R4, hence preserve the Euclidean
inner product in R4, and since they commute with 1 ∈ H, they pre-
serve the orthogonal to 1 subspace R3 = {bi+ cj + dk} of imaginary
quaternions. Thus, we obtain a homomorphism from the connected
group Sp1 to SO3. It is not hard to see that the homomorphism is
surjective, and its kernel consists of ±1. (E.g., one can argue that
this kernel must lie in the center of H, which is the real axis. Since
the kernel is discrete, and both groups are 3-dimensional, the map
Sp1 → SO3 is a local diffeomorphism near the identity, and then is
surjective, since the rank of a smooth homomorphism between Lie
groups must be constant.) Therefore, SO3

∼= SU2/± I.
D. Projective spaces. Let K denote one of R, C, H. The

projective space KPn is defined as the set of 1-dimensional linear
subspaces in Kn+1. One way of thinking of it is shown in Figure 1:

H

0

Figure 1: KPn = Kn ∪KPn−1

Points of a fixed affine hyperplane H in Kn+1 correspond to all 1-
dimensional subspaces except those which are parallel it. The latter
form the projective space KPn−1 of “points of H at infinity”: A line
in H (shown green) intersects this KPn−1 at one point, the same
one for all lines parallel to it. In particular, KP 1 = K ∪ (∞): a line
y = kx in K2 has slope k ∈ K unless k = ∞. Therefore RP 1 ≃ S1,
CP 1 ≃ S2 (the Riemann sphere), HP 1 ≃ S4.
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Alternatively (Figure 2), RPn = Sn/(±1): Every 1-dimensional
subspace in Rn+1 intersects the unit sphere centered at the origin at
two diametrically opposite points ±x.

S

−x

x

0

n

Figure 2: RPn = Sn/O1

Similarly, CPn = S2n+1/U1 where U1 ≃ S1 acts freely on the
sphere of unit vectors in Cn+1 as scalar multiplication by eiθ. The

projection S2n+1 S1

→ CPn is called the Hopf fibration or Hopf bundle.

The quaternionic version of the Hopf fibration is S4n+3 S3

→ HPn,
where the fibers S3 are the orbits of Sp1 acting on the set S4n+3 of
unit vectors in Hn+1.

By the way, such quotient representation of projective spaces de-
fines their topology. Namely, for any topological space X and an
equivalence relation ∼ on it, the quotient topology on the set X/ ∼ of
equivalence classes is defined as the strongest topology which makes
the canonical projection π : X → X/ ∼ continuous, i.e. U ⊂ X/ ∼
is open if and only if π−1(U) is open in X.

Note the terminology: A topology with more open sets is weaker,
so that the discrete topology (the default topology on any set) is the
weakest of all.

Using direct limits (or starting from K∞ right away) one defines
KP∞, together with the fibrations

S∞ S0

→ RP∞, S∞ S1

→ CP∞, S∞ S3

→ HP∞.

E. Stiefel manifolds. The space of all orthonormal k-frames in
Rn, i.e. k-tuples (v1, . . . , vk) of unit pairwise orthogonal vectors in the
Euclidean n-space is called a Stiefel manifold and is denoted V (n, k).
Obviously, V (n, n) ≃ On. On the other hand, V (n, k) = On/On−k.
Indeed, a k-frame can be completed to an orthonormal basis, and all
such completions (vk+1, . . . , vn) differ from each other by orthogonal
transformations in the orthogonal complement to Span(v1, . . . , vn).
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So, we have two ways of describing the topology of a Stiefel mani-
fold: the induced topology of a subset in the space Rnk of k-tuples of
vectors in Rn, and the quotient topology of On/On−k. We leave it as
an exercise for the reader to explain why the two topologies coincide.

The complex versions CV (n, k) ≃ Un/Un−k and quaternionic ver-
sions HV (n, k) ≃ Spn/Spn−k of Stiefel manifolds are defined similarly
as spaces of k-frames in Cn and Hn orthonormal with respect to the
Hermitian and Hamiltonian inner products respectively. One can
also consider orthonormal k-frames in K∞ and thus define V (∞, k),
CV (∞, k), and HV (∞, k).

Note that for k = 1 the Stiefel manifolds are spheres of appropri-
ate (possibly infinite) dimensions.

F. Grassmannians. A grassmannian or Grassmann manifold
G(n, k) is the space of all k-dimensional subspaces in Rn. It is topol-
ogized by its identification with the quotient space V (n, k)/Ok =
On/(Ok × On−k): Orthonormal bases in the same subspace are k-
frames in Rn from the same Ok-orbit. Passing to the orthogonal
complement of a subspace one identifies G(n, k) with G(n, n−k). The
complex and quaternionic grassmannians CG(n, k) and HG(n, k) are
defined similarly and are similarly expressed as quotients of Un and
Spn respectively. However, in the real case we also have the grass-
mannian G+(n, k) of oriented k-dimensional subspaces in Rn. Recall
that two bases in a real vector space are said to define the same orien-
tation if the determinant of the transition matrix between the bases is
positive (and define opposite orientations if it is negative). Thus, for-
getting orientations defines a 2-to-1 map G+(n, k)→ G(n, k). When
k = n or k = 0, the “oriented” grassmannian consists of two points (by
definition, a 0-dimensional real space has two orientations: + and −),
but for 0 < k < n, G+(n, k) = G+(n, n− k) = SOn/(SOk × SOn−k)
is connected.

The nested sequence of subspaces

Kk ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ . . .
defines the tower of embeddings (in the real case the prefix “R” should
be omitted):

KG(k, k) ⊂ · · · ⊂ KG(n, k) ⊂ KG(n+ 1, k) ⊂ . . . ,
where a k-dimensional subspace in Kn is considered a k-dimensional
subspace in Kn+1. Passing to the direct limit we obtain the infinite
dimensional grassmannian KG(∞, k) of k-dimensional subspaces in
K∞ (and similarly G+(∞, k) in the real case).
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The inclusion Kn ⊂ Kn+1 = Kn ⊕ K1 induces another canonical
embedding: KG(n, k) ⊂ KG(n+1, k+1), where the same K1 is added
to a k-dimensional subspaces and to the ambient n-dimensional space.
This works when n =∞ too, and for “oriented” real grassmannians.

G. Flag manifolds. One can generalize the construction of
grassmannians by introducing a flag manifold whose points are r-
tuples of nested subspaces (called flags) of increasing dimensions
0 < d1 < d2 < · · · < dr < n:

0 ⊂ V d1 ⊂ V d2 ⊂ · · · ⊂ V dr ⊂ Rn.

Using the inner product structure in Rn one can decompose the am-
bient space of a flag into a direct orthogonal sum of subspaces and,
by picking orthonormal bases in these subspaces, identify the flag
manifold with On/(Od1 × Od2−d1 × · · · × On−dr). The same works
for K = C or H with the orthogonal groups replaced by unitary and
symplectic groups respectively.

There is another quotient space description of the same flag man-
ifold: as the quotient of GLn(K) (acting transitively on the flag
manifold) by the stabilizer P (K) of the standard coordinate flag
Kd1 ⊂ Kd2 ⊂ . . .Kn. The stabilizer consists of invertible upper block-
triangular matrices with the blocks of sizes d1, d2 − d1, etc. In the
complex case this describes the flag manifolds (and grassmannians)
as complex manifolds.

The manifold of complete flags V 1 ⊂ V 2 ⊂ · · · ⊂ V n−1 ⊂ Kn will
be denoted Fn(K).

H. The Plücker embedding of CG(4, 2). In a 2-dimensional
subspace V 2 ⊂ C4, pick a basis. From the 4×2 matrix whose columns
represent the vectors of this basis, one can form a 6-array of 2 × 2-
determinants, not all equal 0 (since the matrix has rank 2):

∆ := (∆12,∆13,∆14,∆23,∆24,∆34).

A basis change in V is described by the right multiplication of the

4 × 2-matrix by an invertible 2 × 2-matrix

[
α β
γ δ

]
. This causes

the change ∆ 7→ λ∆, where λ = αδ − βγ 6= 0. Thus, we have
defined a map CG(4, 2) → CP 5 known as the Plücker embedding.
The grassmannian has complex dimension 4 (check this!) and so
the image of the Plücker embedding is a hypersurface given by one
homogeneous equation in CP 5. One way to find the equation is to
apply Laplace’s theorem (see e.g. [4]) about cofactor expansions of
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determinants with respect to several columns. Write two copies of
our 4× 2 matrix next to each other to form a 4× 4-matrix with zero
determinant. Applying Laplace’s 2-column cofactor expansion, we
obtain the Plücker relation

0 = 2∆12∆34 − 2∆13∆24 + 2∆14∆23.

Here is an invariant description of this construction in the lan-
guage of exterior forms. To V 2 ⊂ C4, associate an exterior 2-form ϕ
(unique up to a non-zero scalar factor) with V as the kernel (i.e. ϕ
is the pull-back to C4 of a non-zero exterior 2-form on the quotient
plane C4/V ). We obtain an embedding V 7→ Span(ϕ) of the grass-
mannian into the projectivization of Λ2C4∗. Since ϕ is degenerate,
we have ϕ ∧ ϕ = 0, which is the Plücker relation.

The same construction works verbatim in the real case and yields
the Plücker embedding G(4, 2) ⊂ RP 5. However, if the basis change
in V 2 ⊂ R4 is required to be orientation-preserving, i.e. λ > 0, then
we obtain an embedding of G+(4, 2) into the sphere S5 of rays (rather
than 1-dimensional subspaces) or, equivalently, the unit sphere in R6:

∆2
12 +∆2

34 +∆2
13 +∆2

24 +∆2
14 +∆2

23 = 1.

The coordinate change u = (x + y)/
√
2, v = (x − y)/

√
2 transforms

2uv to x2 − y2 and u2 + v2 to x2 + y2. Applying this lemma to
the Plücker relation and the equation of the unit sphere, we obtain
respectively

x21 − y21 − y22 + x22 + x23 − y23 = 0 and x21 + y21 + x22 + y22 + x23 + y23 = 1.

Therefore, in our new coordinates (x,y) in R6, the “oriented” grass-
mannian is given by the equations ‖x‖2 = 1/2, ‖y‖2 = 1/2. Thus,
G+(4, 2) ≃ S2 × S2, while G(4, 2) is obtained by factorizing S2 × S2

by the simultaneous antipodal involution (x.y) 7→ (−x,−y).

EXERCISES

1. Prove that a compact subset in R∞ is contained in a finite dimensional
subspace.

2. Identify SO4 with (S3 × S3)/(−1,−1) by examining the action q 7→
uqv−1 of (u,v) ∈ Sp1 × Sp1 on q ∈ H.

3. Which of the following spaces are homeomorphic and which are not:
(a) the space T1S

2 of unit tangent vectors to S2, (b) V (3, 2), (c) in C3 with
coordinates z1, z2, z3, the intersection of the complex surface z21+z

2
2+z

2
3 = 0

with the unit sphere |z1|2 + |z2|2 + |z3|2 = 1, (d) RP 3, (e) S2 × S1?
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4. Show that the real and imaginary parts of an Hermitian form are a Eu-
clidean inner product and a non-degenerate anti-symmetric bilinear form
in Cn considered as a 2n-dimensional real space. Furthermore, show that
the Hamiltonian inner product in Hn considered as a 2n-dimensional com-
plex vector space is the sum Z(q′,q)+W (q′,q)j, where Z is an Hermitian
form and W is a non-degenerate anti-symmetric complex-bilinear form.
Deduce that the real (resp. complex) symplectic group Sp(2n,R) (resp.
Sp(2n,C)), defined as the group of linear symmetries of a non-degenerate
anti-symmetric bilinear form in R2n (resp. C2n) contains the compact group
Un (resp. Spn).

5. Identify F3(K) with the hypersurface in KP 2×KP 2 given by the equation
x1y1 + x2y2 + x3y3 = 0 in homogeneous coordinates x and y on the two
projective planes.

6. Show that by gluing the sides of the square (Figure 3) of matching col-
ors and orientations, one obtains respectively: the cylinder, Möbius band,
torus, Klein bottle, and projective plane.

Figure 3: C2,M2, T 2,K2,RP 2

7. Show that RP 2 is obtained by gluing a disk D2 and a Möbius band M2

along their boundaries, and the Klein bottle K2 is thus obtained from two
Möbius bands.

8. Attaching a handle to a surface is done but cutting out two holes and
gluing in a cylinder by identifying its two boundaries with the boundaries of
the holes. Show that there are two topologically different ways of attaching
a handle to S2, and one of them (orientation-respecting) yields T 2, and the
other K2.

9. Another surgery of a surface is done by attaching a Möbius band along
the boundary of a hole. Show that attaching this way 3 Möbius bands is
equivalent, up to homeomorphism of the surface, to attaching one Möbius
band and one handle, and moreover, that after attaching the first one, the
two ways of attaching the handle are equivalent. Derive that all surfaces ob-
tained from S2 by attaching handles and/or Möbius bands in any succession
are homeomorphic to one of S2

g , P 2
g , or K2

g : the sphere, projective plane,
or Klein bottle with g handles. (These are known to be, up to homeomor-
phism, the only closed surfaces, and they are pairwise non-homeomorphic.)
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Lecture 2. Basic constructions

We describe certain operations which produce new topological spaces
from those already defined.

A. Disjoint unions and products. The obvious topology of
the disjoint union of two (or any collection) of topological spaces can
be characterized by the property that a map X ⊔ Y → Z to any
space Z is continuous if and only if its restrictions to X and Y are
continuous. Equivalently, it is the weakest topology in which the
inclusion maps X,Y ⊂ X ⊔ Y are continuous.

In contrast, the Cartesian product is equipped with the strongest
topology in which the projection maps X×Y → X,Y are continuous.
The products U × V of open sets U ⊂ X and V ⊂ Y form a prebase
of this topology (i.e. all open sets are obtained from them by the
operations of finite intersections and arbitrary unions). Equivalently,
a map Z → X × Y from any Z is a pair of maps Z → X, Z → Y ,
and their continuity is equivalent to the continuity of the former. In
particular, a sequence (xn, yn) converges in X × Y if and only if the
sequences xn and yn converge in X and Y respectively.

For example, the cylinder of X is defined as its product X × I
with the unit interval I := [0, 1] of the number line (Figure 4a).

X

Xx0

XXx1

CX XΣ

(c)(b)(a)

Figure 4: Cylinder, cone, suspension

B. Quotients: cones and suspensions. We have already men-
tioned the construction of the quotient space X/ ∼ of a topological
space by an equivalence relation. By definition, a subset U in X/ ∼
is open if and only if its inverse image π−1(U) under the canonical
projection π : X → X/ ∼ is open in X. In other words, this is
the weakest topology in which π is continuous. Equivalently, a map
(X/ ∼)→ Z is continuous if and only if its composition with π is. In
particular, a continuous map X → Z constant on equivalence classes
descends to a map (X/ ∼)→ Z which is continuous automatically.
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Given a subset A ⊂ X, the quotient X/A is defined by declaring
all points of A to form one equivalence class, and each point outside
A to be an equivalence class of its own. For example, Dn/∂Dn ≃ Sn.

The cone CX and suspension ΣX (Figure 4bc) are defined as
such quotients CX := X × [0, 1]/X × 0 and ΣX := CX/X of the
cylinder by one or both of its bases respectively.

The mapping cylinder Cyl(f) of a map f : X → Y is defined as
the quotient of X×[0, 1]⊔Y by the equivalence relation (x, 1) ∼ f(x).

f(x)

X

Y

x

Figure 5: Cyl(f)

C. Joins. The join X ∗ Y of X and Y is obtained by connecting
each point of X with each point of Y by an interval. It is formally
described as the quotient of X×I×Y by the identifications (x, 0, y) ∼
(x, 0, y′) and (x, 1, y) ∼ (x′, 1, y) for all x, x′ ∈ X and all y, y′ ∈ Y .
For example, a tetrahedron is the join I ∗I of any pair of its opposing
edges.

One equips the join with Milnor’s topology, which is the strongest
topology in which the following three mappings are continuous: (i)
X ∗ Y → [0, 1] induces by the projection X × I × Y → I, (ii) X ∗
Y − Y → X induced by the projection X × [0, 1)× Y → X, and (iii)
X ∗ Y −X → Y induces by the projection X × (0, 1] × Y → Y . In
some pathological cases Milnor’s topology differs from the one defined
by the consecutive product and quotient constructions, but has the
advantage of making the join construction associative.

In particular, the join X1∗· · ·∗Xn can be considered as the subset
in CX1× · · · ×CXn consisting of the collections (x1, t1), . . . , (xn, tn)
(here xi ∈ Xi, ti ∈ [0, 1], and ti = 0 represents the vertex of the i-th
cone regardless of xi), satisfying t1 + · · ·+ tn = 1. It is quipped with
Milnor’s topology, in which each function ti is continuous, as is the

projection of t−1
i (0, 1] to X1∗· · · X̂i · · ·∗Xn (where the “hat” indicates

that Xi is omitted).
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D. Mapping spaces. The set C(X,Y ) of continuous maps from
X to Y is equipped with the compact-open topology. By definition, a
prebase of it is formed by subsets

OK,U := {f ∈ C(X,Y ) | f(K) ⊂ U},

where K ⊂ X is compact and U ⊂ Y is open. Thus, every neigh-
borhood U of f ∈ C(X,Y ) contains a possibly smaller neighborhood
consisting of all function from X to Y which send certain compact
subsets K1, . . . ,Kn ⊂ X to certain open subsets U1, . . . , Un ⊂ Y re-
spectively. When Y is a metric space, the compact-open topology is
the topology of uniform convergence of maps on compact subsets.

By analogy with the set-theoretic notation XY for the set of all
functions Y → X, one sometimes uses the same exponential notation
for C(Y,X). However, the exponential law (XY )Z = XY×Z , i.e.
C(Z,C(Y,X)) = C(Z ×Y,X) can fail for general topological spaces.
Nevertheless it is known to hold when Y is locally compact (see [3]).
That is, given F : Z × Y → X, the family Z ∋ z 7→ F |z×Y → X of
its restrictions is continuous as a map from Z to C(Y,X), and this
correspondence is bijective and homeomorphic. This will be sufficient
for our applications.

In particular, a continuous map F : Z × I → X is the same as a
continuous map from Z to the path space E(X) := C(I,X).

E. The base point case. We will regularly consider topological
pairs (X,A), where A ⊂ X, and assume that a map f : (X,A) →
(Y,B) between pairs maps A to B. But most of the time we will
deal with the category of base point spaces, i.e. pairs (X,x0) where
x0 is a fixed base point. Some of the previous constructions have to
be modified to reflect the presence of base points.

The analogue of the disjoint union is the bouquet of spaces:

∨
α(Xα, x

0
α) :=

⊔
αXα /

⊔
α{x0α},

obtained by “gluing” (a family of) based point spaces (Xα, x
0
α) by

their base points, declared to be the base point of the bouquet.

1 2SS

Figure 6: S1 ∨ S2
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By definition, the product of base point spaces
∏

α(Xα, x
0
α) con-

sists of collections of points xα ∈ Xα of which all but finitely many
coincide with x0α. It is equipped with the topology defined by the
condition that a subset is open (closed) whenever its intersection
with every finite sub-product is open (resp. closed). For example,
(R∞,0) =

∏∞
α=1(R, 0)α.

The smash-product X#Y of base point spaces is defined as the
quotient X × Y/X ∨ Y of the Cartesian product by the “coordinate
cross” (X × y0) ∪ (x0 × Y ).

In general, given a pair (X,A), the quotient X/A is considered as
a base point space with the class [A] taken for the base point. This
defines a functor from the category of pairs to the category of base
point spaces. When A = ∅, the quotient X/∅ is defined as the disjoint
union X+ := X ⊔ pt of X with a one-point space which is declared
to be the base point of X+.

The cone and suspension of a base point space (X,x0) are defined
by the additional factorization of the cylinder [0, 1] ×X by the gen-
erator [0, 1] × x0 over the base point. We still denote them CX and
ΣX rather than C(X,x0) and Σ(X,x0), hoping that it is clear from
the context whether we are in a base point space category or not.

pt X

Figure 7: Σ(X+)

By definition, the path space E(X,x0) consist of paths γ : [0, 1]→
X starting at the base point: γ(0) = x0, and the constant path plays
the role of the base point. The fibers (i.e. level sets) of the projection
E(X,x0) → X are the spaces E(x0, x) of paths connecting x0 with
a given point x. The fiber E(x0, x0) over the base point is called the
loop space and denoted ΩX.

It follows from the exponential law that in the base point category
the suspension and the loop space constructions are adjoint to each
other in the following sense:

C(ΣX,Y ) = C(X,ΩY ).

12



EXERCISES

10. On a space X , introduce the following equivalence relation: x0 ∼ x1 if
there is a continuous path γ : [0, 1]→ X connecting x0 with x1: γ(0) = x0,
γ(1) = x1. The equivalence classes are called path-connected components

of X . Show that path-connected components are connected in the usual
sense, and use the function sin 1/x to show that the converse can be false.

11. Show that CSn = Dn+1, ΣSn = Sn+1, pt ∗X = CX , S0 ∗X = ΣX ,
Sn ∗ X = Σn+1X := Σ . . .ΣX (iterated suspension), Sm ∗ Sn = Sm+n+1,
RPm ∗ RPn = RPm+n+1.

12. For every partition of [0, 1] into N equal intervals Ik = [(k−1)/N, k/N ]
and every collection U1, . . . , UN of open sets in X , consider in the path
space E(X) = C([0, 1], X) the subset

⋂N
k=1OIk,Uk

(consisting of all paths
γ : [0, 1]→ X mapping each Ik to Uk). Prove that such subsets form a base
of compact-open topology of the path space.

13. Show that smash-product is associative.

14. For base point spaces, show that Sn#X = ΣnX , Sm#Sn = Sm+n.

15. Show that X+#Y + = (X × Y )+.

16. Prove that all spaces E(Sn, x0, x1) of path connecting any two points
in Sn are homeomorphic.

13



Lecture 7. The universal covering

A covering (like those at the end of Lecture 6) with a simply connected
total space is called universal because all coverings of its base can be
constructed from it.

A. Classification of coverings. An equivalence of two cover-
ings of the same base is defined as a homeomorphism between their
total spaces commuting with the projections:

(Y ′, y′) (Y ′′, y′′)

(X,x0)

p′

f

≃

p′′

Obviously, this is an equivalence relation, and if the based points
are fixed in advance (as in the diagram), an equivalence f satisfy-
ing f(y′) = y′′ is unique when it exists. Otherwise it is unique up
to deck transformations. Furthermore, the subgroups p′∗(π1(Y

′, y′))
and p′′∗(π1(Y

′′, y′′)) coincide (since p′′∗f∗ = p′∗), while a change of the
base point y′ over x0 (and respectively of y′′ := f(y′)) results in a
conjugated subgroup. The converse is true at least when X is locally
path-connected:

Proposition.Two coverings p′ : Y → X and p′′ : Y ′′ → X of the
same locally path-connected space X are equivalent if and only if the
corresponding subgroups in π1(X,x

0) are conjugated.

Proof. The two subgroups in question are p′∗(π1(Y
′, y′)) and

p′′∗(π1(Y
′′, y′′)), defined by a choice of the base points such that p′(y′)

= x0 = p′′(y′′). If the subgroups are conjugated by (the homotopy
class of) a loop α, path-lifting the loop to Y ′ starting from y′ results
in a path α̃ ending at a new base point, ỹ′, such that p′∗(π1(Y, ỹ

′))
coincides with p′′∗(π1(Y

′′, y′′)).

When X is locally path-connected, so are Y ′ and Y ′′. The Map-
Lifting Theorem, applied to covering p′′ with (Z, z0) = (Y ′, ỹ′) and
F = p′, implies the existence of a unique f : (Y ′, ỹ′) → (Y ′′, y′′)
such that p′′ ◦ f = p′. Reversing the roles of p′ and p′′ we obtain
g : (Y ′′, y′′) → (Y ′, ỹ′) such that p′ ◦ g = p′′. The composition g ◦ f
gives a unique lift of F = p′ to the covering p′. But another such lift is
given by the identity map idY ′ , and hence g◦f = idY . For symmetric
reasons, f ◦ g = idY ′′ , and therefore f is a homeomorphism. �

Corollary. The universal covering of a locally path-connected
space, when exists, is unique up to equivalence.
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The significance of the universal covering X̃ → X is that it is a

regular covering, i.e. X = X̃/G is the quotient by a properly dis-
continuous right action of a discrete group, where G ∼= π1(X). For

any subgroup H ⊂ G, the quotient map X̃ → X̃/H factors through

Y := X̃/H, and thus defines a covering p : Y → X corresponding to
a prescribed subgroup in π1(X):

X̃ π1(X̃) = 1

Y = X̃/H π1(Y ) ∼= H

X = X̃/G π1(X) ∼= G

p p∗

More precisely, the orbit x̃0G of a base point x̃0 ∈ X̃ is the corre-
sponding base point x0 in X, and taking y0 := x̃0H for the base
point in Y , we obtain p∗(π1(Y, y

0)) = H. It only remains to find out
whether the universal covering exists.

B. Constructing universal coverings. Let us call X semilo-
cally simply connected if every x ∈ X has a neighborhood Ux such
that every loop in Ux is contractible in X. This condition is nec-

essary for existence of a universal covering X̃ → X, because X is

locally homeomorphic to X̃ which is simply connected.

Theorem. A (path-connected) locally path-connected semilocally
simply connected space has a universal covering.

Proof. It is based on the following explicit construction. Con-
sider the space E(X,x0) of path based at x0, and call two path
γ, γ′ : (I, 0) → (X,x0) equivalent if γ(1) = γ′(1) and γ is homo-
topic to γ′ relative to the endpoints: γ ∼∂I γ

′. Then the quotient

space X̃ := E(X,x0)/ ∼∂I by this equivalence relation is a universal

covering space of X under the projection p : X̃ → X defined by the
evaluation π : γ 7→ γ(1) of paths at the endpoint.

Assume for the moment that p is a covering indeed. The fiber
p−1(x0) consists of homotopy classes of loops in (X,x0). Moreover,
a loop α has the tautological lift αt(u) := α(tu) to a path t 7→ αt in

E(X,x0) (and hence in X̃) which at t = 1 turns into the point [α] ∈
p−1(x0). By Corollary 2 of the Map-Lifting Lemma, this bijection

between π1(X,x
0) and p−1(x0) shows that the subgroup p∗(π1(X̃))

is trivial, and hence (by Corollary 1), that X̃ is simply connected.
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To show that p is a covering, we construct a chart of x ∈ X by
picking a neighborhood Ux such that every loop in it is contractible
in X, and inside Ux find a neighborhood Vx such that every x′ ∈ Vx
can be connected with x by a path (call it δx′) inside Ux.

x x’x

x x’

V

x0

Uγ

γ’

δ

Figure 23: pr : π−1(Vx)→ p−1(x)

Given two path γ and γ′ connecting x0 with x and x′ respectively,
we can close them by δx′ into a loop, whose homotopy class does not
depend on the choice of δx′ because of the properties of Ux. Thus, we
get a surjective map pr : π−1(Vx) → p−1(x): pr(γ′) = pr(γ) if and
only if the loop is contractible. Together with the evaluation map
π : π−1(Vx)→ Vx, they define a bijection

p× p̂r : p−1(Vx)→ Vx × p−1(x)

— two paths ending in Vx are equivalent if and only if their endpoints
coincide and the loop they form is contractible. We prove below
that this bijection is a homeomorphism. However, one can ignore

the quotient topology of X̃, and simply take p̂r−1[γ] ≃ Vx for a
neighborhood of [γ] ∈ p−1(x). By varying Vx and [γ] one obtains the

base of a topology on X̃ which makes it a universal covering of X. �

C. The quotient topology of X̃. To prove that p × p̂r is a
homeomorphism, we need to check: (a) that p̂r : p−1(Vx) → p−1(x)
is continuous, i.e. that for a homotopy class [γ] ∈ p−1(x) its in-
verse image π−1[γ] is open in E(X,x0), and (b) that the bijection
p : p̂r−1[γ]→ Vx is a homeomorphism, i.e. that the inverse bijection
p−1 is continuous.

To establish (a) it suffices to show that γ has a compact-open
neighborhood consisting entirely of paths γ′ with pr(γ′) = pr(γ). In
other words, we need to show that U := π−1(Ux) is semilocally path-
connected: Every point of U has a neighborhood whose points lie in
the same path-connected component of U .

Assume for the moment that (a) is true, and hence p̂r−1[γ] is

open in the quotient topology of X̃ . The continuity of the bijection
p−1 : Vx → p̂r−1[γ] is equivalent to p being open, meaning that images
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of open sets are open. But open sets in X̃ are exactly those whose
inverse images in E(X,x0) are open, and so it suffices to prove that
the evaluation map π : E(X,x0)→ X is open.

Thus, the following lemma shows that X̃ equipped with the quo-
tient topology is the universal covering space of X.

Lemma. If X is locally path-connected, then π : E(X,x0)→ X is
open. If in addition X is semilocally simply connected, then π−1(U)
are semilocally path-connected for all open U ⊂ X.

Proof. Recall that a base of the compact-open topology on
E(X,x0) is formed by sets O which consist of all paths γ : [0, 1]→ X
(with γ(0) = x0) mapping a specified collection of compact subsets
of [0, 1] to specified open subsets of X respectively. Let γ be one such
path in O, and let Ui be such open subsets for those compact subsets
of the collection which contain 1. Then x := γ(1) ∈ Ux :=

⋂
i Ui. Let

Vx be a neighborhood of x inside Ux whose existence is guaranteed by
the local path-connectedness of X: Every x′ ∈ Vx can be connected
to x by a path δx′ lying in Ux. By continuity of γ, some interval
[1− ǫ, 1] is mapped by γ to Vx. Then the path γ′, which on [0, 1− ǫ]
coincides with γ and on [1− ǫ, 1] is stretched further to x′ along δx′ ,
lies in O. Thus, together with x ∈ π(O), its neighborhood Vx also
lies in π(O). This proves that the map π is open.

U

2 431

2 4

δ3 δ42δδ1

U

U

V V V V

U

γ

γ
0x

’
1 U3

Figure 24: Proof of the 2nd part, N = 4

To prove the second statement, consider a path γ with x :=
γ(1) ∈ U . Since every point γ(u) has a neighborhood guaranteed by
the semilocal simply connectedness condition, we can pick N large
enough so that γ

(
[ i−1
N , i

N ]
)

lie in such neighborhoods Ui (Figure 24).
Inside Ui∩Ui+1 (where UN+1 := U for i = N), pick a neighborhood Vi
of γ( i

N ) guaranteed by the local path-connectedness condition. Now

define the compact-open neighborhood V of γ in E(X,x0) consisting
of all path γ′ which map each [ i−1

N , i
N ] to Ui and each i

N to Vi. Given

such a γ′, connect γ′( i
N ) with γ( i

N ) by a path δi inside Ui ∩ Ui+1.

The loop δ−1
i−1γ

′
iδiγ

−1
i , where γi and γ′i are the restrictions of γ and γ′

44



to [ i−1
N , i

N ] (and δ0 is the constant path at x0), lies in Ui. Therefore
the loop is contractible, i.e. extends to a map to X of the rectan-
gle [ i−1

N , i
N ] × I. Altogether these maps assemble into a homotopy

(γt) : [0, 1]× I → X between γ = γ0 and γ′ = γ1, with all γt(0) = x0

and all γt(1) ∈ U . This is a path connecting γ with γ′ in π−1(U).

E. Relations with Galois theory. We have found that un-
der some mild technical assumptions on X (satisfied for locally con-
tractible spaces, which includes manifolds as well as CW-complexes,
see Appendix 1 in [8]), equivalence classes of coverings p : Y → X
correspond to conjugacy classes of subgroups in G := π1(X), and a
regular covering corresponds to a normal subgroup H ⊂ G, in which
case the quotient group G/H becomes the automorphism group of the
covering. Moreover, coverings spaces of (X,x0) equipped with based
points over x0 correspond to subgroups p∗(π1(Y, y

0)) ⊂ π1(X,x
0),

and the inclusion p̃∗(π1(Ỹ , ỹ
0)) ⊂ p∗(π1(Y, y

0)) of the subgroups is

equivalent to the existence of a unique covering map q : (Ỹ , ỹ0) →
(Y, y0) such that p̃ = p◦q. This picture is analogous to Galois theory
of fields extensions in algebra (see e.g. [5] for an elementary exposi-
tion), and the following example establishes a direct connection.

In the space Cn+1 with coordinates (x, a1, . . . , an), consider the
hypersurface Pn (Figure 25a) defined by the equation

xn + a1x
n−1 + · · ·+ an = 0.

The projection Pn → Cn : (x, a) 7→ a is an n-fold covering of Bn :=
Cn −∆n, where ∆n is the discriminant hypersurface ∆ (over which,
by its definition, the corresponding polynomials have multiple roots).

x =x

x =x
x =x

21

2 3
1 3

(a) (b)

Z

P

B
∆

Figure 25: x3 + a2x+ a3 = 0
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Another, n!-fold covering is given by the Vieta map Cn → Cn :
(x1, . . . , xn) 7→ (a1, . . . , an) obtained by expressing the coefficients of
the polynomial (x−x1) . . . (x−xn) as elementary symmetric functions
of its roots: ak = (−1)kσk(x1, . . . , xn). Namely, Bn is the quotient
of the configuration space Zn := {(x1, . . . , xn) ∈ Cn | xi 6= xj} (see
Figure 25b, where x1 + x2 + x3 = 0) of ordered n-tuples of distinct
complex numbers by the group Sn permuting the numbers. So, this
covering is regular.

Rational function on the base form a field C(a1, . . . , an) from
which the field C(x1, . . . , xn) of is obtained as the “splitting field” of
the polynomial xn + a1x

n−1 + · · · + an by adjoining all its roots.
This is a normal extension with the Galois group Sn. The field
C(x, a1, . . . , an) of rational functions on Pn can be embedded into
the splitting field in n conjugated ways by putting x = xk. All ele-
ments of this subfield are fixed by the subgroup Sn−1 ⊂ Sn permuting
all xi except xk.

Likewise, there are n ways to factor the covering Zn → Bn through
Pn → Cn. It remains only to describe the fundamental group π1(Bn)
and its normal subgroup π1(Zn) with the quotient group Sn.

...

...

3 n21

3 n21 3 n21

σi,i+1

−1σi,i+1

aba bab

... ...

......

... ...
i+1i

...

...

3 n21

(a) (b) (c)

=

(d)

Figure 26: Braids

F. The braid group on n strands. Points of Bn can be in-
terpreted as unordered configurations of n distinct complex numbers,
and we can take the roots of (x−1)(x−2) . . . (x−n) for the base point.
Then a based loop in Bn is a family of such configurations starting
and ending at the base point (Figure 26a). Since it matters only up
to homotopy, one can flatten the 3D-figure into a 2D braid (Figure
26b), where it only matters which strand goes over and which one
under when two of them cross on the way from top to bottom. Com-
position of loops translates into the vertical concatenation of braids.
Perturbing the strands, one may assume that different crossings oc-
cur at different “heights”, and cut the braid (as shown on Figure 26b
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in red) into the composition of elementary braids σi or σ−1
i (Figure

26c) with one crossing of strands i and i + 1 only. Thus, the braid
group Brn := π1(Bn) is generated by σi,i+1, i = 1, . . . , n− 1.

While σi,i+1σj,j+1 = σj,j+1σi,i+1 when |i−j| > 1, Figure 6d shows
that σi−1,iσi,i+1σi−1,i = σi,i+1σi−1,iσi,i+1 for all i = 2, . . . , n−1. This
is known to be a complete presentation of Brn.

Forgetting the way the strands braid but remembering how the
nodes 1, ..., n are permuted, we obtain the homomorphism Brn → Sn
corresponding to the regular covering Zn → Bn: The kernel of it,
known as the group of colored braids, is π1(Zn). Under this homo-
morphism, the elementary braids σ±1

i,i+1 become the transpositions

τi,i+1. They satisfy τ2i,i+1 = id, which together with the same rela-
tions as those obeyed by σi,i+1 provide the standard presentation of
Sn on n− 1 generators.

EXERCISES

49. Classify all coverings of S1.

50. Show that every covering space of a torus T n is homeomorphic to one
of the spaces T k × Rn−k where 0 ≤ k ≤ n.

51. For each n > 1, find a space X with π1(X) ∼= Zn (the cyclic group of
order n).

52. Represent the Klein bottle K2 as the quotient of R2 by a discrete
subgroup, compute π1(K

2), and classify all coverings of K2.

53. Show that the universal covering spaces of all smooth connected sur-
faces (compact or not) except S2 and RP 2 are homeomorphic to R2. (Hint:
One way is to use Riemann’s mapping theorem from complex analysis.)

54. Let M be a connected non-orientable manifold, and p : Mor → M its
orienting covering. Describe the homomorphism π1(M)→ Z2 whose kernel
is p∗(π1(M

or)).

55. Let p : G̃ → G be the universal covering of a connected Lie group G.
Show that G̃ has a unique Lie group structure such that p is a smooth
homomorphism, and that the kernel ker p ∼= π1(G) is a discrete central

subgroup in G̃.

56. Show that C−{1/n | n = 1, 2, . . . } is not semilocally simply connected.

57. For a path-connected locally path-connected semilocally simply con-
nected X , show that the covering space (Y, y0) corresponding to a given
subgroup H ⊂ π1(X, x

0) can be constructed by taking the quotient of
E(X, x0) by the equivalence relation: γ ∼H γ′ if and only if γ(1) = γ′(1)
and the homotopy class of the loop γ′γ−1 is in H .

58. Compute π1(C− {1, . . . , n}).
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59. Show that the complement to the discriminant in the space of polyno-
mials xn+a1x

n−1+ · · ·+an is homotopy equivalent to its intersection with
the hyperplane a1 = 0 (and even diffeomorphic to the Cartesian product of
this intersection with C).

60. Show that turning the diagram of a given braid up-side-down yields
the inverse braid.

61. Imagine that the strands of the identity braid are drawn as n parallel
segments on a rectangular strip of paper. Twisting one end of the strip
180◦ (so that the induced permutation is n, n − 1, . . . , 1) we obtain the
fundamental braid. Represent it as the product of the generators σi,i+1.
Show that its square is a colored braid lying in the center of Brn.
Remark: The square is known to generate the center.
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Lecture 14. Classification of G-bundles

We apply homotopy theory to a problem of general mathematical
interest: classification of principal G-bundles and their associates.

A. Principal G-bundles. Let G be a topological group, i.e.
a topological space and a group such that the multiplication and
inversion maps, G × G → G and G → G, are continuous. Given
a free continuous (right) action E × G → E of G on a space E,
the canonical projection p : E → B := E/G to the orbit space is
called a principal G-bundle, provided that it is locally trivial. (The
last condition is satisfied automatically at least in the case of smooth
actions of compact Lie groups.)

In more detail: First, pr1 : B × G → B is the trivial G-bundle
(with respect to the action of G by right translations on itself). It has
a canonical section B → B × G : x 7→ e ∈ G. Vice versa, a section
s : B → E of a principal G-bundle p : E → B defines a trivialization:
a G-equivariant bijection B×G→ E : (x, g) 7→ s(x)g. Continuity of
the inverse map is a local property, and is easily checked using local
trivializations (the red arrow is a G-equivariant homeomorphism):

p−1(U) U ×G

U

≃

p pr1

Indeed, over U , the section s is a function U ∋ x 7→ s(x) ∈ G, and the
inverse to the bijection (x, g) 7→ (x, s(x)g) is the left multiplication
by x 7→ s−1(x), which is continuous.

Thus, a principal G-bundle can be described via some open cover
B =

⋃
α Uα as glued from trivial bundles Uα × G → Uα by means

of re-trivializations (x, g) 7→ (x, ϕαβ(x)g) over pairwise intersections.
Here ϕαβ : Uα ∩ Uβ → G are clutching functions, which must satisfy

ϕβα = ϕ−1
αβ and ϕαβ(x)ϕβγ(x)ϕγα(x) = e when x ∈ Uα ∩ Uβ ∩ Uγ .

Regular coverings are examples of principal G-bundles, where G
is discrete (and they are non-trivial, because the total space of a cov-

ering is required to be path-connected). Stiefel fibrations V (n, k)
Ok→

G(n, k) and their oriented, complex, and quaternionic partners are
examples with compact Lie groups in the role of G. For a “real-life”
example, consider the tangent bundle TMn →Mn of a smooth man-
ifold. It is associated with a principal GLn(R)-bundle over M whose
fiber over x ∈ M consists of all bases in TxM ∼= Rn. Namely, the
transition matrices between the bases form the group of invertible
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n × n-matrices acting freely and transitively on the set of bases. If
fα : Uα → Vα ⊂ Rn form an atlas on M , the corresponding clutching
functions ϕαβ : Uα∩Uβ → GLn(R) are defined by the Jacobi matrices
ϕαβ(x) = ∂(fβ ◦ f−1

α )/∂y|y=fα(x).

Associated bundles. Given a principal G-bundle p : E → B
and a G-space F (i.e. a space carrying a continuous left G-action),
one can “replace” each fiber G with F to obtain the associated bundle
with the structure group G and fiber F . Namely, its total space is the
quotient FG := (E × F )/G with respect to the diagonal left action
(x, f) 7→ (xg−1, gf), and the projection to B = E/G is given by
(x, f)→ p(x) (which obviously factors through FG).

For example, to a principle GLn(R)-bundle one can associate a
vector bundle using the standard vector representation of GLn(R)
on Rn. Conversely, suppose we are given a real n-dimensional vector
bundle over B, i.e. a family π : T → B of vector spaces π−1(x) ∼= Rn,
equipped with local trivializations gα : π−1(Uα)→ Uα×Rn which are
fiberwise linear. Their compositions ϕαβ = gβ ◦ g−1

α can be viewed
as clutching functions Uα ∩ Uβ → GLn(R) recovering the underlying
principal GLn(R)-bundle with the fiber over x ∈ B consisting of all
bases in π−1(x).

Using other representations of GLn(R) (say, in exterior powers
ΛkRn of Rn), one obtains new vector bundles with the same struc-
ture group GLn(R). For instance, differential k-forms on a manifold
M are smooth sections of the bundle ΛkT ∗M . Note that for k = n
(or 0) it is a line bundle (trivial in the latter case). Nevertheless our
terminological convention requires that an associated bundle “remem-
bers” the principal G-bundle it comes from: the clutching functions
defining a bundle with the fiber F and structure group G take val-
ues in G, and not in the group Homeo(F ) of homeomorphisms of
F (as would be minimally required), even when the homomorphism
G→ Homeo(F ) defining the action of G on F is not injective.

Of course, one can forget the GLn(R)-structure of the bundle
ΛkT ∗M and consider it simply as a vector bundle of dimension N =(n
k

)
with the structure groups GLN (R). This illustrates the general

principle: If the action of G on F is defined via an action of G′ and a
continuous group homomorphism ρ : G→ G′ (e.g. an inclusion), then
the structure group G of any associated F -bundle can be replaced
with G′ — by considering G-valued clutching function as G′-valued.
In this sense, expansion of the structure group is always possible.

Another example: Given two vector bundles ξ and η (over the
same base B) with the fibers Rm and Rn, one defines their direct sum
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ξ ⊕ η (also known as Whitney sum) and their tensor product ξ ⊗ η
by performing these operations fiberwise on ξ−1(x) and η−1(x) for
each x ∈ B. Considering ξ ⊕ η and ξ ⊗ η simply as vector bundles
of dimensions m + n and mn means expanding their native struc-
ture group GLm(R)×GLn(R) by embedding it into GLm+n(R) and
GLmn(R) respectively.

On the other hand, narrowing a structure group G to a sub-
group H means imposing an additional structure and is not always
possible. For example, narrowing the group to the trivial subgroup
{e} ⊂ G is equivalent to trivializing the bundle. Narrowing the struc-
ture group GLn(R) of a vector bundle to the group H of invertible
upper-triangular matrices is equivalent to picking in each fiber of
the vector bundle a complete flag in a continuous fashion, or equiva-
lently, to furnishing a section of the associated bundle with the fiber
Fn(R) = GLn(R)/H (defined by the natural action of GLn(R) on
Fn(R)). Yet, the structure group G := GLn(R) (resp. GLn(C) or
GLn(H)) can be narrowed to its maximal compact subgroup H := On

(resp. Un and Spn) provided that the base is cellular. In other words,
a real (resp. complex or quaternionic) vector bundle over a cellular
base can be endowed with a (fiberwise, continuous) Euclidean (resp.
Hermitian and Hamiltonian) structure, or equivalently, the associ-
ated G/H bundle has a section. (For tangent bundles, this means
that any manifold can be endowed with a Riemannian metric.) This
is easily proved by cell induction (using Lemma à la Feldbau’s below,
and over manifolds — using partitions of unity), but the reason is
that the space G/H = S2

+(R
n) of positive definite quadratic forms in

Rn is convex and hence contractible.

Another way of looking at this is to invoke the Gram–Schmidt
orthogonalization to show that the embedding H →֒ G is a homotopy
equivalence. As we will see, whenever the inclusion of a subgroup H
into a group G is a WHE, the structures of G- and H-bundles over
cellular bases are equivalent.

C. Classification. Two principal G-bundles p : E → B and

p̃ : Ẽ → B (over the same base) are called equivalent if there exists

a G-equivariant homeomorphism h : E → Ẽ (where “equivariant”
means h(xg) = h(x)g for all x ∈ E, g ∈ G) such that p = p′ ◦ h:

E Ẽ

B

≃

h

p p̃

We denote by St(B,G) (after Steenrod) the set of equivalence classes
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of principal G-bundles over B. Note that St(B,G) also classifies
bundles over B with the structure group G and any G-space F in the
role of the fiber, because in our terminology, such bundles are defined
by collections of clutching functions with values in G.

Classification theorem. (i) For every topological group G,
there is a principal G-bundle p : EG → BG (called universal) such
that St(B,G) = π(B,BG) for all cellular B.

(ii) Moreover, the bijection π(B,BG) → St(B,G) is established
by the operation f 7→ f !p of inducing, i.e. every principal G-bundle
over a cell space B is equivalent to the bundle induced from the uni-
versal one by a map f : B → BG, and two induced bundles are
equivalent if and only if the inducing maps are homotopic.

(iii) A principal G-bundle is universal if and only if its total space
is weakly contractible (i.e. WHE to a point).

(iv) The classifying space BG is unique up to weak homotopy
equivalence.

The last statement is obvious, because for two classifying spaces

BG and B̃G, the bijection between π(B,BG) and π(B, B̃G) for ev-
ery CW-complex B is obtained by the identification of each with
St(B,G). This identification is natural because ϕ : B′ → B de-
fines ϕ! : St(B,G) → St(B′, G) such that ϕ!(f !p) = (ϕ∗f)!p for all
f : B → BG.

D. Milnor’s construction. It supplies a principal G-bundle
whose total space is weakly contractible. Take EG to be the infinite
join G ∗G ∗G ∗ · · · equipped with the simultaneous action of G via
right translations, and set BG := EG/G.

More explicitly, EG can be considered as a subset in the product
of countably many copies of the cone CG. A point in the product
is a sequence (t1, g1), . . . , (ti, gi), . . . of pairs, where ti ∈ [0, 1] is non-
zero only for finitely many i, and gi ∈ G, though gi is relevant only
when tk 6= 0. The space EG is the subset in this product given
by the equation

∑
ti = 1. On this set, the group G acts freely by

(. . . , (ti, gi), . . . ) 7→ (. . . , (ti, gig), . . . ), and BG = EG/G.

Note that open G-invariant subsets EkG ⊂ EG defined by tk 6= 0
form an open cover of EG, and each projection EkG → BkG :=
EkG/G comes with a section defined by gk = e. Thus, BkG form
an open cover of BG equipped with local trivializations. This makes
EG → BG a principal G-bundle. To show that EG is weakly con-
tractible, we note that every spheroid in EG lands in a finite join
G∗n, and is contractible in G∗(n+1) which contains a cone C(G∗n).
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Perhaps the only example of Milnor’s construction which looks
familiar rather than wild is the case of G = {±1} ∼= Z2. The cone
CG can be identified with the interval [−1, 1], and EG with the ∞-
dimensional sphere

∑
t2i = 1 in [−1, 1]∞ (homeomorphic to the “∞-

dimensional diamond”
∑ |ti| = 1). Thus, BZ2 = RP∞ = S∞/(±1).

E. Proof of the classification theorem. We begin with a
lemma à la Feldbau’s:

Lemma. A principal G-bundle over a cube In is trivial.

L

ε
n

I

Figure 47: G-bundles over In are trivial

Proof. Partitioning In into sufficiently many sufficiently small
cubes Inε , we may assume that the bundle is trivial over each small
cube. To trivialize the bundle over In we construct a section of it by
inductively and systematically extending the previously constructed
section over a part of In (shown green in Figure 47) to one extra cube
at a time. At a step of induction, we have the section defined on a
part L of the boundary ∂Inε , and we want to extend it to the whole
of Inε . But the section of a trivial bundle is a function from the base
to G. So, we can extend L→ G to Inα → G by composing the former
with a retraction of Inε to L.

Theorem. Principal G-bundles over a cellular base, induced from
the same bundle by homotopic maps, are equivalent.

Proof. Let Z be a CW-complex, and (ft) a homotopy between
f0, f1 : Z → B. Consider two bundles over Z × I, both induced from
the same principal G-bundle p : E → B: one by (ft), the other by
f0 × idI . They are identified over Z × 0, and we want to extend this
identification (equivalence) to the whole of Z×I. Restricted to Z×1,
it will provide an equivalence between f !0p and f !1p.

The method is cell induction. At a step of it, we have the bundles
identified over (Z×0)∪ (Zn−1× I), and we extend this identification
to (Z × 0)∪ (Zn × I) one n-cell of Z at a time. Thus, over the “filled
glass” Dn × I, we have two bundles (induced by the characteristic
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map Dn × I → Z × I from those on Z × I), which are both trivial
by above Lemma, and which are already identified over the “empty
glass” (Dn × 0) ∪ (∂Dn × I).

Note that a G-equivariant equivalence of trivial bundles is given
by a function x 7→ s(x) from the base to the group: (x, g) 7→
(x, s(x)g). Thus, we need to extend such a function from the “empty
glass” to the “filled glass”. This is done by Borsuk’s retraction of the
latter to the former. �

Thus, for a cellular B, we have a map π(B,BG) → St(B,G)
well-defined by inducing. The following proposition applied to CW-
pairs (Z,W ) = (B, ∅) and (Z,W ) = (B× I,B× ∂I) proves that it is
surjective and injective respectively.

Proposition. Let p : EG → BG be a principal G-bundle such
that πk(EG) = 0 for all k ≥ 0. Given a CW-pair (Z,W ), a map
f : W → BG, and a principal G-bundle q : E → Z, such that its
restriction q−1(W ) → W to W coincides with f !p, the bundle q can
be induced from p by a map F : Z → BG such that F |W = f :

E q−1(W ) EG

Z W BG

q p

F

f

Proof: cell induction. By Lemma, the bundle, induced to Dn

from q by the characteristic map of an n-cell, is trivial. So, we have
a G-equivariant commutative diagram

Dn ×G ∂Dn ×G EG

Dn ∂Dn BG

pe

Note that inducing a trivial bundle amounts to a map from the base
to EG (shown blue in the diagram and defined by the composition of
the map between total spaces with the section x 7→ e ∈ G of the trivial
bundle). Therefore our problem reduces to extending ∂Dn → EG to
Dn → EG, which is possible because πn−1(EG) = 0. �

Thus, we have proved statements (i) and (ii) of the classification
theorem (based on Milnor’s bundle p : EG → BG), and also found
that weak contractibility of the total space is sufficient for a principal
G-bundle to be universal. To show that this condition is necessary,
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we take a cellular approximation f : B → BG of Milnor’s classifying
space, and examine the induced bundle f !p : E → B. The map
between the bundles yields a morphism of exact homotopy sequences:

πk−1(G) ← πk(B) ← πk(E) ← πk(G) ← πk+1(B)
↓ ↓ ↓ ↓ ↓

πk−1(G) ← πk(BG) ← πk(EG) ← πk(G) ← πk+1(BG)

Since B → BG is a WHE, the four black vertical arrows are iso-
morphisms, and the 5-lemma implies that πk(E) = πk(EG) = 0.
Consequently, f !p : E → B is universal.

Consider now any universal principal G-bundle p̃ : ẼG → B̃G.

Since B is cellular, f !p can be induced from p̃ by a map f̃ : B → B̃G.

So, we have a commutative ladder as above with ẼG and B̃G instead

of Milnor’s EG and BG. Yet, since both bundles p̃ and f̃ !p̃ are

universal, the inducing map f̃ is a WHE (as we have observed in
our argument establishing part (iv) of the classification theorem).

Therefore πk(ẼG) = πk(E) = 0.

This completes the proof of the classification theorem.

Corollary. Let H ⊂ G be a subgroup such that the inclusion is
a WHE. Then for any cell space B, the map St(B,H) → St(B,G)
defined by the expansion of the structure group is bijective.

Proof. Expand the structure group of a universal H-bundle
EH → BH from H to G by interpreting H-valued clutching func-
tions as G-valued. They define a principal G-bundle E → BH and a
fiberwise inclusion:

EH E

BH
H G

In fact E → BH is the same as the associatedH-bundle with the fiber
G defined by left translations ofH on G. The maps between the fibers
coincide with the embedding H ⊂ G up to left and/or right transla-
tions by H, and so they are weak homotopy equivalences. From the
morphism of exact homotopy sequences of these fibrations we con-
clude (invoking the 5-lemma as above) that the embedding EH ⊂ E
is a WHE. Consequently, E is weakly contractible, E → BH is a
universal G-bundle, and St(B,G) = π(B,BH) = St(B,BH) for any
cell space B.
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EXERCISES

111. For a smooth free action of a compact Lie group G on a smooth
manifold M , prove that M/G is a smooth manifold, and the canonical
projection M →M/G is a smooth locally trivial bundle.

112. Given a principal G-bundle, consider the associated bundle with the
fiber G defined by the adjoint action of G on itself. Show that the fibers
of this associated bundle carry a group structure isomorphic to that of G,
and respectively all sections of the associated bundle form a group with
respect to pointwise multiplication. (It is called the gauge group of the
given principal G-bundle.)

113. Show that the bundle π : T → B with the fiber G, associated with
a principal G-bundle p : E → B and the action of G on itself by left
translations, is canonically identified with original bundle p. Yet, can you
explain where the structure of π as a principal bundle (i.e. the action of G
on T ) comes from?

114. Let p : E → B be a principalG-bundle. Show that the induced bundle
p!p is trivial. More generally, let H ⊂ G be a subgroup, q : E → E/H the
principal H-bundle, and π : E/H → B the bundle with the fiber G/H such
that π ◦ q = p. Identify π with the bundle associated with p, π!π with the
bundle associated with q, and show that the π!π has a tautological section.

115. Let {ϕαβ} and {ϕ̃αβ} be two collections of clutching functions for
the same open cover B =

⋃
α Uα, defining two principal G-bundles. Show

that the equivalence of these bundles is established by a collection of local
re-trivializations (i.e. effectively by functions hα : Uα → G) such that
ϕ̃αβ(x) = ~β(x)ϕαβ(x)h

−1
α (x) for x ∈ Uα ∩ Uβ.

116. Compute clutching functions in Milnor’s construction.

117. Prove that πk(BG) = πk−1(G) for all k ≥ 1.

118. Show that for n > 0 and a path-connected G, πn(BG) = St(Sn, G) =
πn−1(G), and that the latter identification can be described as gluing a
principal G-bundle over Sn from trivial bundles over two hemispheres by a
single clutching function Sn−1 → G on the equator Sn−1 ⊂ Sn.

119. Is Lemma à la Feldbau’s more general than Feldbau’s lemma or a
special case of it (for principal rather than all locally trivial bundles)?

120. For a closed Lie subgroup H in a Lie group G, show that the inclusion
H →֒ G is a WHE when G/H is contractible.

121. Prove that a continuous group homomorphism ρ : G → G′ induces
a map BG → BG′ (at least when both classifying spaces are Milnor’s or
when BG is cellular) which is a WHE provided that ρ is.
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Lecture 15. Classifying spaces

The criterion of weak contractibility of the total space for a prin-
cipal G-bundle to be universal often allows one to replace Milnor’s
monstrous classifying space with a far handier model of BG.

A. Discrete groups. When G is discrete, the classifying space
BG = K(G, 1), and the bundle EG → BG is a universal covering
of K(G, 1). For the cellular model of K(G, 1), the universal covering
space is also cellular and is therefore contractible.

B. Classical groups. Stiefel manifolds V (∞, n) are (weakly)
contractible. Indeed, the fibration V (∞, n) → S∞ assigning to an
n-frame its 1st vector has V (∞, n − 1) as a fiber. Since S∞ is con-
tractible, the EHS of the fibration implies that for all k ≥ 0

πk(V (∞, n)) = πk(V (∞, n − 1)) = · · · = πk(V (∞, 1)) = 0,

because V (∞, 1) = S∞. The same argument works for CV (∞, n)
and HV (∞, n). Therefore Stiefel fibrations

V (∞, n) On→ G(∞, n), V (∞, n) SOn→ G+(∞, n)
CV (∞, n) Un→ CG(∞, n), HV (∞, n) Spn→ HG(∞, n)

are universal principal G-bundles for G = On, SOn, Un, and Spn.

In the case O1
∼= Z2 this is Milnor’s model S∞ → RP∞. For U1

and Sp1, these are the Hopf bundle S∞ → CP∞ and its quaternionic
version S∞ → HP∞.

Note that CP∞ is fibered over HP∞ with the fiber Sp1/U1 =
CP 1. This illustrates the general rule: EG → EG/H, where H is
a subgroup of G, is a universal principal H-bundle (because EG is
weakly contractible), and BH = EG/H is fibered over BG with the
fiber G/H.

As an important example, consider the maximal torus T n ⊂ Un

(it consists of diagonal unitary matrices). We obtain a map BT n =
(CP∞)n → CG(∞, n) = BUn with the fiber Un/Tn = Fn(C). This
should not be understood too literally: The universal T n-bundle over
(CP∞)n is induced from the universal T n-bundle over CV (∞, n)/T n

by a map which is a WHE, and it is the latter space which is fibered
over CG(∞, n) with the fiber Fn(C).

Similarly, there are homotopy unique maps (RP∞)n → G(∞, n)
and (HP∞)n → HG(∞, n) with the homotopy fibers respectively
On/(Z2)

n = Fn(R) and Spn/(Sp1)
n = Fn(H).
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When the subgroup H ⊂ G is normal, the situation is more in-
teresting. First, there is a map π : BG → B(G/H) defined by
composing G-valued clutching functions with the quotient homomor-
phism G→ G/H. The map induces from the universal G/H-bundle
over B(G/H) the associated G/H-bundle over BG with the struc-
ture group G. Then the following homotopy commutative diagram
(where, in the spirit of Remark at the end of Lecture 13, pt stands
for E(G/H)) shows that the homotopy fiber of π is BH:

BH pt

BG B(G/H)

G/H G/H

π

Here is an example corresponding to the determinant homomorphism
det : Un → U1:

BSUn pt

CG(∞, n) CP∞

U1 U1

C. Classification of vector bundles. According to our gen-
eral theory, classification of vector bundles over a given cellular base is
equivalent to the classification of principal G-bundles (with the appro-
priate group G) over the same base. For n-dimensional real, complex,
or quaternionic vector bundles, the structure groups are GLn(K) with
K = R,C, or H respectively. The grassmannians G(∞, n),CG(∞, n)
and HG(∞, n) serve as the respective classifying spaces because, as
we noted in Lecture 14, the groups GLn(K) are homotopy equiva-
lent to their respective maximal compact subgroup On, Un, Spn. The
grassmannians G+(∞, n) serve as classifying spaces for oriented n-
dimensional vector bundles, because the subgroup GL+

n (R) of matri-
ces with det > 0 Gram-Schmidt retracts to SOn (or because SOn is
the kernel of det : On → O1).

In each of the 4 cases (real, complex, quaternionic, real-oriented),
the vector bundle over the classifying space associated with the stan-
dard vector representation of GLn(K) (or GL+

n (R)) on Kn is the
tautological vector bundle of the grassmannian: The fiber of it over
a point in the grassmannian represented by an n-dimensional K-
subspace V n ⊂ K∞ is the space V n itself. Thus, these tautological
bundles play the role of universal vector bundles over the classifying
spaces:
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Theorem. The set of equivalence classes of real, real oriented,
complex or quaternionic vector bundles of dimension n over a given
CW-complex B coincides respectively with

π(B,G(∞, n)), π(B,G+(∞, n)), π(B,CG(∞, n)), π(B,HG(∞, n)).

Namely, every n-dimensional vector bundle over B is equivalent to
a vector bundle induced from the tautological one by a map to the
classifying space, and the vector bundles induced by homotopic maps
are equivalent (and vice versa).

Remark. When B is a CW-complex of finite dimension < N , the
set π(B,G(∞, n)) depends only on the N -dimensional skeleton of the
classifying space and hence coincides with π(B,G(N +n, n). Similar
estimates in the complex and quaternionic cases are even more en-
couraging. Ultimately our classification theory makes a lot of sense:
The most topologically complicated (finite-parametric) families of n-
dimensional vector spaces are the families of all n-dimensional sub-
spaces in coordinate spaces of sufficiently high dimensions.

Examples. (a) Contractible maps to the classifying space induce
trivial bundles, and vice versa. Consequently, complex vector bundles
over S1, as well as quaternionic vector bundles over any CW-complex
of dim ≤ 3, are trivial: The classifying grassmannians don’t have cells
in dimensions 1 and 1, 2, 3 respectively.

(b) For all n ≥ 1, π1(G(∞, n)) = π1(RP
2) = Z2. Consequently,

up to equivalence, there is only one non-trivial real line bundle over
S1: the tautological (Möbius) line bundle over RP 1, i.e. the family
of all 1-dimensional subspaces in R2. (Why is it called “Möbius”?)
Moreover, every real vector bundle over S1 is either trivial, or the
direct sum of a trivial bundle with the Möbius line bundle.

(c) π2(CG(∞, n)) = π2(sk3(CG(∞, n)) = π2(CP
1) = Z. Conse-

quently, every complex vector bundle over CP 1 is equivalent to the
direct sum of a trivial bundle with a complex line bundle induced
from the tautological (Hopf) line bundle L over CP 1 by a degree-d
map CP 1 → CP 1. We leave it as an exercise for the reader to check
that the induced line bundle is equivalent to L⊗d.

D. K-functor. Here we will consider complex (for the sake of
definiteness) vector bundles over a base X, with the dimensions of the
fibers over different path-connected components of the base allowed
to be different. As before, two such vector bundles are equivalent if
there is a fiberwise linear homeomorphism between their total spaces
which induces the identity map of the base. The set of equivalence
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classes forms an abelian semigroup with respect to the operation of
the direct sum of vector bundles.

To every nonempty abelian semigroup, Grothendieck’s K-functor
associates a homomorphism S → K(S) from that semigroup to a
certain abelian group with the property that every homomorphism
S → A to an abelian group factors canonically through K(S):

S K(S)

A
The construction of K(S) essentially mimics the way one constructs
integers from natural numbers. Consider ordered pairs a ⊖ b of ele-
ments of S (where the operation is denoted by ⊕), and introduce an
equivalence relation: a⊖ b ∼ c⊖ d whenever a⊕ d⊕ e = b⊕ c⊕ e for
some e ∈ S. (In a semigroup like N: with the cancellation law,
adding e to both sides would be redundant.) Then K(S) is de-
fined as the set of equivalence classes equipped with the operation
(a ⊖ b) ⊕ (c ⊖ d) := (a ⊕ c) ⊖ (b ⊕ d). The map S → K(S) is well-
defined by s 7→ (s ⊕ e) ⊖ e for any e ∈ S. Checking the correctness
of these definitions is straightforward (and the universality property
is obvious).

Applying the K-functor to the above semigroup, we obtain the
Grothendieck group of complex vector bundles over X, which is de-
noted K(X). Its elements are represented by virtual vector bundles
ξ ⊖ η. In fact K(X) is a commutative ring with respect to the op-
eration of tensor product of (virtual) vector bundles. This is easy
to verify starting with (ξ ⊖ η) ⊗ ζ ∼ (ξ ⊗ ζ) ⊖ (η ⊗ ζ). The trivial
one-dimensional vector bundle plays the role of the unit element.

Example. K(pt) = Z since a vector bundle over a point is just
a vector space, its dimension is the only invariant, and it is additive
and multiplicative relative to the operations of direct sum and tensor
product respectively.

E. Stable equivalence. We will see here that the ring K(X) of
a finite CW-complex X is a homotopy invariant.

Two vector bundles are called stably equivalent if they become
equivalent after adding to them trivial bundles of suitable (possibly
different) dimensions. For instance, the normal bundle to the stan-
dard sphere S2 ⊂ R3 is trivial, and its sum with the tangent bundle
to S2 is R3, i.e. also trivial. Thus, the tangent bundle to S2 is sta-
bly trivial (yet non-trivial — prove it though). This applies to the
complexifications of these bundles as well.
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Let X be a path-connected cell space (so that complex vector
bundles over X have definite dimensions). A bundle ξ is induced
from the tautological one by a map f : X → CG(∞, n) with n =
dim ξ. Stabilizations ξ⊕Ck are induced from the tautological bundle
over CG(∞, n + k) by the composition of f with the embeddings
CG(∞, n) →֒ CG(∞, n+ k) defined by adding the same Ck to both:
a subspace V n ⊂ C∞ representing a point in the grassmannian and
the ambient space C∞. Two bundles ξ and η of dimensions n and m
are stably equivalent if and only if such composite inducing maps to
CG(∞, N) for sufficiently large N are homotopic. Consequently, the
set of classes of stable equivalence of complex vector bundles over X
is the direct limit of π(X,CG(∞, n)) as n→∞.

The direct limit of the inclusion sequence

CG(∞, N) ⊂ CG(∞, N + 1) ⊂ CG(∞, N + 2) ⊂ · · ·

is denoted BU . The (weak) homotopy type of BU can be described
abstractly as the direct limit of BUN under the sequence of maps
BUN → BUN+1 defined by the standard inclusions of UN into UN+1,
or as the classifying space for principal bundles with the structure
group U := lim−→UN . While lim−→ π(X,BUN ) is a subset in π(X,BU),
the equality is not guaranteed unless X is finite dimensional.

Proposition. The set of classes of stable equivalence of complex
vector bundles over a path-connected finite dimensional CW-complex
X coincides with π(X,BU).

Indeed, Schubert cell partitions of the grassmannians CG(∞, N)
are compatible with the above inclusions and define a CW-structure
on BU . By the cellular approximation theorem, if dimX < n, a map
X → BU is homotopic to some map X → CG(n, [n/2]) ⊂ BU .

Lemma. Let X be a finite CW-complex (not necessarily path-
connected). For every complex vector bundle ξ over X (possibly of
different dimensions over different path-connected components of X)
there exists a complex vector bundle ξ⊥ such that ξ ⊕ ξ⊥ is trivial.

Proof. The restrictions ξ|Xi
(of dimensions ni) to the (finitely

many) path-connected components Xi of X are induced from the
tautological bundles by some maps fi : Xi → CG(N,ni) provided
that N is large enough. The fibers V ni ⊂ CN of the tautological
bundle have Hermitian orthogonal complements which are the fibers
of the other tautological bundle over CG(N,ni) = CG(N,N − ni).
Let ξ⊥|Xi

be induced from it by the same fi. Then ξ ⊕ ξ⊥ = CN .
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Theorem. For a finite CW-complex X, K(X) = π(X,Z ×BU).

Proof. It suffices to consider the case of a path-connected X.
Then dim(ξ⊖η) := dim ξ−dim η is well-defined as a (ring) homomor-
phism K(X) → Z (if you wish, induced by the restriction of vector
bundles to a point in X). On the other hand, ξ ⊖ η ∼ (ξ ⊕ η⊥)⊖N ,
where N is the favorite notation of topologists for the trivial N -
dimensional vector bundle CN , η ⊕ η⊥ in this case. We claim that
the class of ξ ⊖ η in K(X) is uniquely determined by its dimension
together with the class of stable equivalence of the bundle ξ ⊕ η⊥,

and vice versa. Indeed, ξ ⊖ η ∼ ξ̃ ⊖ η̃ means that for some ζ

ξ ⊕ η̃ ⊕ ζ⊕η⊥ ⊕ η̃⊥ ⊕ ζ⊥ ∼ ξ̃ ⊕ η ⊕ ζ⊕η⊥ ⊕ η̃⊥ ⊕ ζ⊥

i.e. that ξ ⊕ η⊥ is stably equivalent to ξ̃ ⊕ η̃⊥. Conversely, from

ξ ⊕ η⊥ ⊕M⊕η ⊕ η̃ ∼ ξ̃ ⊕ η̃⊥ ⊕ M̃⊕η ⊕ η̃

it follows that ξ ⊕ η̃⊕ (M +N) ∼ ξ̃⊕ η⊕ (M̃ + Ñ), where M +N =

M̃ + Ñ provided that dim ξ − dim η = dim ξ̃ − dim η̃.

Thus, for a path-connected X, a class of K(X) corresponds to
a map of X to Z (the dimension of ξ ⊖ η) and a homotopy class of
maps X → BU (by Proposition).

Remarks. (1) The ring structure of π(X,Z × BU) = π(X,Z) ×
π(X,BU) is induced by the usual operations in Z, and by the maps
BUN×BUM → BUM+N and BUN×BUM → BUMN (corresponding
to the direct sum and tensor product of tautological vector bundles,
or, equivalently, to the respective embeddings of UN × UM ⊂ UM+N

and UN × UM ⊂ UNM ) in the limit N,M →∞.

(2) This result is the starting point of complex K-theory. We
are not going to study it in this book, but eventually we will be
able to identify the place of K-theory among generalized cohomology
theories.

EXERCISES

122. For any path-connected CW-complex X , construct a map from X to
(say, cellular) K(π1(X), 1) which induced an isomorphism of fundamental
groups, and derive from this that X has a universal covering.

Remark. In fact (though we didn’t prove this) CW-complexes are lo-
cally contractible (see e.g. [8]), and so they have universal coverings by our
criterion from Lecture 7.
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123. Construct a mapG(∞, n)→ RP∞ with the homotopy fiber G+(∞, n).
124. Classify principal SL2(C)-bundles over CP 2.

125. Prove that the canonical embedding CP∞ ⊂ G+(∞, 2) (defined by
considering a complex line in C∞ as a real plane equipped with the complex
orientation) is a homotopy equivalence.

126. Show that real line bundles over a path-connected cellular baseB (and
in fact any base which has a universal covering) are classified by elements
of Hom(π1(B),Z2).

127. Show that the complex line bundle induced from the Hopf line bundle
L over CP 1 by a degree-d map CP 1 → CP 1 is equivalent to L⊗d.
Hint: Use clutching functions.

128. Classify complex line bundles over RP 2. (Hint: the same.)

129. Show that in the semigroups of the equivalence classes of (real or
complex) vector bundles, the cancellation property can fail.

130. The semigroup of “material points” in a vector space V consists of
pairs [m, v] where m > 0 is the mass of point v ∈ V , while the operation
[m, v] + [m′, v′] yields the center of mass: [m+m′, (mv+m′v′)/(m+m′)].
Compute Grothendieck’s K-functor of this semigroup.

131. Show that inducing complex vector bundles by a map f : X → Y
defines a ring homomorphism K(Y )→ K(X).

132. Prove that for every groupG, the loop space ΩBG is weakly homotopy
equivalent to G.

Remark. Thus, from the homotopy theoretic point of view, ΩBG is
indistinguishable from G and should be considered as a “group-like” ob-
ject in the homotopy category. The official name for such a group-like
object is H-space. By definition it is a space X equipped with multipli-

cation map µ : X × X → X , inversion map ν : X → X , and the unit

x0 ∈ X such that: (i) x 7→ µ(x, x0) and x 7→ µ(x0, x) are homotopic to idX ,
(ii) x 7→ µ(x, ν(x)) and x 7→ µ(ν(x), x) are homotopic to the constant map
x 7→ x0, and (iii) µ× idX and idX ×µ are homotopic maps X×X×X → X
(homotopy associativity of µ). Therefore, for every path-connected B, the
loop space ΩB is an H-space (with µ defined by the composition of loops
and ν by their reverse parameterization), while the Hurewicz fibrations

pt
ΩB→ B generalize universal principal G-bundles.
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Lecture 21. Thom’s transversality theorem

We review here some analysis on manifolds necessary for forthcoming
applications (and refer to [6] for further details and developments).

A. Jet spaces. Let π : E → B be a smooth bundle, by which we
mean an infinitely differentiable submersion of C∞-manifolds which
possesses local C∞-trivializations. Two sections f and g are said to
have the same k-jet at x ∈ B (notation: jkxf = jkxg) if they have the
same value y at x and the same Taylor coefficients of orders ≤ k in
some (and hence any) local chart and trivialization near (x, y).

The space of k-jets of sections at all x ∈ B is denoted Jk(π)
(or Jk(B,F ) when the bundle is trivial so that the sections are just
smooth maps B → F , and simply Jk(B) in the case of smooth func-
tions B → R). It is a manifold (with transition maps between charts
determined by the behavior of Taylor coefficients under changes of
coordinates), which fits in the infinite tower of affine fibrations

· · · → Jk(π)→ Jk−1(π)→ · · · → J1(π)→ J0(π) = E
π→ B

with the fiber over jk−1
x f isomorphic to Tf(x)F ⊗ SkT ∗

xB.

A section f ∈ C∞(π) comes with its k-jet extension x 7→ jkxf : a
section jkf : B → Jk(π) of the k-jet fibration Jk(π)→ B. It is inte-
gral (in the sense of Frobenius’ integrability theorem) to the so-called
Cartan distribution. Namely, in local components f = (f1, . . . , fn)
and local coordinates x = (x1, . . . , xm) we have:

d

(
∂|α|fi
∂xα

)
=

m∑

j=1

∂|α|+1fi
∂xα+1j

dxj , (α+ 1j := (α1, . . . , αj + 1, . . . , αm)).

The Cartan distribution on Jk(π) is given by the following system of
linear equations on tangent spaces to Jk(π):

dpαi =
∑

j

p
α+1j
i dxj , 0 ≤ |α| :=

∑

j

αj < k, i = 1, . . . , n,

where pαi are the namesakes of partial derivatives of fi considered as
independent local coordinates on the fiber of the jet fibration.

Example. On the space J1(B) = R× T ∗B of 1-jets of functions,
the Cartan distribution is the famous contact structure — the “max-
imally non-integrable” field of tangent hyperplanes du =

∑
pjdxj.
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B. C∞-topology. The space C∞(π) of smooth sections of a
smooth bundle π : E → B is embedded into the space of continuous
sections B → Jk(π) of the k-jet fibration, and inherits from it the
compact-open topology (called Ck-topology). The C∞-topology on
C∞(π) is defined as the union of Ck-topologies over all k ≥ 0. In fact
this is the topology of uniform convergence of sections and all their
derivatives on compact subsets of B, and our current goal is to turn
C∞(π) into a complete metric space.

To this end, note that every manifold M can be equipped with
a Riemannian metric, making it a metric space (with the distance
between two points in the same connected component defined as the
infimum of the lengths of all smooth curves connecting them). The
latter can be turned into a complete metric space by embedding M
into the cylinder M×R as the graph of a continuous function M → R

which tends to +∞ “at infinity” of the one-point compactification of
M , and by inducing the product metric from the cylinder.

Given a complete metric dk on Jk(π), and a compact K ⊂ B, put

Dk,K(f, g) := max
x∈K

dk(j
k
xf, j

k
xg).

This is a semi-distance on C∞(π) in the sense that it is non-negative,
satisfies the triangle inequality, but can vanish even if f 6= g. Doing
this for every k and for a sequence of compact subsets covering B,
we obtain a countable sequence Di of such semi-distances on C∞(π).
One turns it into the Fréchet metric

D(f, g) :=
∑

i

1

2i
Di(f, g)

1 +Di(f, g)
.

A sequence of sections fn ∈ C∞(π) is Cauchy relative to D if and
only if it is Cauchy with respect to each Di i.e. effectively if for
each k ≥ 0 and each compact K ⊂ B, the sequence jkxfn ∈ Jk(π) is
Cauchy with respect to dk uniformly over x ∈ K.

From the completeness of spaces of continuous functions on com-
pact sets under uniform convergence, we conclude that jkfn converge
uniformly on compact subsets to some continuous sections g(k) : B →
Jk(π). To see that g(k) are the k-jet extensions of g(0), recall that

j(k−1)fn can be recovered from jkfn by integration along curves in B,
and that such integration commutes with uniform limits. Therefore,
each g(k−1) is obtained from g(k) this way, making it C1. By induc-
tion on k, g(0) ∈ C∞(π) with jkg(0) = g(k) for all k. Thus, C∞(π)
equipped with the Fréchet metric D is complete.
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Remark. An order k partial differential relation (e.g. a PDE
system) on sections of a bundle π is an “algebraic” relation between
partial derivatives, i.e. it is defined by a subset R ⊂ Jk(π). The space
of solutions consists of sections whose k-jet extensions land in R. It
is included into the space of formal solutions: sections B → Jk(π)
landing in R but not necessarily integral to the Cartan distribution.
It turns out that under some condition on R, the inclusion is a weak
homotopy equivalence (a property named h-principle — for “homo-
topy”, but probably also after M. Hirsch who established it for immer-
sions). Powerful sufficient conditions for this property (e.g. it turns
out to hold for any partial differential relation invariant under dif-
feomorphisms of B whenever all components of B are non-compact)
are proved in the book [7] by M. Gromov, which provides a broad
range of applications of the h-principle. Note that the coincidence
of π0 alone reduces the existence problem for solutions of differential
relations to a purely topological question.

C. Massive subsets. The complement to a (say, rational) point
in R is open and dense. The complement to all rational points is not
open but still dense. This illustrates

Baire’s theorem. In a complete metric space, intersections of
countably many open dense sets are dense.

Proof. Inside an open ball B centered at a, pick a1 from the 1st
open dense set U1 lying in B ∩U1 together with a smaller closed ball
B1 at most half the radius of B; inside B1 pick a2 from the 2nd open
dense set U2 lying in B1 ∩U2 together with a closed ball B2 at most
half the radius of B1; and so on. The sequence {an} is Cauchy and
its limit lies in B

⋂∞
i=1 Ui. �

Subsets of a complete metric space representable as intersections
of countably many open dense sets are called massive. Clearly, inter-
sections of countably many massive sets is massive, and by Baire’s
theorem dense — hence certainly non-empty. In contrast, taking from
Q ⊂ R one rational point after another, we can obtain a sequence of
dense sets in R whose intersection is empty.

In applications to spaces of sections C∞(π), whenever one says
that a certain property of sections is “typical”, or that a “generic”
section has this property, one means that the sections possessing the
property form a massive subset in C∞(π). In particular, in any C∞-
neighborhood of a given section there are sections which have the
property, or equivalently, that even if a given section doesn’t have it,
it can always be “perturbed” into one that does.
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D. Transversality. A smooth map f : M → N is called trans-
verse to a submanifold Z ⊂M (which is written as f ⋔ Z) if at every
x ∈M such that f(x) ∈ Z the image of the tangent space to M at x
under the differential of f at x together with the tangent space to Z
at f(x) span the tangent space to N at f(x):

dxf(TxM) + Tf(x)Z = Tf(x)N.

The latter equality is impossible when dimM + dimZ < dimN , in
which case the transversality condition means that f(M) and Z are
disjoint. When they are not disjoint, f ⋔ Z implies that f−1(Z) is
a submanifold in M of codimension equal to that of Z in N , and
moreover the normal bundle of f−1(Z) in M is induced by f from
the normal bundle of Z in N :

Tf−1(Z)M /T (f−1(Z)) = f ! (TZN /TZ).

Indeed, if f is given in local coordinates (x1, . . . , xm) on M by
y1 = f1(x), . . . , yn = fn(x), and y1 = · · · = yr = 0 are local
equations of Z in N , then f−1(Z) is locally given by the equations
f1(x) = · · · = fr(x) = 0, and the transversality condition means that
dy1 = df1(x), . . . , dyr = dfr(x) are pointwise linearly independent.
By the Implicit Function Theorem, this guarantees that f−1(Z) is
smooth and also shows that the linear coordinates dy1, . . . dyr trivial-
izing locally the normal bundle to Z in N also provide such a system
of local linear coordinates on the normal bundle to f−1(Z) in M .

Lemma. Suppose that the submanifold Z is a closed subset of N .
Then transversality to Z at all points of a compact subset K ⊂ M
is an open condition in the C1-topology of the space of smooth maps
f :M → N (or sections of a bundle N →M).

Proof. It suffices to show that the set of 1-jets non-transverse
to Z is closed in J1(M,N) (so that its complement is open). This
set consists of triples (x, y,A) where x ∈ M , y ∈ Z, and A ∈
Hom(TxM,TyN) is such that its composition with the projection

TyN → TyN/TyZ is not surjective. Let a sequence (x(n), y(n), A(n))

of such triples converge to some (x(0), y(0), A(0)). Then y(0) is still in
Z since Z is assumed closed in N . In a local coordinate system near
(x(0), y(0)) ∈M×N where Z is given by equations y1 = · · · = yr = 0,
the non-transversality condition for an n×m-matrix A = (aij) is that
all its r×r minors in the top r rows vanish. This is a closed condition
in the space of matrices, and if A(n) satisfy it for all n large enough,
then so does their limit A(0). �
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Thom’s transversality theorem. Sections of a smooth bundle
π : E → B whose k-jet extensions are transverse to a given sub-
manifold Z ⊂ Jk(π) form a massive subset in the C∞-topology of
C∞(π).

Corollary (elementary transversality theorem). Smooth maps
f :M → N transverse to a given submanifold Z ⊂ N form a massive
subset in the C∞-topology of C∞(M,N).

Remark. One often considers (see [6]) the so-called Whitney topol-
ogy (or “strong topology” which in our terminology is weaker than
the C∞-topology introduced above). Its base is formed by the sets of
sections whose k-jet extensions land in a given open subset of Jk(π)
(everywhere over B, and not only over a given compact subset). The
Whitney topology is metrizable only when B is compact (in which
case it coincides with the C∞-topology), but it still possesses the
Baire property. It has the advantage that the above lemma remains
true for K = B even when B is non-compact, and consequently
the massive set in Thom’s transversality theorem is still open in the
Whitney topology provided that Z is closed as a set in Jk(π).

E. Reduction to Sard’s lemma. To prove the theorem, we
cover Z by countably many compact subsets Zi each projecting to a
compact subset Ki ⊂ B. By Baire’s theorem and the above lemma,
it suffices to show that every section f can be perturbed to make
its k-jet extension transverse to Zi (i.e. transverse to Z wherever
jkxf ∈ Zi). Moreover, we may assume that each Zi is small enough so
that its projection to J0(π) = E would fit in a product ≃ Rm × Rn

of coordinate neighborhoods in a local trivialization of the bundle.

Z 

kf 

(f+p) j  k

Z 

j  

Figure 54: Fibration by graphs of jk(f + p)

So, examine first our perturbation problem for f ∈ C∞(Rm,Rn)
and Z ⊂ Jk(Rm,Rn). Introduce the family f(x) + p(x) of pertur-
bations where the components pi(x) =

∑
|α|≤k| p

α
i x

α of p are arbi-

trary polynomials in x = (x1, . . . , xm) of degree ≤ k. The graphs
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of jk(f + p) are disjoint translates of the graph of jkf , and fiber
Jk(Rm,Rn) over the space P of parameters pαi (Figure 54). The
point now is that non-transversality of jk(f + p) to Z at x is equiva-
lent to jkx(f+p) ∈ Z being a critical point of the projection of Z → P .
By Sard’s lemma (see [6] or [7] for a proof), the set of critical values
(i.e. of those p ∈ P for which jk(f + p) is non-transverse to Z) has
zero measure in P , and so its complement is dense.

Our actual (global) problem differs from this model situation only
because some values f(x) for x within the local domain chart Rm

might fall outside the codomain chart Rn. To fix this, we pick two
smooth compactly supported functions ρ : Rm → R and ρ̃ : Rn → R

such that ρ = 1 on the projection of Zi to Rm, and ρ̃ = 1 on the pro-
jection of Zi to Rn. Then the perturbations f(x) + ρ(x)ρ̃(f(x))p(x)
coincide with f outside the support of ρ and within this support wher-
ever f(x) falls outside the support of ρ̃, and so they extend (by f) to
global sections of π : E → B. Yet, in a neighborhood in Rm×Rn con-
taining the projection of Zi, these perturbations coincide with f + p.
In this neighborhood our previous arguments based on Sard’s lemma
apply, and provide global perturbations of f with k-jet extensions
transverse to Zi and as C∞-close to f as desired. �.

F. Applications. (1) A generic map f : M →M has only non-
degenerate (and hence isolated) fixed points. To prove this, perturb
the graph of f to make it transverse to the diagonal in M ×M .

(2) A generic vector field (i.e. a section of TM) as well as a generic
differential 1-form (i.e. a section of T ∗M) is transverse to the zero
section, and so has only non-degenerate (and hence isolated) zeros.

(3) A generic smooth function f : M → R is Morse, i.e. has
only non-degenerate critical points: det(∂2f/∂xi∂xj) 6= 0 at every
critical point. While (1) and (2) are applications of the elementary
transversality theorem, here we use Thom’s theorem applied to Z :=
R×M ⊂ J1(M) = R× T ∗M (where M ⊂ T ∗M is the zero section).

EXERCISES

173. Explain why (3) does not follow from (2) even though the Morse
condition is equivalent to df having only non-degenerate zeros.

174. Show that the assumption in Lemma that Z is closed is necessary.

175. Prove that immersions form a massive subset in C∞(Mm, Nn) when
n ≥ 2m.

Remark. A “multi-jet” version of Thom’s theorem (see [6]) implies that
embeddings form a massive set in C∞(Mm, Nn) when n > 2m.
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Epilogue

Lecture 28. Spectra

Our achievements fit nicely into a broader picture of extraordinary
(co)homology theories, which is outlined here with a view toward a
next-level course in algebraic topology.

A. Eilenberg-Steenrod axioms. An abstract cohomology the-
ory is a functor h from the category of finite CW-pairs to the cat-
egory of Z-graded abelian groups: To each finite CW-pair (X,A)
it assigns a sequence h••(X,A) of abelian groups and to a continu-
ous map f : (X,A) → (Y,B) a sequence of group homomorphisms
f∗ : h•(X,A) → h•(Y,B) (resp. f∗ : h•(Y,B) → h•(X,A)) compati-
ble with compositions, which satisfy the Eilenberg-Steenrod axioms:

(1) Homotopy invariance: f ∼ g ⇒ f∗ = g∗ (resp. f∗ = g∗).

(2) Factorization (excision/suspension): h••(X,A) = h••(X/A, pt).

(3) Exactness: long exact sequences of CW-triples (X,A,B).
This includes existence of connecting homomorphisms
∂∗ : h•(X,A)→ h•−1(A,B) (resp. δ∗ : h•(A,B)→ h•+1(X,A)).

Reduced (co)homology is then defined by h̃••(X) := h••(X,x
0), and

“non-reduced” by h••(X) := h̃••(X
+), where X+ := X ⊔ pt.

Adding axiom

(4) Dimension: h••(pt) = 0 for • 6= 0,

one ends up with the ordinary cellular (co)homology theory with co-
efficients in G = h0(pt) (resp. h0(pt)): Our argument in Section 17A
of the coincidence between cellular and singular homology doesn’t
rely of anything but the axioms (1-4) and their corollaries, while in
the case of infinite CW-complexes one also needs to require axiom

(5) Additivity: h•(
⊔

αXα) =
⊕

α h•(Xα).

The point is, however, that by dropping axiom (4) one encounters
many other, extraordinary homology and cohomology theories.
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B. The Brown representability theorem says, loosely speak-
ing, that all extraordinary cohomology theories come from spectra.

By definition, a spectrum K is a sequence of base point spaces
Kn, n = 0, 1, 2, . . . , and maps fn : ΣKn → Kn+1, or equivalently
gn : Kn → ΩKn+1. It is called an Ω-spectrum if gn are homotopy
equivalences (and a Σ-spectrum if fn are, but as it will become clear
shortly, this axiomatic definition is not particularly useful). In any
case, all notions and notations in this theory are set in the homotopy
category of base point spaces, and only homotopy types of Kn, fn,
and gn are relevant.

Given a spectrum K, one defines a cohomology theory “with co-
efficients in the spectrum” by

h•(X,A;K) := lim−→
N→∞

π(ΣN (X/A),K•+N ).

The direct limit is taken with respect to the compositions

π(ΣN (X/A), K•+N)
Σ
→ π(ΣN+1(X/A),ΣK•+N )

(f
•+N )∗
−→ π(ΣN+1(X/A), K•+N+1)

or, equivalently,

π(ΣN (X/A),K•+N)
(g

•+N )∗
−→ π(ΣN (X/A),ΩK•+N+1) = π(ΣN+1(X/A), K•+N+1).

The structure of an abelian group is induced by the compositions
of loops in ΩKn+1. If K is an Ω-spectrum, the limit procedure is
redundant since in this case (gn)∗ are bijections. The corresponding
homology theory “with coefficients in K” is defined by direct limits

h•(X,A;K) := lim−→
N→∞

π(S•+N ,KN#(X/A)) = lim−→
N→∞

π•+N (KN#(X/A))

with respect to maps which should become obvious once we recall
that ΣKN = S1#KN and that smash-product “#” is associative.

Finally, if X = pt, then X+ = S0, and so the coefficient groups
of the theory h•(pt) = h−•(pt) = lim−→π•+N (KN ) are the “stable ho-
motopy groups” of the spectrum.

Note that the factorization axiom holds by the very construction,
since only the quotient X/A of a pair (X,A) features in the defini-
tions. The inherent properties (from Section 3B) of the bi-functor
π(−,−) guarantee the correct functoriality and homotopy invariance
of our theories. So, the exactness axiom is the only one that needs
explanations. For cohomology theory, they come in the geometric
form of the Puppe sequence (Figure 64):
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X/A AΣ ΣXXA

Figure 64: The Puppe sequence

This is a sequence of inclusions

A ⊂ X ⊂ X ∪ CA ⊂ CX ∪ CA ⊂ C(X ∪ CA) ∪ CX ⊂ · · ·
Here every 3 consecutive terms have the form B ⊂ Y ⊂ Y ∪B CB,
but when (X,A) is cellular, the sequence is homotopy equivalent to

A→ X → X/A→ ΣA→ ΣX → ΣX/ΣA→ Σ2A→ . . .

and so on.

For any K, consider the induced sequence

π(A,K)← π(X,K)← π(X/A,K)← π(ΣA,K)← π(ΣX,K)← . . .

Recall that we work in the base point category where π means πb,
and each π(Y,K) has a “zero” element represented by contractible
maps. In this sense the sequence is exact: The kernel of each arrow
coincides with the image of the previous one. Indeed, if the restriction
f |B of a map f : Y → K is contractible, then f extends to a map
Y ∪B CB → K, and vice versa.

For homology theory, there is a “dual Puppe sequence”. One can
start with turning an inclusion B ⊂ Y into the homotopy equivalent
Hurewicz fibration E(Y,B) → Y . Its fiber F consists of paths in Y
starting in B and terminating at y0 ∈ Y . It is therefore fibered over
B with the fiber ΩY . Iterating, we get the sequence of maps

Y ← B ← F ← ΩY ← ΩB ← ΩF ← Ω2Y ← · · ·
where each space is homotopically the fiber of the Hurewicz fibration
formed by the next two. Applying π(Z,−) we get the sequence

π(Z, Y )← π(Z,B)← π(Z,F )← π(ΣZ, Y )← π(ΣZ,B)← · · ·
which is exact due to the CHP of Hurewicz fibrations. With Z = S0

we obtain the usual EHS of the pair (Y,B) since πn(F ) = πn+1(Y,B).

We didn’t need all this to take (Y,B) = (KN#X,KN#A) and
obtain a LHS — however, with π•+N (KN#X/KN#A) in the defi-
nition of homology h•(X,A) replaced by π•+N (KN#X,KN#A). In
this case it is the factorization axiom that needs explaining.
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To this end, we refer to 22.2C and 23.4CD in [2], where it is proved
(applying spectral sequences) that when Y and B are N -connected,
the natural map πn(Y,B)→ πn(Y/B) is an isomorphism for n < 2N
and epimorphism for n = 2N . From this, it can be derived that
the replacement of one with the other in the definition of homology
becomes inconsequential in the limit N →∞.

C. Two examples. (1) Let K0 be any space and KN := ΣNK0.
This a Σ-spectrum, and up to homotopy equivalences any Σ-spectrum
has this form. Then h•(X;K) = lim−→π(ΣNX,Σ•+N ) are stable coho-

motopy groups of X, while h•(X;K) = lim−→π•+N (ΣNX+) are stable
homotopy groups of X which, due to generalized Freudenthal’s sus-
pension theorem (proved in 22.2C of [2] using spectral sequences)
stabilize when 2N ≥ •.

Taking X = pt we find that the coefficients of the theory are
stable homotopy groups of spheres πst• (S0). Computing them is a
separate branch of topology full of open problems. However, it is a
theorem of Serre (proved using spectral sequences, see 26.3 in [2])
that all but πst0 (S

0) = Z are finite. Consequently, when tensored
with Q, the (co)homology theory with coefficients in the spectrum
Kn = Sn turns into singular (co)homology with rational coefficients.

Every space X generates a Σ-spectrum ΣnX+, and maps X → Y
induce morphisms ΣnX+ → ΣnY + of the spectra. This suggests
expanding the homotopy category of spaces to the category of spectra
with morphisms F : K′ → K defined as sequences of maps Fn : K ′

n →
Kn commuting (at least up to homotopy) with the structure maps of
the spectra: Fn+1 ◦ f ′n ∼ fn ◦ ΣFn.

From this point of view, hn(X;K) is simply the set of homotopy
classes of maps from the spectrum ΣNX+ to the shifted spectrum
K+n := {Kn+N}, which generalizes to define cohomology of spectra:

h•(K′;K) := π(K′,K+•).

(2) Spaces Kn := K(G,n) and the usual homotopy equivalences

K(G,n)
gn→ ΩK(G,n + 1) define the Eilenberg-MacLane Ω-spectrum

generating singular (co)homology with coefficients in G:

Hn(X ;G) = π(X+,K(G,n)), Hn(X ;G) = lim−→
N→∞

πn+N (K(G,N)#X+).

The first statement is familiar to us, but both follow from the abstract
uniqueness argument outlined in Section A, because the dimension
axiom (4) in this case is satisfied.
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When G is a ring, or more generally: an abelian group homo-
morphism G′ ⊗ G′′ → G is given, it defines a cohomology class in
Hm+n(K(G′,m)#K(G′′, n);G) (= Hom(G′⊗G′′, G) by Hurewicz’ +
Kunneth’s theorems) and hence a homotopy unique map K(G′,m)×
K(G′′, n)→ K(G;m+ n). As we remarked in Section 24C, multipli-
cations in cohomology are induced by such maps. From this example,
one can guess how multiplicative structures of general extraordinary
cohomology theories are encoded in terms of spectra.

In fact, any spectrum K can be replaced with an Ω-spectrum K̂
by taking direct limits with respect to gn : Kn → ΩKn+1:

K̂n := lim−→
N→∞

ΩNKn+N = Ω lim−→
N→∞

ΩNKn+N+1.

That’s why Ω-spectra are also called infinite loop spaces.

D. K-theory. In Lecture 15, we introduced the Grothendieck
ring K(X) of equivalence classes of virtual complex vector bundles
over X, and proved in Section 15E that for finite CW-complexes,
K(X) = π(X+,Z × BU) (recall that π here means πb, hence X+

rather thanX), where BU = lim−→BUN ∼ CG(∞,∞) is the classifying
space for the group U = lim−→UN , the direct limit of block-diagonal
inclusions UN ⊂ UN+1 of unitary groups.

Lemma. U is weakly homotopy equivalent to ΩBU .

Proof. From the fibered square of Hurewicz fibrations

E EG

E(BG) BG

ΩBG

G G

ΩBG

where EG ∼ pt ∼ E(BG) we see that both inclusions G →֒ E and
ΩBG →֒ E are weak homotopy equivalences — for any group G. �

So, we can try to form an Ω-spectrum . . . ,Ω2U,ΩU,U,Z×BU and
define K0(X) := π(X+,Z×BU), K−1(X) := π(X+, U), K−2(X) :=
π(X+,ΩU), and so on — except that our “spectrum” is infinite in
the wrong direction. The deal is saved by celebrated

Bott’s periodicity theorem. ΩU ∼ Z×BU .

It furnishes the 2-periodic Ω-spectrum K2m = Z×BU , K2m−1 =
U which makes complex K-theory, defined for finite CW-complexes

by K2m(X) := K(X), K2m−1(X) := K̃(ΣX+) = π(X+, U), an ex-
traordinary cohomology theory. The coefficient groups of complex
K-theory are K2m(pt) = Z, K2m−1(pt) = 0.
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It is a multiplicative theory. The ×-product K0(X) × K0(X̃)

→ K0(X× X̃) is induced, as we already understand from Lecture 15,
by tensor product of vector bundles. It extends to “odd × even →
odd” and “odd × odd → even” degrees due to associativity of “#”:

(ΣX+)#X̃+ = Σ(X × X̃)+ and (ΣX+)#(ΣX̃+) = Σ2(X × X̃)+.

We leave it as an exercise for the reader to figure out the expression
of this in terms of the spectrum.

The Chern character defines a multiplicative morphism from com-
plex K-theory to rational cohomology made 2-periodic:

ch : K0(X)→ Heven(X;Q), ch : K1(X)→ Hodd(X;Q)

which after tensoring K•(X) with Q turns into an isomorphism. In
fact this is a general property, at the bottom of which lies the fact
that πst• (S

0)⊗Q = H•(pt;Q):

Any extraordinary cohomology theory h tensored with Q turns into
singular cohomology with coefficients in h•(pt).

Here is another general fact illustrated by the Chern character:

A morphism between two (co)homology theories is an isomorphism
whenever it is an isomorphism of their coefficients.

Finally, real and quaternionic vector bundles lead to K-theories
too (due to respective Bott periodicity theorems — this time with
period 8), which turn out to be equivalent: KO• = KSp•+4. Their
Ω-spectra (where all ΩKn ∼ Kn−1) and coefficient groups are:

U/O Sp/U Sp Z×BSp U/Sp O/U O Z×BO
0 0 0 Z 0 Z2 Z2 Z

EXERCISES

237. Make sense of the spaces in the top row of the above table and verify
the bottom one.

238. Verify exactness of the “dual Puppe sequence”.

239. Explain why a (co)homology theory tensored with Q still satisfies the
axioms (1-3).

240. Describe the ×-product in complex K-theory in terms of its spectrum.

241. Construct ch : K1(X)→ Hodd(X ;Q).

242. Show that C(ξ − 1), where ξ is the Möbius line bundle, has order 4

in K̃0(RP 4) (in fact it generates the group) which is therefore not isomor-

phic to H̃even(RP 4) ∼= Z2
2, although the coefficient groups of K0/1(−) and

Heven/odd(−) are isomorphic.
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Lecture 29. Cobordisms

Here we will finally understand why Thom spaces and transversality
theorems are named after the same person.

A. Bordism groups. By definition, a singular n-fold in a topo-
logical space X is a continuous map ϕ : M → X of a closed n-
dimensional manifold M . It is called bordant to another singular

n-fold ϕ̃ : M̃ → X if there exists an (n + 1)-dimensional compact

manifold W with boundary ∂W = M ⊔ M̃ and a map Φ : W → X
such that Φ|M = ϕ and Φ|

M̃
= ϕ̃.

The set of bordism equivalence classes is a group with respect
to the operation of disjoint union ϕ + ϕ′ : M ⊔M ′ → X, and in
fact a Z2-vector space since ϕ + ϕ is the boundary of the cylinder
ϕ × idI : M × I → X. This vector space is called the group of
n-dimensional (unoriented) bordisms of X and is denoted ΩO

n (X).

Maps f : X → Y induce homomorphisms f∗ : ΩO
n (X) → ΩO

n (Y )
via f# : (M,ϕ) 7→ (M,f ◦ ϕ), and f0 ∼ f1 ⇒ f0∗ = f1∗ because
(M,f0 ◦ ϕ) and (M,f1 ◦ ϕ) are bordant by (ft ◦ ϕ) :M × I → X.

Theorem (the Pontryagin-Thom construction).

ΩO
n (X) = lim−→

N→∞

πn+N (X+#TξN).

Here the Thom spectrum is made of the Thom spaces TξN of
the tautological vector bundles ξN over G(∞, N), and of the maps
fN : ΣTξn = T (ξN ⊕ R) → TξN+1 defined by standard inclusions
G(∞, N) ⊂ G(∞, N + 1) which induce ξN ⊕ R from ξN+1 and thus
induce maps between the bundle’s Thom spaces.

Proof. We will indicate maps in both directions.

Given a singular n-fold ϕ : Mn → X, smoothly embed Mn into
Sn+N and denote by (U, ∂U) a tubular neighborhood of M in the
sphere. It is fibered over M with the fiber (DN , ∂DN ). Inducing
the normal bundle of M in Sn+N from the universal bundle ξN over
BON = G(∞, N), we may assume that the disk bundle π over M is
induced from the universal disk bundle (E, ∂E)→ BON :

(U, ∂U) (E, ∂E)

Mn BON

F

π

Thus, we obtain a map F : (U, ∂U)→ (E, ∂E). Together with ϕ◦π :
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(U, ∂U)→M → X, they define a map (U, ∂U)→ (X × E,X × ∂E)
and hence a map between the quotients:

U/∂U → (X × E)/(X × ∂E) = X+#TξN .

Pre-composing it by the quotient map Sn+N → Sn+N/(Sn+N− Ů) =
U/∂U , we obtain an (n+N)-spheroid ϕ̂ : Sn+N → X+#TξN .

The construction can be repeated for a bordism Φ : W n+1 → X
between ϕ0 : M0 → X and ϕ1 : M1 → X by embedding W n+1 into
Sn+N × I so that its two boundaries M0 and M1 are embedded into
Sn+N×0 and Sn+N×1 respectively (Figure 65). Inducing the normal
bundle of W from ξN and proceeding as before we obtain a homotopy

Φ̂ : Sn+N × I → X+#TξN between ϕ̂0 and ϕ̂1.

W

Figure 65: Bordism in Sn+N × I

In the reverse direction, given a spheroid ψ : Sn+N → X+#TξN ,
on the inverse image U of the open set X × (TξN −∞), we have two
maps defined by composing ψ|U with the projections to the factors:
π : U → X and F : U → (TξN − ∞) (= the total space of the
tautological bundle ξN over G(∞, N)).

The inverse image by F−1 of the zero section of ξN and of a closed
disk neighborhood V of it is closed (and hence compact) in Sn+N , and
we conclude (by the weak topology of TξN ) that V := F−1(V ) ⊂ U ⊂
Sn+N is mapped by F to a finite skeleton and lands, therefore, in the
Thom space Tξ of the tautological bundle over a finite dimensional
grassmannian G(K +N,N).

Moreover, by smooth approximation and the elementary transver-
sality theorem we may assume that F is smooth on V and is transverse
to the zero section of ξ. The inverse image F−1(G(K+N,N)) of the
zero section is a closed submanifold M ⊂ V of codimension N . The
projection ϕ := π|M : M → X is a singular n-dimensional manifold
in X. It is smoothly embedded into Sn+N , and it is clear that using
this embedding in the direct construction, we will end up with the
(n+N) spheroid ϕ̂ in X+#TξN homotopic to the given ψ.
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Finally, applying this procedure to a homotopy (ψt) : S
n+N×I →

X+#TξN we end up with a manifold W ∈ Sn+N × I with boundary
∂W ⊂ Sn+N × ∂I and a bordism Φ : W → X between the singular
n-folds ϕ0 and ϕ1 corresponding to ψ0 and ψ1.

B. Cobordism rings. Once we have a spectrum, we have the
corresponding cohomology theory (at least for finite CW-complexes
X), the cobordism theory in our case:

Ω•
O(X) := lim−→

N→∞

π(ΣNX+, T ξ•+N ).

It comes with a graded ring structure. Namely the direct sum ξk× ξl
of the universal bundles over BOk × BOl is induced from ξk+l over
BOk+l by a fiberwise bundle map which in its turn induces a map of
Thom spaces:

Tξk#Tξl = T (ξk × ξl)→ Tξk+l.

By the general machinery of spectra this defines the cross-product

Ωk
O(X)×Ωl

O(X̃)→ Ωk+l
O (X× X̃), and by means of the diagonal map

X → X ×X (when X̃ = X) the cobordic cup-product on Ω•
O(X).

Yet, a cohomology theory defined by means of its spectrum re-
mains a tautological homotopy-theoretic study of the spectrum unless
the theory has another, more geometric interpretation. In the case of
cobordism theory, such an interpretation becomes apparent when the
space X itself is a closed manifold of certain dimension m, because
in this case we have the cobordic Poincaré isomorphism:

Proposition. ΩO
• (X

m) = Ωm−•
O (Xm).

Proof. This is a variant of the Pontryagin-Thom construction.
Given a singular n-fold ϕ : Mn → Xm, which by virtue of approxi-
mation can be assumed smooth, we can smoothly embed Mn into RN

and induce the tubular neighborhood U of Mn ⊂ RN ×Xm from the
universal DN+m−n-bundle over BON+m−n. Contracting the comple-
ment of U we obtain a map

ϕ̃ : ΣNX+ → ΣNX+/(ΣNX+ − Ů) = U/∂U → TξN+n−m

representing the Poincaré-dual cobordism class.

In the reverse direction, ψ : ΣNX+ → TξN+m−n is smoothened
inside RN × Xm and made transverse to the zero section. Then
Mn := ψ−1(zero section) is a closed submanifold in X × RN whose
projection to X defines the singular n-fold ϕ such that ϕ̃ ∼ ψ. �
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Thus, a cobordism class α ∈ Ωn
O(X

m) is represented by a singular
manifold ϕ : M → X of codimension n. Given a (smooth) map
f : Y → X of closed manifolds, the class f∗α is Poincaré-dual to a
singular manifold N → Y of the same codimension. It is obtained
— in the spirit of intersection theory — by smoothly approximating
and perturbing ϕ × f : M × Y → X × X to make it transverse to
the diagonal ∆ ⊂ X ×X, and projecting the inverse image N of the
diagonal from M × Y to Y .

Given two cobordism classes Poincaré-dual to singular manifolds

ϕ : M → X and ϕ̃ : M̃ → X̃, their cobordic cross-product is

Poincaré-dual to the product map ϕ × ϕ̃ : M × M̃ → X × X̃. Con-
sequently, the Poincaré-dual expression of cobordic cup-product is

obtained (when X̃ = X) by perturbing ϕ × ϕ̃ to make it transverse
to ∆ ⊂ X ×X, and mapping the inverse image of ∆ back to ∆ = X.

In the special case of X = pt we obtain the theory’s coefficient
ring ΩO

• = Ω−•
O known as the Thom ring of unoriented (co)bordisms.

It is the graded Z2-algebra of equivalence classes of closed manifolds
with respect to the bordism equivalence relation, with the operations
of disjoint union and Cartesian product in the roles of addition and
multiplication, and with grading • defined by the (negative, in the
cobordism interpretation) dimension of the manifolds.

C. Other cobordism theories. There are many of them, dis-
tinguished by the choice of an additional structure the stable tangent
bundles of singular manifolds M → X and bordisms between W → X
them are required to carry.

Requiring that M and W are oriented, and ∂W is equipped with
the orientation induced by that of W (the exterior normal vector
followed by a right-oriented basis for ∂W is a right-oriented basis for
W ), we obtain the theories ΩSO

• and Ω•
SO of oriented (co)bordisms.

Here the opposite of a singular manifold ϕ : M → X is obtained by
reversing the orientation of M : Together, they bound the cylinder
ϕ× idI :M × I → X. The spectrum of these theories consists of the
Thom spaces TξSON of universal vector bundles over BSON .

Requiring that M and W are stably almost complex, i.e. their
tangent bundles, possibly after adding a trivial bundle, are equipped
with complex structures (for the boundary ∂W — compatible with
that of W in the sense that we let the reader to clarify), we arrive at
the theories ΩU

• and Ω•
U of complex (co)bordisms. Note that a stably

almost complex structure of M includes an orientation defined by
the complex orientation of the stabilized tangent bundle and by the
standard orientation of the trivial “stabilizing” bundle. The notion of
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the opposite to a singular bordism is a bit tricky here. If τM ⊕Rk is
made a complex vector bundle, then τM⊕RK⊕C is stably equivalent
to it. The opposite one is obtained by replacing C with C — the
trivial bundle R2 equipped with the conjugate complex structure.

The Thom spaces TξUN of the universal complex vector bundles

over BUN are related by maps Σ2TξUN → TξUN+1 obtained by inducing

ξUN⊕C from ξUN+1. To make of the sequence TξUN the Thom spectrum
of the complex (co)bordism theory, one needs to interlace it with the
sequence of suspensions ΣTξUN = T (ξUN ⊕ R).

Likewise, one can introduce symplectic (co)bordism theories ΩSp
•

and Ω•
Sp by imposing stably quaternionic structures on the tangent

bundles of manifolds, with the Thom spectrum

. . . , T ξSpN , ΣTξSpN , Σ2TξSpN , Σ3TξSpN , T ξSpN+1, . . . ,

where ξSpN is the universal quaternionic vector bundle over BSpN .

We stop here, but there are many other meaningful (co)bordism
theories and interesting Thom spectra.

D. Thom’s theorem. This is a celebrated 1954 result describ-
ing the coefficient rings of the four aforementioned cobordism the-
ories, i.e. the rings of bordism classes of closed manifolds whose
tangent bundles are equipped with stably complex or stably quater-
nionic structures, or merely orientations, or no structures at all, with
the operations of disjoint union and Cartesian product. In effect, it
computes stable homotopy groups (their ranks, in the SO-case) of
the corresponding Thom spectra.

Theorem.The rings of complex and quaternionic bordisms are free
polynomial algebras over Z with generators of degrees 2k (resp. 4k)
for which, over Q, projective spaces CP k and HP k can be taken:

ΩU
• (pt)⊗Q = Q[CP 1,CP 2,CP 3, . . . ],

ΩSp
• (pt)⊗Q = Q[HP 1,HP 2,HP 3, . . . ].

The ring of oriented bordisms tensored with Q is a free polynomial
algebra on generators CP 2k of degree 4k:

ΩSO
• (pt)⊗Q = Q[CP 2,CP 4,CP 6, . . . ].

The ring of unoriented bordisms is a free polynomial Z2-algebra
on generators xk of degree k such that k + 1 is not a power of 2:

ΩO
• (pt) = Z2[x2, x4, x5, x6, x8, x9, x10, . . . ],

where for the generators x2k, projective spaces RP 2k can be taken.
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In all four theories, the bordism class of a manifold is uniquely
determined (in the SO-case — modulo torsion) by the characteristic
numbers of the manifold (Chern, Pontryagin, Pontryagin, and Stiefel-
Whitney respectively).

Examples. (1) Every non-orientable surface contains a Möbius
band, in which the Z2-valued self-intersection of the middle circle
equals 1. This implies that for M = P 2

g or K2
g , w2

1(τM ) 6= 0, and

hence 〈M,w2
1(τM )〉 = 1. Thus, M is bordant to RP 2.

(2) Every closed 4-dimensional manifold is (unorientably) bordant
to RP 4, (RP 2)2, their disjoint union, or ∅. E.g. CP 2 is bordant to
RP 2×RP 2, as can be found by computing Stiefel-Whitney numbers of
both. The total Chern class of τCP 2 is (1+x)3 ≡ 1+3x+3x2 mod x3

(where x = c1(L
∗)), meaning that τCP 2 has w2 = ρ2x, w4 = ρ2x

2 and
consequently 〈[CP 2], w2

2〉 = 〈[CP 2], w4〉 = 1. We leave computing the
Stiefel-Whitney numbers of RP 2 × RP 2 as an exercise.

(3) According to a general theorem quoted in Section 28D,
Ω•
SO(X) ⊗ Q ∼= H•(X; Ω•

SO(pt) ⊗ Q). Consequently, any rational
cohomology class of a closed oriented manifold X is Poincaré-dual
to (a rational multiple of) the fundamental class ϕ∗[M ] of a “singu-
lar” closed oriented manifold ϕ : M → X, where (thanks to Thom’s
theorem) M can be taken as a disjoint union of products of CP 2k.

E. Signature. The signature σ(M) of the intersection form on
the middle homology H2m(M) of a closed oriented 4m-dimensional
manifold turns out to be bordism-invariant. The proof can be ob-
tained form the Poincaré isomorphism between two LESequences:

H2m(W ;Q) H2m(∂W ;Q) H2m+1(W,∂W ;Q)

H2m+1(W,∂W ;Q) H2m(∂W ;Q) H2m(W ;Q)

i∗ δ∗

∂∗ i∗

It shows that i∗ is adjoint to ∂∗, and that ker i∗ is an isotropic sub-
space in H2m(∂W ;Q) of half its dimension. It cannot exist unless
the non-degenerate symmetric bilinear form has signature 0.

The Hirzebruch signature formula below is derived from Thom’s
description of ΩSO

• (pt)⊗Q. Express homogeneous terms Lm of

∏

i

xi
exi + e−xi

exi − e−xi
= 1 + L1(x

2) + · · ·+ Lm(x2) + · · ·

via elementary symmetric functions as L̂m(σ1(x
2), σ2(x

2), . . . ). Then

σ(M) = 〈[M ], L̂m(p1(τM ), p2(τM ), . . . )〉.
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F. Cohomological operations. We have developed the intu-
ition that cohomology of interesting spaces might very well be com-
putable, but finding all homotopy groups, even of such simple spaces
as spheres, is a monstrous task. How does one succeed in comput-
ing all stable homotopy groups of Thom spectra, especially of TξON ,
where the answer is far from trivial?

Here is the starting idea. Explore cohomology of X := TξN
and of Eilenberg-MacLane spaces well enough in order to find a map
X → Y =

∏
iK(Gi, ni) which would establish an isomorphism in

cohomology, at least in a range of degrees growing as N →∞. Then,
applying Whitehead’s homological theorem, conclude that the map
induces an isomorphism of homotopy groups in that growing range,
and enjoy the fact that all homotopy groups of Y are known.

Next, homotopically a map f : X → K(G,n) is an element
f∗[FG,n] ∈ Hn(X;G). But it comes not alone: Every element α ∈
Hn+k(K(G,n)) is mapped to some element f∗α ∈ Hn+k(X;G). In
other words, α corresponds to a map ϕα : K(G,n) → K(G,n + k),
and f∗α = (f ◦ ϕα)

∗[FG,k+n].

More generally, elements of π(K(G,n),K(G′, n′)) (which merely

represent cohomology classes in Hn′

(K(G,n);G′)) define natural co-

homological operations Hn(X;G) → Hn′

(X;G′) working coherently
for all X. Even more generally, cohomological operations can be de-
fined in all extraordinary cohomology theories and between different
cohomology theories, and correspond to homotopy classes of maps
between their spectra. Yet, the most relevant ones for computing
ΩO
• (pt) are those which operate on Z2-cohomology and are stable,

meaning that they commute with suspensions. As a set they form

A2 := lim←−
N→∞

H̃•+N (K(Z2, N);Z2)

with respect to homomorphisms induced by the structure maps
fN : ΣK(Z2, N) → K(Z2, N + 1) of the Eilenberg-MacLane spec-
trum, combined with suspension isomorphisms. Composition of co-
homological operations make it an associative Steenrod algebra, and
Z2-cohomology of any space is a module over it.

The structure of A2 is most efficiently described by its action on

H̃•(T (ξ1×· · ·×ξ1);Z2). The description carries over to H̃•(TξN ;Z2)
by the splitting principle. It turns out that in the limit N →∞ the
latter becomes a free A2-module with generators corresponding to
monomials in Z2[x2, x4, x5, x6, x8, . . . ], and this determines all stable
homotopy groups of the Thom spectrum.
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EXERCISES

243. Show that T (η × ζ) = Tη#Tζ.

244. Derive the intersection theory descriptions of the cobordic pull-back
f∗ and cross-product from their spectrum-theoretic definitions.

245. Show that S2 equipped with the following two stably almost complex
structures are not bordant as stably almost complex manifolds: One is the
complex structure of CP 1, the other is obtained by adding to τS2 the trivial
normal bundle νS2 of S2 in R3, then adding another trivial line R1, and
then identifying τS2 ⊕ νS2 ⊕ R1 with the trivial bundle R4 = C2.

246. Show geometrically that P 2
g and K2

g are bordant to RP 2.

247. Compute Stiefel-Whitney numbers of RP 4 and RP 2 × RP 2.

248. Show that L̂1 = p1/3, L̂2 = (7p2 − p21)/45, and verify the Hirzebruch
signature formula for CP 2, CP 4 and CP 2 × CP 2.

249. Compute Chern characteristic numbers of CP 3, CP 2 × CP 1, and
CP 1 × CP 1 × CP 1, and compare them with those of the flag manifold
F3(C) to express the complex bordism class of the latter as a rational lin-
ear combination of the former.

250. Let f : Xm → Y n be a smooth map between closed oriented mani-
folds. Pick a smooth embedding ϕ : X → RN and denote by U a tubular
neighborhood of X embedded in Y ×RN by f × ϕ. Show that the compo-
sitions of two Thom isomorphisms with the natural factorization map (the
middle arrow)

H•(X)
∼=←H•+N+n−m(U,U −X)→
H•+N+n−m(X × RN , X × (RN − 0))

∼=→ H•+n−m(Y )

coincides with the composition α 7→ D−1
Y f∗DXα of two Poincaré isomor-

phisms with the natural map f∗ in homology.

Remark. This “wrong direction” operation (somewhat in the spirit of
the Pontryagin-Thom construction in Proposition from Section B) of taking
direct image of α is known as cohomological push-forward f! and has a
meaning of “integration over the fibers” of the map f . The reversely defined
homological pull-back f ! : H•(Y ) → H•+m−n(X) is interpreted as taking
inverse images of cycles.
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Ext, 118
Tor, 116
Ω-spectrum, 172
Σ-spectrum, 172
⌢-product, 122
⌣-product, 121
×-product, 121
h-principle, 129
k-frame, 4
k-jet, 127
n-connected pair, 32
n-connected space, 31
n-skeleton, 21
5-lemma, 59

abelian space, 113
acyclic complex, 104
associated bundle, 82
attaching handles, 140
attaching map, 21
augmentation, 98

backward transformer, 103, 121
barycentric subdivision, 103
barycentric transformer, 103
base, 18, 61
base of covering, 34
base point, 11
base point space, 11
bordism group, 177
Borsuk pair, 27
Borsuk-Ulam theorem, 145
boundary, 97
boundary operator, 58, 97
bouquet, 11
braid, 46
braid group, 47
Bruhat cell, 26

cap-product, 122
capping space, 79
Cartan distribution, 127
cell, 21
cell induction, 27
cell space, 21
cellular approximation, 77

cellular chain complex, 105
cellular homology, 105
cellular map, 26, 28
chain homotopy, 99
characteristic class, 155
characteristic map, 21
characteristic number, 169
chart, 34
Chern character, 167
Chern class, 156
Chern roots, 168
CHP, 18
classifying space, 84
closed manifold, 134
clutching functions, 81
cobordic Poincaré isomorphism,

179
cobordism theory, 179
coboundary operator, 115
coefficient groups, 172
coefficient sequence, 119
cohomological augmentation, 120
cohomological LES, 115
cohomological operations, 183
colored braid, 47
commutative ladder, 59
compact symplectic group, 2
compact-open topology, 11
complete flag, 6
complex, 98
complex (co)bordism, 180
complex K-theory, 94, 175
composition of n-spheroids, 55
composition of loops, 16
cone, 10, 104
configuration space, 46
connecting homomorphism, 100
contractible map, 20
contractible space, 15
covering, 34
Covering Homotopy Property, 18
covering space, 34
cross-product, 121
cube model, 55
cup-length, 144
cup-product, 121
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CW-complex, 21
CW-structure, 22
CW-subcomplex, 22
cycle, 97
cylinder, 9

deck transformation, 38
deformation retract, 15
deformation retraction, 15
degree of map, 69, 141
diagram chasing, 101
direct image, 184
direct limit, 1
direct sum, 82
discriminant, 45
disk, 1
disk bundle, 125
disk model, 55
distinguishing cochain, 150

EHS, 58
EHS of Serre fibration, 65
Eilenberg–MacLane space, 78
Eilenberg-MacLane spectrum,

174
Eilenberg-Steenrod axioms, 171
elementary transversality

theorem, 131
empty glass, 27
equivalent bundles, 83
Euclidean inner product, 1
Euler characteristic, 108
Euler class, 155
exact sequence, 58
excision theorem, 102, 104, 108
exponential law, 11
extraordinary (co)homology, 171

factorization isomorphism, 102
fiber, 12, 18, 61
fibered square, 63
filled glass, 27
finite CW-complex, 22
flag manifold, 6
Fréchet metric, 128
free point construction, 29, 30
free product, 49
free resolution, 116

fundamental braid, 48
fundamental class, 138, 153
fundamental group, 33
fundamental group of a knot, 52

Grassmann manifold, 5
grassmannian, 5
group of n-chains, 97

H-space, 95
Hamiltonian inner product, 2
handle, 8
handlebody, 135
handlebody decomposition, 135
Hermitian inner product, 2
Hirzebruch signature formula,

182
homological sphere, 140
homology group, 98
homotopic maps, 15
homotopically simple bundle,

149
homotopically simple space, 113
homotopy equivalence, 15
homotopy equivalent maps, 17
homotopy fiber, 80
homotopy groups, 55
homotopy relative to A, 15
Hopf bundle, 4
Hopf fibration, 4
Hopf’s theorem, 154
Hurewicz fibration, 18
Hurewicz homomorphism, 109
Hurewicz theorem, 109

immersion conjecture, 169
index of vector field, 146
induced bundle, 63
infinite loop spaces, 175
intersection form, 144
interval, 9
isotopy, 72

join, 10

K-functor, 92
Künneth’s theorem, 119
Key Lemma, 123
killing space, 80
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Klein bottle, 8
knot, 52

Lefschetz number, 148
Lefschetz’ formula, 147
lemma on cell-attaching, 73
lens space, 79
LES, 100
line bundle, 82
link, 54
local coefficient (co)homology.,

148
locally finite CW-complex, 22
locally path-connected, 37
locally trivial bundle, 61
long exact homotopy sequence,

55, 58
loop space, 12
Lusternik-Schirelmann’s theory,

143

Möbius band, 8
Möbius line bundle, 91
mapping cylinder, 10
mapping torus, 60
massive subset, 129
maximal compact subgroup, 83
Mayer-Vietoris sequence, 108
Milnor’s topology, 10
morphism of complexes, 98
Morse function, 25, 132
Morse index, 135
Morse inequalities, 137
Morse theory, 25

naturality, 16
Newton polynomial, 167
Newton’s identity, 167
normal extension, 46
normalizer, 38

obstruction class, 150
obstruction cochain, 149
obstruction theory, 113
open map, 43
orientation, 5, 125
oriented (co)bordism, 180
orienting covering, 34
orthogonal group, 1

pair, 11
partial differential relation, 129
path space, 11, 12
path-connected component, 13
Plücker embedding, 6
Plücker relation, 7
Poincaré isomorphism, 139
Poincaré pairing, 144
Poincaré theorem, 109
Pontryagin-Thom construction,

177
prebase, 9
principal G-bundle, 81
projective space, 3
properly discontinuous action, 39
pull-back, 184
Puppe sequence, 172
push-forward, 184

quotient space, 9
quotient topology, 4

reduced homology, 98
relative n-spheroid, 57
relative cochain complex, 115
relative homology, 100
relative Hurewicz

homomorphism, 112
relative Hurewicz theorem, 112
relative obstruction class, 152
relative singular chain, 100
retraction, 15

Sard’s lemma, 30
Schubert cell, 24
section, 63
semilocally path-connected

space, 43
semilocally simply connected

space, 42
Serre fibration, 61
short exact sequence, 60, 100
signature, 144
simply connected space, 31
singular n-chain, 97
singular n-fold, 177
singular n-simplex, 97
singular chain complex, 98, 115
singular cochain complex, 115
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singular CW-complex, 111
singular homology group, 98
singular point, 146
small simplexes, 102
smash-product, 12
smooth approximation lemma,

30
special orthogonal group, 2
special unitary group, 2
spectral sequence, 72, 80, 107,

113, 164, 169
spectrum, 172
sphere, 1
spherical bundle, 155
spheroid, 55
splitting principle., 165
stable characteristic class, 162
stable cohomotopy group, 174
stable disk, 135
stable homotopy group, 72, 174
stably almost complex manifold,

180
stably equivalent bundles, 92
stably trivial bundle, 92
standard n-simplex, 97
Steenrod algebra, 183
Stiefel fibrations, 81
Stiefel manifold, 4
Stiefel-Whitney class, 157
strong deformation retraction, 15
structure group, 82
super-commutative ring, 121
suspension, 10
suspension homomorphism, 69
suspension isomorphism, 102
suspension map, 69
suspension theorem, 70

tautological class, 153
tautological vector bundle, 90
tensor product, 83
tensor product of complexes, 117
Thom class, 125
Thom isomorphism, 125
Thom ring, 180
Thom space, 125

Thom spectrum, 177
Thom’s transversality theorem,

131
topological group, 81
torus, 8
total Chern class, 162
total Pontryagin class, 166
total space, 61
total Stiefel-Whitney class, 165
transformer, 103
transverse map, 130
trefoil, 52
trivial G-bundle, 81
trivial bundle, 61
trivialization, 81
tubular neighborhood, 140

UCF, 118
unitary group, 2
universal bundle, 84
universal characteristic class, 159
Universal Coefficient Formulas,

118
universal covering, 41
unknot, 54
unstable disk, 135

Van Kampen’s theorem, 49, 51
vector bundle, 82
vector field, 132
Vieta map, 46

weak homotopy equivalence, 63,
74

weakly contractible space, 84
weakly homotopy equivalent

spaces, 63
Weyl group, 163
WHE, 63, 74
Whitehead product, 72
Whitehead’s homological

theorem, 112, 113, 154
Whitehead’s theorem, 76
Whitney sum, 83
Whitney topology, 131

Young diagram, 24
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