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Preface

This book is a derivative product.

It represents a one-semester graduate-level course taught by A.G.
at UC Berkeley based on Chapters 1 and 2 of the textbook [2] by
D.F. as well as on A.G.’s own student notes in the courses taught by
D.F. at the Moscow State University in 1976-78.

It should not therefore be surprising that here homology and co-
homology, in agreement with [2] (and in contrast with the popular
textbook [8] by A. Hatcher), come only after the basics of homotopy
theory are developed, the former being often treated merely as effi-
cient tools for handling problems of the latter. To a reader who is
content with this paradigm we would still recommend the far more
substantial original [2], but suspect that for an intensive one-semester
or less intensive two-quarter course in algebraic topology, a student
and instructor might find the present more selective and concise ex-
position also useful.

Beside its scope and size, our presentation deviates from [2] in
some other ways. We are less concerned with the needs of alge-
braic topology per se than with potential applications of it in more
general geometric contexts. For instance, instead of piecewise linear
techniques of [2], we resort here to smooth approximations. Respec-
tively, we assume some basic familiarity with analysis on manifolds
(Riemannian metrics, gradient flows), quote Sard’s lemma on sev-
eral important occasions, and follow a Morse-theoretic approach to
Poincaré duality and intersection theory.

Also, we refrain from delegating any essential aspects of proofs
to exercises, and honestly hope that our misprints (for which the
authors of [2], obviously, bear no responsibility) are complementary
to theirs.
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Prologue

Lecture 1. Dramatis personae

We begin with some examples of topological spaces which, as we will
see in the future, play key roles in our theory.

A. Vector spaces, disks, spheres. We use the notation R™, C",
H™ for the coordinate n-dimensional real, complex, and quaternionic
vector spaces.

The subset in R"”
D" = {(x1,...,xp) | 23+ -+ 22 <1}
is called the n-dimensional disk, and its boundary
OD™ = S™ bt = {(zq,...,2n) | 22 -+ 22 =1}

is the (n — 1)-dimensional sphere.

Consider the nested sequence R ¢ R? ¢ ...R¥ C ... of vector
spaces. The union

R*> = {(z1,22,...,%k,...) | all but finitely many z; =0 }

is the version of infinite dimensional vector spaces we will usually
need. It is equipped with the topology of direct limit: A subset in
R is closed (open) if and only if its intersection with each R is
closed (resp. open). One can similarly define C* H* as well as
S C D*® C R*™.

B. Classical groups. The orthogonal group O, is defined as
the group of linear transformations in R™ preserving the standard
Euclidean inner product (x,y) := Y p_, Txyk. It consists of real nxn-
matrices U satisfying U'U = I (here I is the identity n x n-matrix,
and “” denotes transposition), and inherits the topology from the
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ambient space R™ of all n x n-matrices. The space O, has two
connected components formed by the matrices with determinants +1.
Those with det U = 1 form the special orthogonal group SO,,.

The unitary group U, is similarly defined as the group of lin-
ear transformations of C™ preserving the standard Hermitian in-
ner product (z,w) = Y ,_; zWg. It consists of complex n x n-

matrices satisfying U'U = I. The kernel of the group homomorphism
det : U, — U; = {u € C| |u| = 1} is called the special unitary group
and denoted SU,,.

We have: O; = {£1} ~ S° SO, = U; ~ S (where “~” stands
for “homeomorphic”).

The quaternionic version of the orthogonal and unitary groups is
called the compact symplectic group and denoted Sp,,. To introduce
it properly, let us first recall what quaternions are.

C. Quaternions. By definition,
H={a+bi+cj+dk|ab,cdecR}

is an associative R-algebra with the basis 1,4, j, k obeying the rela-
tions 2 = j?> = k% = ijk = —1. The relations imply k = ij =
—ji, which allows one to rewrite the quaternions in complex nota-
tion: H = {z +wj | z,w € C}, where j2 = —1, and 2z = a + bi,
w = ¢ + di. The quaternion conjugated to ¢ = z + wj is introduced
as ¢* =a — bi — ¢j — dk = Z — wj, and one can easily check that

¢'q=qq" = |2’ + [wf* = a® + b* + ¢ + d® = |lq*.

This makes H a division algebra: 1/q = q*/||q||? is well-defined for all
q # 0. This shows that the Gaussian elimination algorithm, and along
with it all basic linear algebra carry over to vector spaces over H in
the role of scalars. One only needs to remember that if multiplication
in H” by quaternionic scalars acts on the left: q — Aq, then an H-
linear transformation of H™ is described as the multiplication of a
row q = (q1,--.,¢n) by a quaternionic n X n-matrix on the right.

By definition, the group Sp, consists of such linear transforma-
tions preserving the Hamiltonian inner product (', q) := Y ,_; ¢4
Note that it is H-valued, and is H-linear in q' and anti-linear in q:
(A, pa) = Md', q)u™.

Consider now the case n = 1 and examine the right multiplication
of g = (z+yj) by = z+ wj on the right, taking into account that
7 anti-commutes with i:

(x +yj)(z +wj) = (2 — yw) + (zw + y2)j.
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This can be interpreted as the multiplication of a row (z,y) € C?
on the right by the complex matrix _; uz_) . (By the way, this
establishes the existence of H.) Note that the rows of this 2 x 2-
complex matrix are Hermitian orthogonal. The group Sp; consists of
such matrices with ||z +wj||? = |2|> +|w|* = 1. The last relation has
triple meaning: It shows that the two rows of the matrix are unit in
the Hermitian sense, and also that its determinant equals 1, i.e. that
such matrices form the special unitary group SUs. We conclude that
SU,y = Spy ~ S3, the 3-sphere of unit quaternions.

Consider now the action of Sp; on H = R* by conjugations. They
preserve the lengths of all vectors in R*, hence preserve the Euclidean
inner product in R*, and since they commute with 1 € H, they pre-
serve the orthogonal to 1 subspace R® = {bi + cj + dk} of imaginary
quaternions. Thus, we obtain a homomorphism from the connected
group Sp; to SOs3. It is not hard to see that the homomorphism is
surjective, and its kernel consists of +1. (E.g., one can argue that
this kernel must lie in the center of H, which is the real axis. Since
the kernel is discrete, and both groups are 3-dimensional, the map
Sp1 — S0O3 is a local diffeomorphism near the identity, and then is
surjective, since the rank of a smooth homomorphism between Lie
groups must be constant.) Therefore, SO3 = SUsy/ £ I.

D. Projective spaces. Let K denote one of R, C, H. The
projective space KP™ is defined as the set of 1-dimensional linear
subspaces in K1, One way of thinking of it is shown in Figure 1:

\

L J  H
) /

v

/\

Figure 1: KP" = K» UKP"!

Points of a fixed affine hyperplane H in K"*! correspond to all 1-
dimensional subspaces except those which are parallel it. The latter
form the projective space KP"~! of “points of H at infinity™: A line
in H (shown green) intersects this KP"~! at one point, the same
one for all lines parallel to it. In particular, KP! = KU (c0): a line
y = kz in K? has slope k € K unless k = co. Therefore RP! ~ ST,
CP! ~ $? (the Riemann sphere), HP! ~ S4.
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Alternatively (Figure 2), RP™ = S™/(£1): Every 1-dimensional
subspace in R™*! intersects the unit sphere centered at the origin at
two diametrically opposite points +z.

/’
Figure 2: RP™ = S" /0O,

Similarly, CP" = S?"*1/U; where U; ~ S' acts freely on the
sphere of unit vectors in C"*! as scalar multiplication by €. The

projection §27+1 S—1> CP" is called the Hopf fibration or Hopf bundle.

3
The quaternionic version of the Hopf fibration is §47+3 5 HP",
where the fibers S are the orbits of Sp; acting on the set S4"*3 of
unit vectors in H" !,

By the way, such quotient representation of projective spaces de-
fines their topology. Namely, for any topological space X and an
equivalence relation ~ on it, the quotient topology on the set X/ ~ of
equivalence classes is defined as the strongest topology which makes
the canonical projection 7 : X — X/ ~ continuous, i.e. U C X/ ~
is open if and only if 771 (U) is open in X.

Note the terminology: A topology with more open sets is weaker,
so that the discrete topology (the default topology on any set) is the
weakest of all.

Using direct limits (or starting from K> right away) one defines
KP>, together with the fibrations

g Sy rpe. g % cpe. g% 55 Fpe.

E. Stiefel manifolds. The space of all orthonormal k-frames in
R™, i.e. k-tuples (v1,...,vx) of unit pairwise orthogonal vectors in the
Euclidean n-space is called a Stiefel manifold and is denoted V' (n, k).
Obviously, V(n,n) ~ O,. On the other hand, V(n,k) = O,,/Op_p.
Indeed, a k-frame can be completed to an orthonormal basis, and all
such completions (vgi1,...,v,) differ from each other by orthogonal
transformations in the orthogonal complement to Span(vy,...,v,).
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So, we have two ways of describing the topology of a Stiefel mani-
fold: the induced topology of a subset in the space R™ of k-tuples of
vectors in R™, and the quotient topology of O,,/O,,_x. We leave it as
an exercise for the reader to explain why the two topologies coincide.

The complex versions CV (n, k) ~ U, /U,,_ and quaternionic ver-
sions HV (n, k) ~ Sp,/Spn—r of Stiefel manifolds are defined similarly
as spaces of k-frames in C™ and H™ orthonormal with respect to the
Hermitian and Hamiltonian inner products respectively. Omne can
also consider orthonormal k-frames in K* and thus define V' (o0, k),
CV (o0, k), and HV (00, k).

Note that for k = 1 the Stiefel manifolds are spheres of appropri-
ate (possibly infinite) dimensions.

F. Grassmannians. A grassmannian or Grassmann manifold
G(n, k) is the space of all k-dimensional subspaces in R™. It is topol-
ogized by its identification with the quotient space V(n,k)/O =
O,/(Ok x Op—k): Orthonormal bases in the same subspace are k-
frames in R™ from the same Op-orbit. Passing to the orthogonal
complement of a subspace one identifies G(n, k) with G(n,n—k). The
complex and quaternionic grassmannians CG(n, k) and HG(n, k) are
defined similarly and are similarly expressed as quotients of U,, and
Spn respectively. However, in the real case we also have the grass-
mannian G4 (n, k) of oriented k-dimensional subspaces in R". Recall
that two bases in a real vector space are said to define the same orien-
tation if the determinant of the transition matrix between the bases is
positive (and define opposite orientations if it is negative). Thus, for-
getting orientations defines a 2-to-1 map G4 (n,k) — G(n, k). When
k =nor k = 0, the “oriented” grassmannian consists of two points (by
definition, a 0-dimensional real space has two orientations: + and —),
but for 0 < k < n, G4 (n, k) = Gy (n,n — k) = SO, /(SO x SO, _y)
is connected.

The nested sequence of subspaces

Kfc...cK'cK ...

defines the tower of embeddings (in the real case the prefix “R” should
be omitted):

KG(k,k) C --- C KG(n, k) CKG(n+ 1,k) C ...,

where a k-dimensional subspace in K™ is considered a k-dimensional
subspace in K"t Passing to the direct limit we obtain the infinite
dimensional grassmannian KG(oo, k) of k-dimensional subspaces in
K* (and similarly G4 (o0, k) in the real case).
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The inclusion K* ¢ K" = K" @ K! induces another canonical
embedding: KG(n, k) C KG(n+1,k+1), where the same K' is added
to a k-dimensional subspaces and to the ambient n-dimensional space.
This works when n = oo too, and for “oriented” real grassmannians.

G. Flag manifolds. One can generalize the construction of
grassmannians by introducing a flag manifold whose points are r-
tuples of nested subspaces (called flags) of increasing dimensions
0<di <dp <---<dp <m:

OcVhcv®2c...cV» cR"

Using the inner product structure in R™ one can decompose the am-
bient space of a flag into a direct orthogonal sum of subspaces and,
by picking orthonormal bases in these subspaces, identify the flag
manifold with O,,/(Og4, X Ogy—g, X -++ X Op_q,). The same works
for K = C or H with the orthogonal groups replaced by unitary and
symplectic groups respectively.

There is another quotient space description of the same flag man-
ifold: as the quotient of GL,(K) (acting transitively on the flag
manifold) by the stabilizer P(K) of the standard coordinate flag
K% c K% c ...K". The stabilizer consists of invertible upper block-
triangular matrices with the blocks of sizes dy, do — dy, etc. In the
complex case this describes the flag manifolds (and grassmannians)
as complex manifolds.

The manifold of complete flags VI c V2 C --- c V"1 c K" will
be denoted F,,(K).

H. The Pliicker embedding of CG(4,2). In a 2-dimensional
subspace V2 C C*, pick a basis. From the 4 x 2 matrix whose columns
represent the vectors of this basis, one can form a 6-array of 2 x 2-
determinants, not all equal 0 (since the matrix has rank 2):

A= (A1, Az, Arg, Dog, Aoy, Agy).

A basis change in V is described by the right multiplication of the
g

4 x 2-matrix by an invertible 2 x 2-matrix : s | This causes

the change A +— AA, where A = ad — fy # 0. Thus, we have
defined a map CG(4,2) — CP® known as the Plicker embedding.
The grassmannian has complex dimension 4 (check this!) and so
the image of the Pliicker embedding is a hypersurface given by one
homogeneous equation in CP®. One way to find the equation is to
apply Laplace’s theorem (see e.g. [4]) about cofactor expansions of

6



determinants with respect to several columns. Write two copies of
our 4 x 2 matrix next to each other to form a 4 x 4-matrix with zero
determinant. Applying Laplace’s 2-column cofactor expansion, we
obtain the Pliicker relation

O - 2A12A34 - 2A13A24 + 2A14A23.

Here is an invariant description of this construction in the lan-
guage of exterior forms. To V2 C C*, associate an exterior 2-form ¢
(unique up to a non-zero scalar factor) with V' as the kernel (i.e. ¢
is the pull-back to C* of a non-zero exterior 2-form on the quotient
plane C*/V). We obtain an embedding V + Span(yp) of the grass-
mannian into the projectivization of A2C**. Since ¢ is degenerate,
we have p A ¢ = 0, which is the Pliicker relation.

The same construction works verbatim in the real case and yields
the Pliicker embedding G(4,2) C RP5. However, if the basis change
in V2 c R* is required to be orientation-preserving, i.e. A > 0, then
we obtain an embedding of Gy (4, 2) into the sphere S° of rays (rather
than 1-dimensional subspaces) or, equivalently, the unit sphere in RS:

Al + A% + Al + A + A} + A% =1

The coordinate change v = (z + y)/V2, v = (x — y)/+/2 transforms
2uv to 22 — y? and u? + v? to 2% + y2. Applying this lemma to
the Pliicker relation and the equation of the unit sphere, we obtain
respectively

-yl —ys+as+az—y3=0and af +yi +a5+ys +a3+y5 =1

Therefore, in our new coordinates (x,y) in RS, the “oriented” grass-
mannian is given by the equations ||x||? = 1/2, |ly||> = 1/2. Thus,
G (4,2) ~ 8% x §%, while G(4,2) is obtained by factorizing S? x S?
by the simultaneous antipodal involution (x.y) — (=%, —y).

EXERCISES

1. Prove that a compact subset in R*° is contained in a finite dimensional
subspace.

2. Identify SO4 with (83 x §3)/(—1,—1) by examining the action q
uqv—! of (u,v) € Sp; x Sp; on q € H.

3. Which of the following spaces are homeomorphic and which are not:
(a) the space T15? of unit tangent vectors to 52, (b) V(3,2), (c) in C? with
coordinates z1, 29, z3, the intersection of the complex surface z%—l—z%—i—z% =0
with the unit sphere |z1|? + |22|? + |23]> = 1, (d) RP3, (e) S? x S'?
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4. Show that the real and imaginary parts of an Hermitian form are a Eu-
clidean inner product and a non-degenerate anti-symmetric bilinear form
in C" considered as a 2n-dimensional real space. Furthermore, show that
the Hamiltonian inner product in H™ considered as a 2n-dimensional com-
plex vector space is the sum Z(q’,q) + W(q',q)j, where Z is an Hermitian
form and W is a non-degenerate anti-symmetric complex-bilinear form.
Deduce that the real (resp. complex) symplectic group Sp(2n,R) (resp.
Sp(2n,C)), defined as the group of linear symmetries of a non-degenerate
anti-symmetric bilinear form in R?" (resp. C2") contains the compact group
U, (resp. Spn).

5. Identify F3(K) with the hypersurface in KP? x K P? given by the equation
T1Y1 + T2y2 + x3ys = 0 in homogeneous coordinates x and y on the two
projective planes.

6. Show that by gluing the sides of the square (Figure 3) of matching col-
ors and orientations, one obtains respectively: the cylinder, Mdébius band,
torus, Klein bottle, and projective plane.

Figure 3: C?, M?,T?, K? RP?

7. Show that RP? is obtained by gluing a disk D? and a Mdbius band M?
along their boundaries, and the Klein bottle K? is thus obtained from two
Mobius bands.

8. Attaching a handle to a surface is done but cutting out two holes and
gluing in a cylinder by identifying its two boundaries with the boundaries of
the holes. Show that there are two topologically different ways of attaching
a handle to S?, and one of them (orientation-respecting) yields 72, and the
other K2

9. Another surgery of a surface is done by attaching a Md&bius band along
the boundary of a hole. Show that attaching this way 3 Mo6bius bands is
equivalent, up to homeomorphism of the surface, to attaching one Md&bius
band and one handle, and moreover, that after attaching the first one, the
two ways of attaching the handle are equivalent. Derive that all surfaces ob-
tained from S? by attaching handles and/or M&bius bands in any succession
are homeomorphic to one of S?, P7, or K2: the sphere, projective plane,
or Klein bottle with g handles. (These are known to be, up to homeomor-
phism, the only closed surfaces, and they are pairwise non-homeomorphic.)



Lecture 2. Basic constructions

We describe certain operations which produce new topological spaces
from those already defined.

A. Disjoint unions and products. The obvious topology of
the disjoint union of two (or any collection) of topological spaces can
be characterized by the property that a map X UY — Z to any
space Z is continuous if and only if its restrictions to X and Y are
continuous. Equivalently, it is the weakest topology in which the
inclusion maps X, Y C X UY are continuous.

In contrast, the Cartesian product is equipped with the strongest
topology in which the projection maps X xY — X, Y are continuous.
The products U x V of open sets U C X and V C Y form a prebase
of this topology (i.e. all open sets are obtained from them by the
operations of finite intersections and arbitrary unions). Equivalently,
amap Z — X X Y from any Z is a pair of maps Z — X, Z = Y,
and their continuity is equivalent to the continuity of the former. In
particular, a sequence (x,,y,) converges in X x Y if and only if the
sequences z, and y, converge in X and Y respectively.

For example, the cylinder of X is defined as its product X x [
with the unit interval I := [0, 1] of the number line (Figure 4a).

C xxl D
(@) ) (c)

Figure 4: Cylinder, cone, suspension

B. Quotients: cones and suspensions. We have already men-
tioned the construction of the quotient space X/ ~ of a topological
space by an equivalence relation. By definition, a subset U in X/ ~
is open if and only if its inverse image 7—(U) under the canonical
projection m : X — X/ ~ is open in X. In other words, this is
the weakest topology in which 7 is continuous. Equivalently, a map
(X/ ~) — Z is continuous if and only if its composition with 7 is. In
particular, a continuous map X — Z constant on equivalence classes
descends to a map (X/ ~) — Z which is continuous automatically.
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Given a subset A C X, the quotient X/A is defined by declaring
all points of A to form one equivalence class, and each point outside
A to be an equivalence class of its own. For example, D" /0D™ ~ S™.

The cone CX and suspension £X (Figure 4bc) are defined as
such quotients CX = X x [0,1]/X x 0 and £X := CX/X of the
cylinder by one or both of its bases respectively.

The mapping cylinder Cyl(f) of a map f: X — Y is defined as
the quotient of X x [0, 1]UY by the equivalence relation (z,1) ~ f(z).

™

Figure 5: Cyl(f)

C. Joins. The join X *Y of X and Y is obtained by connecting
each point of X with each point of Y by an interval. It is formally
described as the quotient of X x I xY by the identifications (x,0,y) ~
(2,0,vy') and (z,1,y) ~ (2/,1,y) for all z,2’ € X and all y,3/ € Y.
For example, a tetrahedron is the join I * I of any pair of its opposing
edges.

One equips the join with Milnor’s topology, which is the strongest
topology in which the following three mappings are continuous: (i)
X xY — [0,1] induces by the projection X x I x Y — I, (ii) X *
Y —Y — X induced by the projection X x [0,1) x Y — X, and (iii)
X xY — X — Y induces by the projection X x (0,1] x Y — Y. In
some pathological cases Milnor’s topology differs from the one defined
by the consecutive product and quotient constructions, but has the
advantage of making the join construction associative.

In particular, the join X7 *---%X,, can be considered as the subset
in CX; x -+ x CX, consisting of the collections (z1,%1),..., (Tn,tn)
(here x; € X;, t; € [0,1], and t; = 0 represents the vertex of the i-th
cone regardless of x;), satisfying t; + - -+ + ¢, = 1. It is quipped with
Milnor’s topology, in which each/\function t; is continuous, as is the
projection of ¢;1(0,1] to Xy %--- X; - - - X,, (where the “hat” indicates
that X; is omitted).
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D. Mapping spaces. The set C(X,Y") of continuous maps from
X to Y is equipped with the compact-open topology. By definition, a
prebase of it is formed by subsets

Orv :={feCX)Y)| f(K)CU},

where K C X is compact and U C Y is open. Thus, every neigh-
borhood U of f € C(X,Y) contains a possibly smaller neighborhood
consisting of all function from X to Y which send certain compact
subsets Ky, ..., K, C X to certain open subsets Uy,...,U, C Y re-
spectively. When Y is a metric space, the compact-open topology is
the topology of uniform convergence of maps on compact subsets.

By analogy with the set-theoretic notation XY for the set of all
functions Y — X, one sometimes uses the same exponential notation
for C(Y,X). However, the ewxponential law (X¥)? = XY*Z ie.
C(Z,C(Y,X)) =C(Z xY,X) can fail for general topological spaces.
Nevertheless it is known to hold when Y is locally compact (see [3]).
That is, given F : Z x Y — X the family Z 3 z — F|,xy — X of
its restrictions is continuous as a map from Z to C(Y, X), and this
correspondence is bijective and homeomorphic. This will be sufficient
for our applications.

In particular, a continuous map F': Z x I — X is the same as a
continuous map from Z to the path space E(X) := C(I, X).

E. The base point case. We will regularly consider topological
pairs (X, A), where A C X, and assume that a map f : (X, A4) —
(Y, B) between pairs maps A to B. But most of the time we will
deal with the category of base point spaces, i.e. pairs (X, z°) where
20 is a fixed base point. Some of the previous constructions have to

be modified to reflect the presence of base points.
The analogue of the disjoint union is the bouquet of spaces:

\/a(Xa’xg) = |_|a Xo/ Lla{xg}a

obtained by “gluing” (a family of) based point spaces (X, 22) by
their base points, declared to be the base point of the bouquet.

Figure 6: S Vv §?
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By definition, the product of base point spaces [, (Xa,2%) con-
sists of collections of points x, € X, of which all but finitely many
coincide with z9. It is equipped with the topology defined by the
condition that a subset is open (closed) whenever its intersection
with every finite sub-product is open (resp. closed). For example,
(R*,0) = [[aZ1 (R, 0)a-

The smash-product X#Y of base point spaces is defined as the
quotient X x Y/X VY of the Cartesian product by the “coordinate
cross” (X x y°) U (2° x Y).

In general, given a pair (X, A), the quotient X /A is considered as
a base point space with the class [A] taken for the base point. This
defines a functor from the category of pairs to the category of base
point spaces. When A = (), the quotient X /() is defined as the disjoint
union X+ := X U pt of X with a one-point space which is declared
to be the base point of XT.

The cone and suspension of a base point space (X, z") are defined
by the additional factorization of the cylinder [0,1] x X by the gen-
erator [0,1] x 2° over the base point. We still denote them C'X and

YX rather than C(X,z%) and £(X, x%), hoping that it is clear from
the context whether we are in a base point space category or not.

Ao

] X |

N

Figure 7: 3(X™)

\

pt

‘Q

By definition, the path space E(X,z") consist of paths v : [0,1] —
X starting at the base point: v(0) = 2°, and the constant path plays
the role of the base point. The fibers (i.e. level sets) of the projection
E(X,2%) — X are the spaces E(2°, ) of paths connecting x° with
a given point x. The fiber E(z°, 2°) over the base point is called the
loop space and denoted Q.X.

It follows from the exponential law that in the base point category
the suspension and the loop space constructions are adjoint to each
other in the following sense:

C(SX,Y) = C(X,QY).

12



EXERCISES

10. On a space X, introduce the following equivalence relation: xg ~ z1 if
there is a continuous path v : [0,1] — X connecting z¢ with z1: v(0) = zo,
v(1) = x1. The equivalence classes are called path-connected components
of X . Show that path-connected components are connected in the usual
sense, and use the function sin 1/x to show that the converse can be false.
11. Show that CS™ = D", ¥6" = §»+l pt+x X = CX, S%x X = X,
S"x X = ¥nHLX ;= ¥... XX (iterated suspension), S™ x S = §mtntl
RP™ « RP" = RPm+n+l,

12. For every partition of [0, 1] into N equal intervals I}, = [(k—1)/N, k/N]
and every collection Uj,...,Uyn of open sets in X, consider in the path
space E(X) = C([0,1], X) the subset ﬂivzl Or, v, (consisting of all paths
v :[0,1] = X mapping each I; to Uy). Prove that such subsets form a base
of compact-open topology of the path space.

13. Show that smash-product is associative.

14. For base point spaces, show that S"#X = X" X, Sm#8" = gm+n,
15. Show that X T#Y T = (X x Y)*.

16. Prove that all spaces E(S™,xg,x1) of path connecting any two points
in S™ are homeomorphic.
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Lecture 7. The universal covering

A covering (like those at the end of Lecture 6) with a simply connected
total space is called universal because all coverings of its base can be
constructed from it.

A. Classification of coverings. An equivalence of two cover-
ings of the same base is defined as a homeomorphism between their
total spaces commuting with the projections:

(Y",3/) ! (Y y")

(X,29)

Obviously, this is an equivalence relation, and if the based points
are fixed in advance (as in the diagram), an equivalence f satisfy-
ing f(y') = y” is unique when it exists. Otherwise it is unique up
to deck transformations. Furthermore, the subgroups pl, (71 (Y, vy))
and p//(m(Y",y")) coincide (since p.f. = p.), while a change of the
base point y’ over " (and respectively of y” := f(y')) results in a
conjugated subgroup. The converse is true at least when X is locally
path-connected:

Proposition. Two coverings p' : Y — X and p” : Y" — X of the
same locally path-connected space X are equivalent if and only if the
corresponding subgroups in 71(X,z%) are conjugated.

Proof. The two subgroups in question are p/ (w1 (Y’ ') and
pl(m(Y",y")), defined by a choice of the base points such that p/(y’)
= 20 = p"(y"). If the subgroups are conjugated by (the homotopy
class of ) a loop «, path-lifting the loop to Y’ starting from gy’ results
in a path @ ending at a new base point, ¥, such that p/ (w1 (Y,7))
coincides with pY (w1 (Y, y")).

When X is locally path-connected, so are Y’ and Y. The Map-
Lifting Theorem, applied to covering p” with (Z,2°) = (Y, %) and
F = p/, implies the existence of a unique f : (Y',¢) — (Y, y")
such that p” o f = p’. Reversing the roles of p’ and p” we obtain
g: Y" y") = (Y',¥) such that p’ o g = p”. The composition g o f
gives a unique lift of F' = p’ to the covering p’. But another such lift is
given by the identity map idy+, and hence go f = idy. For symmetric
reasons, f o g = idy~, and therefore f is a homeomorphism. [J

Corollary. The universal covering of a locally path-connected
space, when exists, is unique up to equivalence.
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The significance of the universal covering X — X is that it is a
regular covering, i.e. X = X /G is the quotient by a properly dis-
continuous right action of a discrete group, where G = m1(X). For
any subgroup H C G, the quotient map XX /H factors through

Y =X /H, and thus defines a covering p : Y — X corresponding to
a prescribed subgroup in 7 (X):

X m(X) =1
5 / —
Y =X/H m(Y)=H
N 3 x
X =X/G n(X)=a

More precisely, the orbit Z°G of a base point z° € X is the corre-
sponding base point z° in X, and taking y° := Z9H for the base
point in Y, we obtain p.(m1(Y,y°)) = H. It only remains to find out
whether the universal covering exists.

B. Constructing universal coverings. Let us call X semilo-
cally simply connected if every x € X has a neighborhood U, such
that every loop in U, is contractible in X. This condition is nec-
essary for existence of a universal covering X 5 X , because X is
locally homeomorphic to X which is simply connected.

Theorem. A (path-connected) locally path-connected semilocally
simply connected space has a universal covering.

Proof. It is based on the following explicit construction. Con-
sider the space E(X,2°) of path based at zg, and call two path
7,7 (I,0) — (X,2°) equivalent if (1) = 4/(1) and ~ is homo-
topic to 7/ relative to the endpoints: v ~g; 7. Then the quotient
space X := E(X,2")/ ~p; by this equivalence relation is a universal
covering space of X under the projection p : X — X defined by the
evaluation 7 : 7 — 7(1) of paths at the endpoint.

Assume for the moment that p is a covering indeed. The fiber
p~Y(z0) consists of homotopy classes of loops in (X, z"). Moreover,
a loop a has the tautological lift a;(u) := a(tu) to a path t — oy in
E(X,z%) (and hence in X) which at ¢t = 1 turns into the point [a] €
p~(z%). By Corollary 2 of the Map-Lifting Lemma, this bijection

between 71(X, ") and p~!(2°) shows that the subgroup p.(m1 (X))
is trivial, and hence (by Corollary 1), that X is simply connected.
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To show that p is a covering, we construct a chart of x € X by
picking a neighborhood U, such that every loop in it is contractible
in X, and inside U, find a neighborhood V, such that every 2’ € V
can be connected with z by a path (call it 0,/) inside U,.

y,
x"./x\.‘. x’
T ~—v¥v
Y Ux VX\) 6)(,

Figure 23: pr: 7= 1(V,) — p~1(x)

Given two path v and 4/ connecting z° with = and z’ respectively,
we can close them by d,/ into a loop, whose homotopy class does not
depend on the choice of §,/ because of the properties of U,. Thus, we
get a surjective map pr : 7 1(V,) — p~L(x): pr(y) = pr(y) if and
only if the loop is contractible. Together with the evaluation map
77 Y(V,) = V,, they define a bijection

pxprip t(Vy) = Vo xp ' (2)

— two paths ending in V. are equivalent if and only if their endpoints
coincide and the loop they form is contractible. We prove below
that this bijection is a homeomorphism. However, one can ignore
the quotient topology of X, and simply take ]37‘_1[7] ~ V, for a
neighborhood of [y] € p~!(x). By varying V,, and [y] one obtains the
base of a topology on X which makes it a universal covering of X. [

C. The quotient topology of X. To prove that p x pr is a
homeomorphism, we need to check: (a) that pir : p~1(V,) — p~1(z)
is continuous, i.e. that for a homotopy class [y] € p~!(z) its in-
verse image 7 ![y] is open in E(X,z"), and (b) that the bijection
p:prt[y] = V, is a homeomorphism, i.e. that the inverse bijection
p~ ! is continuous.

To establish (a) it suffices to show that v has a compact-open
neighborhood consisting entirely of paths v with pr(y') = pr(y). In
other words, we need to show that U := 7=1(U,) is semilocally path-
connected: Every point of U has a neighborhood whose points lie in
the same path-connected component of U.

Assume for the moment that (a) is true, and hence pr—'[4] is
open in the quotient topology of X. The continuity of the bijection
p LV, — ]3\7’_1[7] is equivalent to p being open, meaning that images

43



of open sets are open. But open sets in X are exactly those whose
inverse images in E(X,2°) are open, and so it suffices to prove that
the evaluation map 7 : E(X,2%) — X is open.

Thus, the following lemma shows that X equipped with the quo-
tient topology is the universal covering space of X.

Lemma. If X is locally path-connected, then m: E(X,z%) — X is
open. If in addition X is semilocally simply connected, then m=(U)
are semilocally path-connected for all open U C X.

Proof. Recall that a base of the compact-open topology on
E(X,2°) is formed by sets O which consist of all paths 7 : [0,1] — X
(with v(0) = 2°) mapping a specified collection of compact subsets
of [0,1] to specified open subsets of X respectively. Let v be one such
path in O, and let U; be such open subsets for those compact subsets
of the collection which contain 1. Then = := (1) € U, := (), U;. Let
V.. be a neighborhood of x inside U, whose existence is guaranteed by
the local path-connectedness of X: Every 2’ € V, can be connected
to x by a path J,/ lying in U,. By continuity of -, some interval
[1 —€,1] is mapped by v to V.. Then the path +', which on [0,1 — €]
coincides with v and on [1 — ¢, 1] is stretched further to 2’ along d,,
lies in O. Thus, together with z € 7(Q), its neighborhood V. also
lies in 7w(Q). This proves that the map 7 is open.

Figure 24: Proof of the 2nd part, N =4

To prove the second statement, consider a path v with = =
v(1) € U. Since every point y(u) has a neighborhood guaranteed by
the semilocal simply connectedness condition, we can pick N large
enough so that v ([, £]) lie in such nelghborhoods U; (Figure 24).
Inside U;NU; 41 (where Uy 41 := U fori = N), pick a neighborhood V;
of ’y(ﬁ) guaranteed by the local path-connectedness condition. Now
define the compact open neighborhood Vof vin E(X, :17 9) consisting
of all path ~" which map each [+ N , N] to U; and each & to V;. Given
such a 7/, connect 7 '(&) with y(%) by a path §; 1n81de Ui NUjta.

The loop §,_ lfyléfyl where v; and 4, are the restrictions of v and ~/
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to [552, ﬁ] (and dp is the constant path at ), lies in U;. Therefore
the loop is contractible, i.e. extends to a map to X of the rectan-

gle [Tl %] x I. Altogether these maps assemble into a homotopy
[0,

(7¢) : [0,1] x I — X between v =~ and 7/ = v, Wlth all v(0) = 2°
and all ’yt( ) € U. This is a path connecting v with 4/ in 7=(U).

E. Relations with Galois theory. We have found that un-
der some mild technical assumptions on X (satisfied for locally con-
tractible spaces, which includes manifolds as well as CW-complexes,
see Appendix 1 in [§]), equivalence classes of coverings p : ¥ — X
correspond to conjugacy classes of subgroups in G := 71(X), and a
regular covering corresponds to a normal subgroup H C G, in which
case the quotient group G/H becomes the automorphism group of the
covering. Moreover, coverings spaces of (X, ") equipped with based
points over 2 correspond to subgroups p.(71(Y,3%)) C m(X,2°),
and the inclusion p,(m1 (Y, 5°)) C pu(m1(Y,y°)) of the subgroups is
equivalent to the existence of a unique covering map ¢ : (Y,3°) —
(Y, y") such that p = pogq. This picture is analogous to Galois theory
of fields extensions in algebra (see e.g. [5] for an elementary exposi-
tion), and the following example establishes a direct connection.

In the space C"*! with coordinates (x,ay,...,a,), consider the
hypersurface P, (Figure 25a) defined by the equation

"y ta,=0.

" 4+ a1x
The projection P, — C" : (x,a) — a is an n-fold covering of B,, :=
C™ — A, where A, is the discriminant hypersurface A (over which,
by its definition, the corresponding polynomials have multiple roots).

X=X,

/

X7=X3 X=X
~__ 1=X3
(a) (b)

Figure 25: 2% + asx + a3 = 0
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Another, n!-fold covering is given by the Vieta map C* — C" :

(z1,...,2n) — (a1,...,a,) obtained by expressing the coefficients of
the polynomial (x—=z1) ... (z—x,) as elementary symmetric functions
of its roots: ap = (—1)*op(x1,...,z,). Namely, B, is the quotient

of the configuration space Z, = {(x1,...,2,) € C" | z; # x;} (see
Figure 25b, where x1 + z2 + x3 = 0) of ordered n-tuples of distinct
complex numbers by the group S, permuting the numbers. So, this
covering is regular.

Rational function on the base form a field C(ay,...,ay,) from
which the field C(x1,...,z,) of is obtained as the “splitting field” of
the polynomial 2™ + ajz" ! + --- + a, by adjoining all its roots.
This is a normal extension with the Galois group S,. The field
C(z,aq,...,a,) of rational functions on P, can be embedded into
the splitting field in n conjugated ways by putting x = . All ele-
ments of this subfield are fixed by the subgroup S,—1 C S, permuting
all x; except xy.

Likewise, there are n ways to factor the covering Z,, — B,, through
P,, — C™. It remains only to describe the fundamental group 71 (B;,)
and its normal subgroup 7;(Z,) with the quotient group S,,.

2 3 n 1 2 3 n Ojir1

L X0 &l A
AT &/ b

1 3 n Oty
(a) (c) @

Figure 26: Braids

F. The braid group on n strands. Points of B,, can be in-
terpreted as unordered configurations of n distinct complex numbers,
and we can take the roots of (z—1)(z—2) ... (xr—n) for the base point.
Then a based loop in B, is a family of such configurations starting
and ending at the base point (Figure 26a). Since it matters only up
to homotopy, one can flatten the 3D-figure into a 2D braid (Figure
26b), where it only matters which strand goes over and which one
under when two of them cross on the way from top to bottom. Com-
position of loops translates into the vertical concatenation of braids.
Perturbing the strands, one may assume that different crossings oc-
cur at different “heights”, and cut the braid (as shown on Figure 26b
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in red) into the composition of elementary braids o; or o, ! (Figure
26¢) with one crossing of strands ¢ and ¢ + 1 only. Thus, the braid
group Bry, = m(By,) is generated by 0; 41,41 =1,...,n— 1L

While 05 ;410 j4+1 = 0 j+10i,i+1 when |[i—j| > 1, Figure 6d shows
that 0i—1,i04,i4+10i—14 = 0434105—1,i04,i+1 for all ¢ = 2, ey, — 1. This
is known to be a complete presentation of Bry,.

Forgetting the way the strands braid but remembering how the
nodes 1, ...,n are permuted, we obtain the homomorphism Br, — S,
corresponding to the regular covering Z,, — Bj: The kernel of it,
known as the group of colored braids, is m1(Z,). Under this homo-
morphism, the elementary braids affiﬂ_l become the transpositions
Tii+1. They satisfy TZ%Z- 41 = id, which together with the same rela-
tions as those obeyed by o; ;11 provide the standard presentation of
S, on n — 1 generators.

EXERCISES

49. Classify all coverings of S!.

50. Show that every covering space of a torus 7" is homeomorphic to one
of the spaces Tk x R"* where 0 < k < n.

51. For each n > 1, find a space X with m1(X) = Z,, (the cyclic group of
order n).

52. Represent the Klein bottle K? as the quotient of R? by a discrete
subgroup, compute 71 (K?), and classify all coverings of K?2.

53. Show that the universal covering spaces of all smooth connected sur-
faces (compact or not) except S? and RP? are homeomorphic to R?. (Hint:
One way is to use Riemann’s mapping theorem from complex analysis.)
54. Let M be a connected non-orientable manifold, and p : M°" — M its
orienting covering. Describe the homomorphism m (M) — Zs whose kernel
is o (1 (M©)).

55. Let p : g — G be the universal covering of a connected Lie group G.
Show that G has a unique Lie group structure such that p is a smooth
homomorphism, and that the kernel kerp = m1(G) is a discrete central
subgroup in G.

56. Show that C—{1/n|n=1,2,...} is not semilocally simply connected.
57. For a path-connected locally path-connected semilocally simply con-
nected X, show that the covering space (Y,%°) corresponding to a given
subgroup H C m1(X,2°) can be constructed by taking the quotient of
E(X,2°) by the equivalence relation: v ~g 7/ if and only if (1) = +/(1)
and the homotopy class of the loop vy~ ! is in H.

58. Compute 71 (C — {1,...,n}).
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59. Show that the complement to the discriminant in the space of polyno-
mials 2" 4+ a12" ! +- - -+ a,, is homotopy equivalent to its intersection with
the hyperplane a; = 0 (and even diffeomorphic to the Cartesian product of
this intersection with C).

60. Show that turning the diagram of a given braid up-side-down yields
the inverse braid.

61. Imagine that the strands of the identity braid are drawn as n parallel
segments on a rectangular strip of paper. Twisting one end of the strip
180° (so that the induced permutation is n,n — 1,...,1) we obtain the
fundamental braid. Represent it as the product of the generators o; ;4 1.
Show that its square is a colored braid lying in the center of Br,,.
Remark: The square is known to generate the center.
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Lecture 14. Classification of G-bundles

We apply homotopy theory to a problem of general mathematical
interest: classification of principal G-bundles and their associates.

A. Principal G-bundles. Let G be a topological group, i.e.
a topological space and a group such that the multiplication and
inversion maps, G x G — G and G — G, are continuous. Given
a free continuous (right) action F x G — E of G on a space F,
the canonical projection p : E — B := E/G to the orbit space is
called a principal G-bundle, provided that it is locally trivial. (The
last condition is satisfied automatically at least in the case of smooth
actions of compact Lie groups.)

In more detail: First, prqy : B x G — B is the trivial G-bundle
(with respect to the action of G by right translations on itself). It has
a canonical section B - B X G : x — e € G. Vice versa, a section
s: B — FE of a principal G-bundle p : E — B defines a trivialization:
a G-equivariant bijection B x G — E : (z,g) — s(z)g. Continuity of
the inverse map is a local property, and is easily checked using local
trivializations (the red arrow is a G-equivariant homeomorphism):

ptU) ¢+— = UxG

\/

Indeed, over U, the section s is a functlon U >z s(x) € G, and the
inverse to the bijection (x,g) — (z,s(z)g) is the left multiplication
by z + s~1(x), which is continuous.

Thus, a principal G-bundle can be described via some open cover
B =, U, as glued from trivial bundles U, x G — U, by means
of re-trivializations (x, g) — (z,¢qg(2)g) over pairwise intersections.
Here o5 : Uy NUg — G are clutching functions, which must satisfy

VBa = gp;ﬁl and @as(x)psy(T)Pya(x) = € when z € U, NUg NU,,.

Regular coverings are examples of principal G-bundles, where G
is discrete (and they are non-trivial, because the total space of a cov-

ering is required to be path-connected). Stiefel fibrations V (n, k) %
G(n,k) and their oriented, complex, and quaternionic partners are
examples with compact Lie groups in the role of G. For a “real-life”
example, consider the tangent bundle TM"™ — M™ of a smooth man-
ifold. It is associated with a principal GL,,(R)-bundle over M whose
fiber over x € M consists of all bases in T, M = R™. Namely, the
transition matrices between the bases form the group of invertible
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n X n-matrices acting freely and transitively on the set of bases. If
fa : Uy = Vo C R™ form an atlas on M, the corresponding clutching
functions a5 : UsNUg — GL,(R) are defined by the Jacobi matrices

Cas(®) = 0(f3 0 f3)/0Yly=tf. (x)-

Associated bundles. Given a principal G-bundle p : £ — B
and a G-space F' (i.e. a space carrying a continuous left G-action),
one can “replace” each fiber G with F to obtain the associated bundle
with the structure group G and fiber F' . Namely, its total space is the
quotient Fg := (E x F)/G with respect to the diagonal left action
(x,f) = (xg~1,gf), and the projection to B = E/G is given by
(x, f) — p(x) (which obviously factors through Fg).

For example, to a principle GL,(R)-bundle one can associate a
vector bundle using the standard vector representation of GLy(R)
on R™. Conversely, suppose we are given a real n-dimensional vector
bundle over B, i.e. a family 7 : T — B of vector spaces 7~ !(z) = R",
equipped with local trivializations g, : 7~!(Us) — U, x R™ which are
fiberwise linear. Their compositions ¢,3 = gg © g ! can be viewed
as clutching functions U, N Ug — G Ly (R) recovering the underlying
principal GL,(R)-bundle with the fiber over & € B consisting of all
bases in 771 (z).

Using other representations of GL,(R) (say, in exterior powers
AFR™ of R™), one obtains new vector bundles with the same struc-
ture group GL,(R). For instance, differential k-forms on a manifold
M are smooth sections of the bundle A¥T*M. Note that for k = n
(or 0) it is a line bundle (trivial in the latter case). Nevertheless our
terminological convention requires that an associated bundle “remem-
bers” the principal G-bundle it comes from: the clutching functions
defining a bundle with the fiber F and structure group G take val-
ues in G, and not in the group Homeo(F') of homeomorphisms of
F (as would be minimally required), even when the homomorphism
G — Homeo(F') defining the action of G on F' is not injective.

Of course, one can forget the GL,(R)-structure of the bundle
AFT*M and consider it simply as a vector bundle of dimension N =
(Z) with the structure groups GLy(R). This illustrates the general
principle: If the action of G on F is defined via an action of G’ and a
continuous group homomorphism p : G — G’ (e.g. an inclusion), then
the structure group G of any associated F-bundle can be replaced
with G’ — by considering G-valued clutching function as G’-valued.
In this sense, expansion of the structure group is always possible.

Another example: Given two vector bundles ¢ and 7 (over the
same base B) with the fibers R™ and R", one defines their direct sum
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¢ @ n (also known as Whitney sum) and their tensor product £ ® n
by performing these operations fiberwise on ¢~1(x) and n~!(x) for
each x € B. Considering £ & n and £ ® ) simply as vector bundles
of dimensions m + n and mn means expanding their native struc-
ture group GL,,(R) x GL,(R) by embedding it into GL,+,(R) and
G Ly (R) respectively.

On the other hand, narrowing a structure group G to a sub-
group H means imposing an additional structure and is not always
possible. For example, narrowing the group to the trivial subgroup
{e} C G is equivalent to trivializing the bundle. Narrowing the struc-
ture group GL,(R) of a vector bundle to the group H of invertible
upper-triangular matrices is equivalent to picking in each fiber of
the vector bundle a complete flag in a continuous fashion, or equiva-
lently, to furnishing a section of the associated bundle with the fiber
F,(R) = GL,(R)/H (defined by the natural action of GL,(R) on
F,(R)). Yet, the structure group G := GL,(R) (resp. GL,(C) or
GL,(H)) can be narrowed to its mazimal compact subgroup H := O,
(resp. U, and Sp,,) provided that the base is cellular. In other words,
a real (resp. complex or quaternionic) vector bundle over a cellular
base can be endowed with a (fiberwise, continuous) Euclidean (resp.
Hermitian and Hamiltonian) structure, or equivalently, the associ-
ated G/H bundle has a section. (For tangent bundles, this means
that any manifold can be endowed with a Riemannian metric.) This
is easily proved by cell induction (using Lemma a la Feldbau’s below,
and over manifolds — using partitions of unity), but the reason is
that the space G/H = S%(R") of positive definite quadratic forms in
R™ is convex and hence contractible.

Another way of looking at this is to invoke the Gram—Schmidt
orthogonalization to show that the embedding H < G is a homotopy
equivalence. As we will see, whenever the inclusion of a subgroup H
into a group G is a WHE, the structures of G- and H-bundles over
cellular bases are equivalent.

C. Classification. Two principal G-bundles p : E — B and
p: E — B (over the same base) are called equivalent if there exists

a G-equivariant homeomorphism A : £ — E (where “equivariant”
means h(zg) = h(x)g for all z € E, g € G) such that p =p’ o h:

E—>E

N

We denote by St(B,G) (after Steenrod) the set of equivalence classes
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of principal G-bundles over B. Note that St(B,G) also classifies
bundles over B with the structure group G and any G-space F' in the
role of the fiber, because in our terminology, such bundles are defined
by collections of clutching functions with values in G.

Classification theorem. (i) For every topological group G,
there is a principal G-bundle p : EG — BG (called universal) such
that St(B,G) = w(B, BG) for all cellular B.

(ii) Moreover, the bijection (B, BG) — St(B,Q) is established
by the operation f — f'p of inducing, i.e. every principal G-bundle
over a cell space B is equivalent to the bundle induced from the uni-
versal one by a map f : B — BG, and two induced bundles are
equivalent if and only if the inducing maps are homotopic.

(iii) A principal G-bundle is universal if and only if its total space
is weakly contractible (i.e. WHE to a point).

(iv) The classifying space BG is unique up to weak homotopy
equivalence.

The last statement is obvious, because for two classifying spaces
BG and BG, the bijection between (B, BG) and 7(B, BG) for ev-
ery CW—complex B is obtained by the identification of each with
St(B,G). This identification is natural because ¢ : B’ — B de-
fines ¢' : St(B,G) — St(B',G) such that ¢'(f'p) = (¢*f)'p for all
f:B— BG.

D. Milnor’s construction. It supplies a principal G-bundle
whose total space is weakly contractible. Take E'G to be the infinite
join G * G x G * - - - equipped with the simultaneous action of G via
right translations, and set BG := EG/G.

More explicitly, £G can be considered as a subset in the product
of countably many copies of the cone CG. A point in the product
is a sequence (t1,91),. .., (ti, gi),... of pairs, where ¢; € [0,1] is non-
zero only for finitely many ¢, and g; € G, though g; is relevant only
when t; # 0. The space EG is the subset in this product given
by the equation Y ¢; = 1. On this set, the group G acts freely by
(cors(tisgi)y- )= (oo (tiy9:9),- .. ), and BG = EG/G.

Note that open G-invariant subsets E,G C EG defined by t; # 0
form an open cover of EG, and each projection EyG — BpG =
ExG/G comes with a section defined by g = e. Thus, BiG form
an open cover of BG equipped with local trivializations. This makes
EG — BG a principal G-bundle. To show that EG is weakly con-
tractible, we note that every spheroid in EG lands in a finite join
G*", and is contractible in G*(+1) which contains a cone C(G*™).
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Perhaps the only example of Milnor’s construction which looks
familiar rather than wild is the case of G = {£1} = Zs. The cone
CG can be identified with the interval [—1, 1], and EG with the oco-
dimensional sphere Y ¢? = 1 in [—1,1]* (homeomorphic to the “oo-
dimensional diamond” _ |t;] = 1). Thus, BZy = RP*>® = S*°/(+£1).

E. Proof of the classification theorem. We begin with a
lemma a la Feldbau’s:

Lemma. A principal G-bundle over a cube I™ is trivial.

7

i

I7

L

Figure 47: G-bundles over I™ are trivial

Proof. Partitioning I™ into sufficiently many sufficiently small
cubes I, we may assume that the bundle is trivial over each small
cube. To trivialize the bundle over I™ we construct a section of it by
inductively and systematically extending the previously constructed
section over a part of I™ (shown green in Figure 47) to one extra cube
at a time. At a step of induction, we have the section defined on a
part L of the boundary 017, and we want to extend it to the whole
of I?'. But the section of a trivial bundle is a function from the base
to G. So, we can extend L — G to I — G by composing the former

with a retraction of I? to L.

Theorem. Principal G-bundles over a cellular base, induced from,
the same bundle by homotopic maps, are equivalent.

Proof. Let Z be a CW-complex, and (f;) a homotopy between
fo, f1 : Z — B. Consider two bundles over Z x I, both induced from
the same principal G-bundle p : E — B: one by (f;), the other by
fo x id;. They are identified over Z x 0, and we want to extend this
identification (equivalence) to the whole of Z x I. Restricted to Z x 1,
it will provide an equivalence between f(!)p and fl!p.

The method is cell induction. At a step of it, we have the bundles
identified over (Z x 0)U (Z™~! x I), and we extend this identification
to (Z x 0)U(Z™ x I) one n-cell of Z at a time. Thus, over the “filled
glass” D™ x I, we have two bundles (induced by the characteristic
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map D" x I — Z x I from those on Z x I), which are both trivial
by above Lemma, and which are already identified over the “empty
glass” (D" x 0) U (0D™ x I).

Note that a G-equivariant equivalence of trivial bundles is given
by a function =z +— s(z) from the base to the group: (z,g) —
(z,s(x)g). Thus, we need to extend such a function from the “empty
glass” to the “filled glass”. This is done by Borsuk’s retraction of the
latter to the former. [J

Thus, for a cellular B, we have a map n(B,BG) — St(B,Q)
well-defined by inducing. The following proposition applied to CW-
pairs (Z,W) = (B,0) and (Z,W) = (B x I, B x 9I) proves that it is

surjective and injective respectively.

Proposition. Let p: EG — BG be a principal G-bundle such
that m(EG) = 0 for all k > 0. Given a CW-pair (Z,W), a map
f W — BG, and a principal G-bundle q : E — Z, such that its
restriction ¢ Y (W) — W to W coincides with f'p, the bundle q can
be induced from p by a map F : Z — BG such that F|y = f:

E —— ¢ (W) — EG

| |
Z < W —— BG
w
Proof: cell induction. By Lemma, the bundle, induced to D"

from ¢ by the characteristic map of an n-cell, is trivial. So, we have
a G-equivariant commutative diagram

D"><G<—)6D"><G
|

D" 8D”
Note that inducing a trivial bundle amounts to a map from the base
to EG (shown blue in the diagram and defined by the composition of
the map between total spaces with the section x — e € G of the trivial
bundle). Therefore our problem reduces to extending dD™ — EG to
D™ — EG, which is possible because m,_1(EG) = 0. O

Q

Thus, we have proved statements (i) and (ii) of the classification
theorem (based on Milnor’s bundle p : EG — BG), and also found
that weak contractibility of the total space is sufficient for a principal
G-bundle to be universal. To show that this condition is necessary,
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we take a cellular approximation f : B — BG of Milnor’s classifying
space, and examine the induced bundle f'p : E — B. The map
between the bundles yields a morphism of exact homotopy sequences:

Wk_l(G) — Wk(B) — Wk(E) — Wk(G) — 7Tk+1(B)

{ { { { {
Tr-1(G) < m(BG) < mp(EG) <« mp(G) < i (BG)

Since B — BG is a WHE, the four black vertical arrows are iso-
morphisms, and the 5-lemma implies that m(E) = m(EG) = 0.
Consequently, f'p : E — B is universal.

Consider now any universal principal G-bundle p : EG — BG.
Since B is cellular, f'p can be induced from p by a map f: B — BG.
So, we have a commutative ladder as above with EG and BG instead
of Milnor’s EG and BG. Yet, since both bundles p and f'ﬁ are

universal, the inducing map f is a WHE (as we have observed in
our argument establishing part (iv) of the classification theorem).

Therefore 71,(EG) = m,(E) = 0.
This completes the proof of the classification theorem.

Corollary. Let H C G be a subgroup such that the inclusion is
a WHE. Then for any cell space B, the map St(B,H) — St(B, Q)
defined by the expansion of the structure group is bijective.

Proof. Expand the structure group of a universal H-bundle
EH — BH from H to G by interpreting H-valued clutching func-
tions as G-valued. They define a principal G-bundle F — BH and a
fiberwise inclusion:

EH E

P

BH

In fact £ — BH is the same as the associated H-bundle with the fiber
G defined by left translations of H on G. The maps between the fibers
coincide with the embedding H C G up to left and/or right transla-
tions by H, and so they are weak homotopy equivalences. From the
morphism of exact homotopy sequences of these fibrations we con-
clude (invoking the 5-lemma as above) that the embedding EH C FE
is a WHE. Consequently, E is weakly contractible, £ — BH is a
universal G-bundle, and St(B,G) = n(B, BH) = St(B, BH) for any
cell space B.
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EXERCISES

111. For a smooth free action of a compact Lie group G on a smooth
manifold M, prove that M/G is a smooth manifold, and the canonical
projection M — M/G is a smooth locally trivial bundle.

112. Given a principal G-bundle, consider the associated bundle with the
fiber G defined by the adjoint action of G on itself. Show that the fibers
of this associated bundle carry a group structure isomorphic to that of G,
and respectively all sections of the associated bundle form a group with
respect to pointwise multiplication. (It is called the gauge group of the
given principal G-bundle.)

113. Show that the bundle 7 : T — B with the fiber G, associated with
a principal G-bundle p : E — B and the action of G on itself by left
translations, is canonically identified with original bundle p. Yet, can you
explain where the structure of 7 as a principal bundle (i.e. the action of G
on T') comes from?

114. Let p : E — B be a principal G-bundle. Show that the induced bundle
p'p is trivial. More generally, let H C G be a subgroup, ¢ : E — E/H the
principal H-bundle, and 7 : E/H — B the bundle with the fiber G/H such
that m o ¢ = p. Identify = with the bundle associated with p, 7'7 with the
bundle associated with ¢, and show that the w!7 has a tautological section.

115. Let {pap} and {@as} be two collections of clutching functions for
the same open cover B = |, Uy, defining two principal G-bundles. Show
that the equivalence of these bundles is established by a collection of local
re-trivializations (i.e. effectively by functions h, : U, — G) such that
Bas(@) = ha(@)pas(@)hy (@) for o € Uy N Us.

116. Compute clutching functions in Milnor’s construction.

117. Prove that 7, (BG) = 7,1 (G) for all k > 1.

118. Show that for n > 0 and a path-connected G, m,(BG) = St(S™,G) =
mn—1(G), and that the latter identification can be described as gluing a
principal G-bundle over S™ from trivial bundles over two hemispheres by a
single clutching function S"~! — G on the equator S"~! C S".

119.Is Lemma ¢ la Feldbau’s more general than Feldbau’s lemma or a
special case of it (for principal rather than all locally trivial bundles)?
120. For a closed Lie subgroup H in a Lie group G, show that the inclusion
H — G is a WHE when G/H is contractible.

121. Prove that a continuous group homomorphism p : G — G’ induces

a map BG — BG’ (at least when both classifying spaces are Milnor’s or
when BG is cellular) which is a WHE provided that p is.
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Lecture 15. Classifying spaces

The criterion of weak contractibility of the total space for a prin-
cipal G-bundle to be universal often allows one to replace Milnor’s
monstrous classifying space with a far handier model of BG.

A. Discrete groups. When G is discrete, the classifying space
BG = K(G,1), and the bundle EG — BG is a universal covering
of K(G,1). For the cellular model of K (G, 1), the universal covering
space is also cellular and is therefore contractible.

B. Classical groups. Stiefel manifolds V(oo,n) are (weakly)
contractible. Indeed, the fibration V(co,n) — S° assigning to an
n-frame its 1st vector has V(oo,n — 1) as a fiber. Since S is con-
tractible, the EHS of the fibration implies that for all £ > 0

m(V(oco,n)) = mp(V(co,n — 1)) = -+ = mp(V (00, 1)) =0,

because V(0o0,1) = S°°. The same argument works for CV (oo, n)
and HV (co,n). Therefore Stiefel fibrations

V (oo, n) % G(oo,n), V(oco,n) G G4 (oo, n)
CV (o0, n) Uy CG(o0,n), HV(oco,n) B HG(oc0, n)

are universal principal G-bundles for G = O,,, SO,,, U,,, and Sp,.

In the case O = Zsy this is Milnor’s model S°° — RP°. For U;
and Spy, these are the Hopf bundle S — CP° and its quaternionic
version S — HP>°.

Note that CP> is fibered over HP* with the fiber Sp;/U; =
CP!. This illustrates the general rule: EG — EG/H, where H is
a subgroup of G, is a universal principal H-bundle (because EG is
weakly contractible), and BH = EG/H is fibered over BG with the
fiber G/H.

As an important example, consider the maximal torus 7" C U,
(it consists of diagonal unitary matrices). We obtain a map BT" =
(CP>®)" — CG(o0,n) = BU, with the fiber U, /T,, = F,,(C). This
should not be understood too literally: The universal T"-bundle over
(CP*>)™ is induced from the universal 7"-bundle over CV (co,n)/T"
by a map which is a WHE, and it is the latter space which is fibered
over CG(oo,n) with the fiber F),(C).

Similarly, there are homotopy unique maps (RP>)" — G(oco,n)
and (HP*)" — HG(oo,n) with the homotopy fibers respectively
O, /(Zo)™ = F,,(R) and Sp,,/(Sp1)™ = F,(H).
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When the subgroup H C G is normal, the situation is more in-
teresting. First, there is a map 7 : BG — B(G/H) defined by
composing G-valued clutching functions with the quotient homomor-
phism G — G/H. The map induces from the universal G/H-bundle
over B(G/H) the associated G/H-bundle over BG with the struc-
ture group G. Then the following homotopy commutative diagram
(where, in the spirit of Remark at the end of Lecture 13, pt stands
for E(G/H)) shows that the homotopy fiber of 7 is BH:

BH —— pt

G/HJ/ lG/H

BG —™ B(G/H)

Here is an example corresponding to the determinant homomorphism
det : U, — Uy:

BSU, —— pt

| Jo

CG(o0,n) —— CP>

C. Classification of vector bundles. According to our gen-
eral theory, classification of vector bundles over a given cellular base is
equivalent to the classification of principal G-bundles (with the appro-
priate group G) over the same base. For n-dimensional real, complex,
or quaternionic vector bundles, the structure groups are G L, (K) with
K =R, C, or H respectively. The grassmannians G(oco,n), CG(oco,n)
and HG(oco,n) serve as the respective classifying spaces because, as
we noted in Lecture 14, the groups GL,(K) are homotopy equiva-
lent to their respective maximal compact subgroup O,,, U, Sp,. The
grassmannians G (0o, n) serve as classifying spaces for oriented n-
dimensional vector bundles, because the subgroup GL; (R) of matri-
ces with det > 0 Gram-Schmidt retracts to SO,, (or because SO, is
the kernel of det : O,, — Oy).

In each of the 4 cases (real, complex, quaternionic, real-oriented),
the vector bundle over the classifying space associated with the stan-
dard vector representation of GL,(K) (or GL;(R)) on K" is the
tautological vector bundle of the grassmannian: The fiber of it over
a point in the grassmannian represented by an n-dimensional K-
subspace V™ C K™ is the space V" itself. Thus, these tautological
bundles play the role of universal vector bundles over the classifying
spaces:
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Theorem. The set of equivalence classes of real, real oriented,
complex or quaternionic vector bundles of dimension n over a given
CW-complex B coincides respectively with

(B, G(co,n)), m(B,G4(c0,n)), m(B,CG(c0,n)), m(B,HG(c0,n)).

Namely, every n-dimensional vector bundle over B 1is equivalent to
a vector bundle induced from the tautological one by a map to the
classifying space, and the vector bundles induced by homotopic maps
are equivalent (and vice versa).

Remark. When B is a CW-complex of finite dimension < N, the
set (B, G(o0,n)) depends only on the N-dimensional skeleton of the
classifying space and hence coincides with 7(B, G(N +n,n). Similar
estimates in the complex and quaternionic cases are even more en-
couraging. Ultimately our classification theory makes a lot of sense:
The most topologically complicated (finite-parametric) families of n-
dimensional vector spaces are the families of all n-dimensional sub-
spaces in coordinate spaces of sufficiently high dimensions.

Examples. (a) Contractible maps to the classifying space induce
trivial bundles, and wvice versa. Consequently, complex vector bundles
over S', as well as quaternionic vector bundles over any CW-complex
of dim < 3, are trivial: The classifying grassmannians don’t have cells
in dimensions 1 and 1, 2, 3 respectively.

(b) For all n > 1, 71(G(00,n)) = 71 (RP?) = Zy. Consequently,
up to equivalence, there is only one non-trivial real line bundle over
S1: the tautological (Mdbius) line bundle over RP!, i.e. the family
of all 1-dimensional subspaces in R?. (Why is it called “Mobius™)
Moreover, every real vector bundle over S' is either trivial, or the
direct sum of a trivial bundle with the Mdbius line bundle.

(c) m(CG(00,n)) = ma(sk3(CG(oo,n)) = m(CPY) = Z. Conse-
quently, every complex vector bundle over CP! is equivalent to the
direct sum of a trivial bundle with a complex line bundle induced
from the tautological (Hopf) line bundle L over CP! by a degree-d
map CP' — CP'. We leave it as an exercise for the reader to check
that the induced line bundle is equivalent to L&,

D. K-functor. Here we will consider complex (for the sake of
definiteness) vector bundles over a base X, with the dimensions of the
fibers over different path-connected components of the base allowed
to be different. As before, two such vector bundles are equivalent if
there is a fiberwise linear homeomorphism between their total spaces
which induces the identity map of the base. The set of equivalence
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classes forms an abelian semigroup with respect to the operation of
the direct sum of vector bundles.

To every nonempty abelian semigroup, Grothendieck’s K-functor
associates a homomorphism S — K(S) from that semigroup to a
certain abelian group with the property that every homomorphism
S — A to an abelian group factors canonically through K (S):

S — S K(S)

The construction of K (.5) essentially mimics the way one constructs
integers from natural numbers. Consider ordered pairs a © b of ele-
ments of S (where the operation is denoted by @), and introduce an
equivalence relation: a ©b ~ c© d whenever add e =b@ cHe for
some e € S. (In a semigroup like N: with the cancellation law,
adding e to both sides would be redundant.) Then K(S) is de-
fined as the set of equivalence classes equipped with the operation
(aob)@(cod) = (a®c)o (bdd). The map S — K(95) is well-
defined by s — (s @ e) © e for any e € S. Checking the correctness
of these definitions is straightforward (and the universality property
is obvious).

Applying the K-functor to the above semigroup, we obtain the
Grothendieck group of complex vector bundles over X, which is de-
noted K(X). Its elements are represented by virtual vector bundles
o n. In fact K(X) is a commutative ring with respect to the op-
eration of tensor product of (virtual) vector bundles. This is easy
to verify starting with ((©n) ® ( ~ (£ ® () © (n ® (). The trivial
one-dimensional vector bundle plays the role of the unit element.

Example. K (pt) = 7Z since a vector bundle over a point is just
a vector space, its dimension is the only invariant, and it is additive
and multiplicative relative to the operations of direct sum and tensor
product respectively.

E. Stable equivalence. We will see here that the ring K (X) of
a finite CW-complex X is a homotopy invariant.

Two vector bundles are called stably equivalent if they become
equivalent after adding to them trivial bundles of suitable (possibly
different) dimensions. For instance, the normal bundle to the stan-
dard sphere S? C R? is trivial, and its sum with the tangent bundle
to 52 is R3, i.e. also trivial. Thus, the tangent bundle to S? is sta-
bly trivial (yet non-trivial — prove it though). This applies to the
complexifications of these bundles as well.
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Let X be a path-connected cell space (so that complex vector
bundles over X have definite dimensions). A bundle £ is induced
from the tautological one by a map f : X — CG(oco,n) with n =
dim &. Stabilizations ¢ @ CF are induced from the tautological bundle
over CG(oo,n + k) by the composition of f with the embeddings
CG(o0,n) — CG(co,n + k) defined by adding the same C* to both:
a subspace V™ C C™ representing a point in the grassmannian and
the ambient space C*°. Two bundles £ and 7 of dimensions n and m
are stably equivalent if and only if such composite inducing maps to
CG(o0, N) for sufficiently large N are homotopic. Consequently, the
set of classes of stable equivalence of complex vector bundles over X
is the direct limit of 7(X,CG(o0,n)) as n — oo.

The direct limit of the inclusion sequence
CG(oo0,N) C CG(oo,N +1) C CG(o0, N +2) C ---

is denoted BU. The (weak) homotopy type of BU can be described
abstractly as the direct limit of BUy under the sequence of maps
BUyn — BUp 41 defined by the standard inclusions of Uy into Un 41,
or as the classifying space for principal bundles with the structure
group U := hAlUN. While liﬂﬂ'(X,BUN) is a subset in (X, BU),
the equality is not guaranteed unless X is finite dimensional.

Proposition. The set of classes of stable equivalence of complex
vector bundles over a path-connected finite dimensional CW-complex
X coincides with w(X, BU).

Indeed, Schubert cell partitions of the grassmannians CG(oco, N)
are compatible with the above inclusions and define a CW-structure
on BU. By the cellular approximation theorem, if dim X < n, a map
X — BU is homotopic to some map X — CG(n,[n/2]) C BU.

Lemma. Let X be a finite CW-complex (not necessarily path-
connected). For every complex vector bundle £ over X (possibly of
different dimensions over different path-connected components of X )
there exists a complex vector bundle £+ such that € ® &+ is trivial.

Proof. The restrictions £|x, (of dimensions n;) to the (finitely
many) path-connected components X; of X are induced from the
tautological bundles by some maps f; : X; — CG(N,n;) provided
that N is large enough. The fibers V™ C C¥ of the tautological
bundle have Hermitian orthogonal complements which are the fibers
of the other tautological bundle over CG(N,n;) = CG(N,N — n;).
Let ¢1|x, be induced from it by the same f;. Then & @ ¢+ = CV.
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Theorem. For a finite CW-compler X, K(X) = n(X,Z x BU).

Proof. It suffices to consider the case of a path-connected X.
Then dim(£67) := dim £ —dim7 is well-defined as a (ring) homomor-
phism K(X) — Z (if you wish, induced by the restriction of vector
bundles to a point in X). On the other hand, £ ©n ~ (£ & nt) S N,
where IV is the favorite notation of topologists for the trivial N-
dimensional vector bundle CV, n @ nt in this case. We claim that
the class of £ © 7 in K(X) is uniquely determined by its dimension
together with the class of stable equivalence of the bundle ¢ @ nt,

and vice versa. Indeed, £ ©n ~ E@ 1 means that for some (
conaCon o ot ~Edne oy ot ot
i.e. that £ ® n" is stably equivalent to E @® . Conversely, from
conteoMonon~EaT @ Mon oy

it follows that £ ©7& (M + N) ~ E@n® (M + N), where M + N =
M+ N provided that dim ¢ — dimn = dimg— dim 7.

Thus, for a path-connected X, a class of K(X) corresponds to
a map of X to Z (the dimension of £ © 1) and a homotopy class of
maps X — BU (by Proposition).

Remarks. (1) The ring structure of n(X,Z x BU) = n(X,Z) X
(X, BU) is induced by the usual operations in Z, and by the maps
BUn x BUp — BUprqn and BUy x BUp; — BUjpyn (corresponding
to the direct sum and tensor product of tautological vector bundles,
or, equivalently, to the respective embeddings of Uy x Upr C Upran
and Uy x Upr C Unypy) in the limit N, M — oo.

(2) This result is the starting point of complex K-theory. We
are not going to study it in this book, but eventually we will be
able to identify the place of K-theory among generalized cohomology
theories.

EXERCISES
122. For any path-connected CW-complex X, construct a map from X to
(say, cellular) K (m(X), 1) which induced an isomorphism of fundamental
groups, and derive from this that X has a universal covering.

Remark. In fact (though we didn’t prove this) CW-complexes are lo-
cally contractible (see e.g. [8]), and so they have universal coverings by our
criterion from Lecture 7.
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123. Construct a map G(oco,n) — RP* with the homotopy fiber G (00, n).
124. Classify principal SLy(C)-bundles over CP?.

125. Prove that the canonical embedding CP* C G4(00,2) (defined by
considering a complex line in C* as a real plane equipped with the complex
orientation) is a homotopy equivalence.

126. Show that real line bundles over a path-connected cellular base B (and
in fact any base which has a universal covering) are classified by elements
of Hom(m1(B),Zs).

12%7. Show that the complex line bundle induced from the Hopf line bundle
L over CP! by a degree-d map CP' — CP! is equivalent to L®9,

Hint: Use clutching functions.

128. Classify complex line bundles over RP2. (Hint: the same.)

129. Show that in the semigroups of the equivalence classes of (real or
complex) vector bundles, the cancellation property can fail.

130. The semigroup of “material points” in a vector space V consists of
pairs [m,v] where m > 0 is the mass of point v € V, while the operation
[, v] + [m/, v'] yields the center of mass: [m +m/, (mv+m/v")/(m +m')].
Compute Grothendieck’s K-functor of this semigroup.

131. Show that inducing complex vector bundles by a map f: X — Y
defines a ring homomorphism K (Y) — K(X).

132. Prove that for every group G, the loop space Q2BG is weakly homotopy
equivalent to G.

Remark. Thus, from the homotopy theoretic point of view, QBG is
indistinguishable from G and should be considered as a “group-like” ob-
ject in the homotopy category. The official name for such a group-like
object is H-space. By definition it is a space X equipped with multipli-
cation map p : X X X — X, wnversion map v : X — X, and the unit
2% € X such that: (i) z — p(z,2°) and z — p(2®, z) are homotopic to idx,
(ii) z = p(z,v(x)) and = — p(v(x),x) are homotopic to the constant map
x — 20, and (iii) p x idx and idx x u are homotopic maps X x X x X — X
(homotopy associativity of ). Therefore, for every path-connected B, the
loop space QB is an H-space (with p defined by the composition of loops
and v by their reverse parameterization), while the Hurewicz fibrations

pt 28 B generalize universal principal G-bundles.
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Lecture 21. Thom’s transversality theorem

We review here some analysis on manifolds necessary for forthcoming
applications (and refer to [6] for further details and developments).

A. Jet spaces. Let 7 : F — B be a smooth bundle, by which we
mean an infinitely differentiable submersion of C'*°-manifolds which
possesses local C*°-trivializations. Two sections f and ¢ are said to
have the same k-jet at x € B (notation: j¥f = j¥¢) if they have the
same value y at z and the same Taylor coefficients of orders < k in
some (and hence any) local chart and trivialization near (x,y).

The space of k-jets of sections at all x € B is denoted J*(r)
(or J¥(B, F) when the bundle is trivial so that the sections are just
smooth maps B — F, and simply J*(B) in the case of smooth func-
tions B — R). It is a manifold (with transition maps between charts
determined by the behavior of Taylor coefficients under changes of
coordinates), which fits in the infinite tower of affine fibrations

s JEm) s I ) = s T () = ()= E S B

with the fiber over j*~!f isomorphic to TioF® SkT*B.

A section f € C*(n) comes with its k-jet extension x — jEf: a
section j¥f : B — J¥(7) of the k-jet fibration J*(7r) — B. It is inte-
gral (in the sense of Frobenius’ integrability theorem) to the so-called
Cartan distribution. Namely, in local components f = (f1,..., fn)
and local coordinates = (z1,..., %) we have:

olel f; L flel+l g
d( D ) = g Ao (@t 1= (o o+ L o).

J=1

The Cartan distribution on J* () is given by the following system of
linear equations on tangent spaces to J k (m):

dpe = pidwy, 0< o= aj <k, i=1,...n,

J J
where p§' are the namesakes of partial derivatives of f; considered as
independent local coordinates on the fiber of the jet fibration.

Example. On the space J'(B) = R x T*B of 1-jets of functions,
the Cartan distribution is the famous contact structure — the “max-
imally non-integrable” field of tangent hyperplanes du =) p’dx;.
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B. C*-topology. The space C*°(7) of smooth sections of a
smooth bundle 7 : £ — B is embedded into the space of continuous
sections B — J¥(7) of the k-jet fibration, and inherits from it the
compact-open topology (called C*-topology). The C'*-topology on
C*(7) is defined as the union of C*-topologies over all k > 0. In fact
this is the topology of uniform convergence of sections and all their
derivatives on compact subsets of B, and our current goal is to turn
C*°(m) into a complete metric space.

To this end, note that every manifold M can be equipped with
a Riemannian metric, making it a metric space (with the distance
between two points in the same connected component defined as the
infimum of the lengths of all smooth curves connecting them). The
latter can be turned into a complete metric space by embedding M
into the cylinder M x R as the graph of a continuous function M — R
which tends to +o0o “at infinity” of the one-point compactification of
M, and by inducing the product metric from the cylinder.

Given a complete metric dj, on J*(), and a compact K C B, put
Dy ic(f,9) = maxdy(j; f. jz9)-
zeEK

This is a semi-distance on C'°°(7) in the sense that it is non-negative,
satisfies the triangle inequality, but can vanish even if f # g. Doing
this for every k and for a sequence of compact subsets covering B,
we obtain a countable sequence D; of such semi-distances on C'*°(r).
One turns it into the Fréchet metric

D(f.g) = %1 Di(f.9)
A sequence of sections f, € C*°(nw) is Cauchy relative to D if and
only if it is Cauchy with respect to each D; i.e. effectively if for
each k > 0 and each compact K C B, the sequence j¥f,, € J*(n) is
Cauchy with respect to di uniformly over x € K.

From the completeness of spaces of continuous functions on com-
pact sets under uniform convergence, we conclude that j* f,, converge
uniformly on compact subsets to some continuous sections g\¥) : B —
JF(r). To see that g™®) are the k-jet extensions of ¢(©), recall that
=1 £, can be recovered from j* f,, by integration along curves in B,
and that such integration commutes with uniform limits. Therefore,
each g¢*=1 is obtained from ¢(*) this way, making it C'. By induc-
tion on k, ¢(® € C®(x) with j%¢(® = ¢g(® for all k. Thus, C*(n)
equipped with the Fréchet metric D is complete.
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Remark. An order k partial differential relation (e.g. a PDE
system) on sections of a bundle 7 is an “algebraic” relation between
partial derivatives, i.e. it is defined by a subset R C J¥(r). The space
of solutions consists of sections whose k-jet extensions land in R. It
is included into the space of formal solutions: sections B — J*(7)
landing in R but not necessarily integral to the Cartan distribution.
It turns out that under some condition on R, the inclusion is a weak
homotopy equivalence (a property named h-principle — for “homo-
topy”, but probably also after M. Hirsch who established it for immer-
sions). Powerful sufficient conditions for this property (e.g. it turns
out to hold for any partial differential relation invariant under dif-
feomorphisms of B whenever all components of B are non-compact)
are proved in the book [7] by M. Gromov, which provides a broad
range of applications of the h-principle. Note that the coincidence
of 7y alone reduces the existence problem for solutions of differential
relations to a purely topological question.

C. Massive subsets. The complement to a (say, rational) point
in R is open and dense. The complement to all rational points is not
open but still dense. This illustrates

Baire’s theorem. In a complete metric space, intersections of
countably many open dense sets are dense.

Proof. Inside an open ball B centered at a, pick a; from the 1st
open dense set U; lying in BN U; together with a smaller closed ball
B at most half the radius of B; inside B; pick ag from the 2nd open
dense set U, lying in By N Us together with a closed ball By at most
half the radius of By; and so on. The sequence {a,} is Cauchy and
its limit lies in B (;2, U;. O

Subsets of a complete metric space representable as intersections
of countably many open dense sets are called massive. Clearly, inter-
sections of countably many massive sets is massive, and by Baire’s
theorem dense — hence certainly non-empty. In contrast, taking from
Q C R one rational point after another, we can obtain a sequence of
dense sets in R whose intersection is empty.

In applications to spaces of sections C'*°(w), whenever one says
that a certain property of sections is “typical”, or that a “generic”
section has this property, one means that the sections possessing the
property form a massive subset in C°°(7). In particular, in any C°°-
neighborhood of a given section there are sections which have the
property, or equivalently, that even if a given section doesn’t have it,
it can always be “perturbed” into one that does.
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D. Transversality. A smooth map f : M — N is called trans-
verse to a submanifold Z C M (which is written as f i Z) if at every
x € M such that f(x) € Z the image of the tangent space to M at x
under the differential of f at x together with the tangent space to Z
at f(x) span the tangent space to N at f(x):

dy f(Tp M) + Tf(x)Z = Tf(x)N.

The latter equality is impossible when dim M + dim Z < dim N, in
which case the transversality condition means that f(M) and Z are
disjoint. When they are not disjoint, f h Z implies that f~!(Z2) is
a submanifold in M of codimension equal to that of Z in N, and
moreover the normal bundle of f~*(Z) in M is induced by f from
the normal bundle of Z in N:

Ty 1M /T(f71(2)) = f' (TzN | TZ).

Indeed, if f is given in local coordinates (z1,...,z;,) on M by
v = fil@),...,yn = fo(z), and y3 = -+ = y, = 0 are local
equations of Z in N, then f~!(Z) is locally given by the equations
fi(x) =--- = fr(z) = 0, and the transversality condition means that
dyy = df1(x),...,dy, = df,(z) are pointwise linearly independent.
By the Implicit Function Theorem, this guarantees that f~1(Z) is
smooth and also shows that the linear coordinates dyi, .. . dy, trivial-
izing locally the normal bundle to Z in N also provide such a system
of local linear coordinates on the normal bundle to f~!(Z) in M.

Lemma. Suppose that the submanifold Z is a closed subset of N.
Then transversality to Z at all points of a compact subset K C M
is an open condition in the C'-topology of the space of smooth maps
f:M — N (or sections of a bundle N — M ).

Proof. It suffices to show that the set of 1-jets mon-transverse
to Z is closed in J'(M, N) (so that its complement is open). This
set consists of triples (z,y,A) where z € M, y € Z, and A €
Hom(T,M,TyN) is such that its composition with the projection
TyN — TyN/T,Z is not surjective. Let a sequence (™ 4y AM)
of such triples converge to some (a:(o),y(o),A(O)). Then y(© is still in
Z since Z is assumed closed in N. In a local coordinate system near
(20, 4(0)) € M x N where Z is given by equations y; = --- = y, = 0,
the non-transversality condition for an nxm-matrix A = (a;;) is that
all its 7 X r minors in the top r rows vanish. This is a closed condition
in the space of matrices, and if A(™ satisfy it for all n large enough,
then so does their limit A®. O
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Thom’s transversality theorem. Sections of a smooth bundle
m : E — B whose k-jet extensions are transverse to a given sub-
manifold Z C J*(n) form a massive subset in the C>-topology of
C>(m).

Corollary (elementary transversality theorem). Smooth maps
f: M — N transverse to a given submanifold Z C N form a massive
subset in the C*-topology of C°(M,N).

Remark. One often considers (see [0]) the so-called Whitney topol-
ogy (or “strong topology” which in our terminology is weaker than
the C*°-topology introduced above). Its base is formed by the sets of
sections whose k-jet extensions land in a given open subset of J¥ ()
(everywhere over B, and not only over a given compact subset). The
Whitney topology is metrizable only when B is compact (in which
case it coincides with the C'*°-topology), but it still possesses the
Baire property. It has the advantage that the above lemma remains
true for K = B even when B is non-compact, and consequently
the massive set in Thom’s transversality theorem is still open in the
Whitney topology provided that Z is closed as a set in J* ().

E. Reduction to Sard’s lemma. To prove the theorem, we
cover Z by countably many compact subsets Z; each projecting to a
compact subset K; C B. By Baire’s theorem and the above lemma,
it suffices to show that every section f can be perturbed to make
its k-jet extension transverse to Z; (i.e. transverse to Z wherever
j¥f € Z;). Moreover, we may assume that each Z; is small enough so
that its projection to J°(7) = E would fit in a product ~ R™ x R"
of coordinate neighborhoods in a local trivialization of the bundle.

V4

| L +Zz
jktt+p) /
N

jf

i

Figure 54: Fibration by graphs of j*(f + p)

So, examine first our perturbation problem for f € C*°(R™ R")
and Z C J¥(R™,R"). Introduce the family f(z) + p(x) of pertur-
bations where the components p;(z) = Z\ ol <k| psx® of p are arbi-

trary polynomials in x = (z1,...,2,,) of degree < k. The graphs
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of j*(f + p) are disjoint translates of the graph of j¥f, and fiber
JE(R™ R™) over the space P of parameters p¢ (Figure 54). The
point now is that non-transversality of j*(f 4 p) to Z at z is equiva-
lent to j¥(f+p) € Z being a critical point of the projection of Z — P.
By Sard’s lemma (see [6] or [7] for a proof), the set of critical values
(i.e. of those p € P for which j*(f + p) is non-transverse to Z) has
zero measure in P, and so its complement is dense.

Our actual (global) problem differs from this model situation only
because some values f(z) for x within the local domain chart R™
might fall outside the codomain chart R™. To fix this, we pick two
smooth compactly supported functions p : R™ — R and p: R® —» R
such that p = 1 on the projection of Z; to R™, and p = 1 on the pro-
jection of Z; to R™. Then the perturbations f(z) + p(x)p(f(z))p(z)
coincide with f outside the support of p and within this support wher-
ever f(z) falls outside the support of p, and so they extend (by f) to
global sections of 7 : E — B. Yet, in a neighborhood in R x R™ con-
taining the projection of Z;, these perturbations coincide with f + p.
In this neighborhood our previous arguments based on Sard’s lemma
apply, and provide global perturbations of f with k-jet extensions
transverse to Z; and as C'®-close to f as desired. 0.

F. Applications. (1) A generic map f : M — M has only non-
degenerate (and hence isolated) fixed points. To prove this, perturb
the graph of f to make it transverse to the diagonal in M x M.

(2) A generic vector field (i.e. asection of T M) as well as a generic
differential 1-form (i.e. a section of T*M) is transverse to the zero
section, and so has only non-degenerate (and hence isolated) zeros.

(3) A generic smooth function f : M — R is Morse, i.e. has
only non-degenerate critical points: det(9*f/dx;0z;) # 0 at every
critical point. While (1) and (2) are applications of the elementary
transversality theorem, here we use Thom’s theorem applied to Z :=
Rx M C JY M) =R xT*M (where M C T*M is the zero section).

EXERCISES

173. Explain why (3) does not follow from (2) even though the Morse
condition is equivalent to df having only non-degenerate zeros.

174. Show that the assumption in Lemma that Z is closed is necessary.

175. Prove that immersions form a massive subset in C°°(M™, N™) when
n > 2m.

Remark. A “multi-jet” version of Thom’s theorem (see [6]) implies that
embeddings form a massive set in C*°(M™, N™) when n > 2m.
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Epilogue

Lecture 28. Spectra

Our achievements fit nicely into a broader picture of extraordinary
(co)homology theories, which is outlined here with a view toward a
next-level course in algebraic topology.

A. Eilenberg-Steenrod axioms. An abstract cohomology the-
ory is a functor h from the category of finite CW-pairs to the cat-
egory of Z-graded abelian groups: To each finite CW-pair (X, A)
it assigns a sequence hg(X, A) of abelian groups and to a continu-
ous map f : (X,A) — (Y, B) a sequence of group homomorphisms
fe i he(X,A) — he(Y,B) (resp. f*:h*(Y,B) — h*(X,A)) compati-
ble with compositions, which satisfy the Eilenberg-Steenrod axioms:

(1) Homotopy invariance: f ~ g = f. = g« (resp. f* =g%).

(2) Factorization (excision/suspension): hg(X, A) = he(X/A, pt).

(3) Exactness: long exact sequences of CW-triples (X, A, B).

This includes existence of connecting homomorphisms

Os : he(X, A) — he_1(A, B) (resp. 0* : h*(A, B) — h*t1(X, A)).
Reduced (co)homology is then defined by hg(X) := h2(X,z%), and
“non-reduced” by hg(X) := hg(X ™), where X T := X U pt.

Adding axiom

(4) Dimension: hg(pt) =0 for e # 0,
one ends up with the ordinary cellular (co)homology theory with co-
efficients in G = ho(pt) (resp. h%(pt)): Our argument in Section 17A
of the coincidence between cellular and singular homology doesn’t
rely of anything but the axioms (1-4) and their corollaries, while in
the case of infinite CW-complexes one also needs to require axiom

(5) Additivity: he( ], Xo) = B, he(Xa).
The point is, however, that by dropping axiom (4) one encounters
many other, extraordinary homology and cohomology theories.
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B. The Brown representability theorem says, loosely speak-
ing, that all extraordinary cohomology theories come from spectra.

By definition, a spectrum K is a sequence of base point spaces
K,,n=20,1,2..., and maps f, : XK, — K,4+1, or equivalently
gn : Ky — QK,1q. It is called an Q-spectrum if g, are homotopy
equivalences (and a X-spectrum if f,, are, but as it will become clear
shortly, this axiomatic definition is not particularly useful). In any
case, all notions and notations in this theory are set in the homotopy
category of base point spaces, and only homotopy types of K, fn,
and g, are relevant.

Given a spectrum /C, one defines a cohomology theory “with co-
efficients in the spectrum” by

h* (X, A;K) == lim 7(SY(X/A), Kein)-

N—o0

The direct limit is taken with respect to the compositions

A5 (X/A), Kepn) S m(EVNTHX/A), SKayn) T 2(5VF1(X/A), Keins)

or, equivalently,

(g.+_>N)*

m(SN(X/A), Kein) m(SN(X/A), QKesn11) = 7(EVTH(X/A), Kot via)-

The structure of an abelian group is induced by the compositions
of loops in QK, 1. If K is an Q-spectrum, the limit procedure is
redundant since in this case (g,)« are bijections. The corresponding
homology theory “with coefficients in K is defined by direct limits

ho(X, AiK) = iy 7(S*FY, Ky#(X/A)) = lim 7oy (Kn#(X/A))

N—o00 N—o00

with respect to maps which should become obvious once we recall
that XKy = S'#Ky and that smash-product “#” is associative.

Finally, if X = pt, then X* = S9 and so the coefficient groups
of the theory he(pt) = h™*(pt) = liﬂﬂ'._FN(KN) are the “stable ho-
motopy groups” of the spectrum.

Note that the factorization axiom holds by the very construction,
since only the quotient X/A of a pair (X, A) features in the defini-
tions. The inherent properties (from Section 3B) of the bi-functor
m(—, —) guarantee the correct functoriality and homotopy invariance
of our theories. So, the exactness axiom is the only one that needs
explanations. For cohomology theory, they come in the geometric
form of the Puppe sequence (Figure 64):
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Figure 64: The Puppe sequence

This is a sequence of inclusions
ACXCXUCACCXUCACCXuUCAUCX C---

Here every 3 consecutive terms have the form B C Y C Y Ug CB,
but when (X, A) is cellular, the sequence is homotopy equivalent to

A= X =5 X/A=3A-3X -5 SX/SA =224 .

and so on.
For any K, consider the induced sequence

(A K) « m(X,K) + m(X/A,K) + 1(2A,K) + (XX, K) + ...

Recall that we work in the base point category where m means my,
and each 7(Y, K) has a “zero” element represented by contractible
maps. In this sense the sequence is exact: The kernel of each arrow
coincides with the image of the previous one. Indeed, if the restriction
flp of amap f:Y — K is contractible, then f extends to a map
Y Up CB — K, and vice versa.

For homology theory, there is a “dual Puppe sequence”. One can
start with turning an inclusion B C Y into the homotopy equivalent
Hurewicz fibration E(Y,B) — Y. Its fiber F' consists of paths in ¥
starting in B and terminating at 4 € Y. It is therefore fibered over
B with the fiber QY. Iterating, we get the sequence of maps

Y B F« QY < OB« QF <« Q%Y « ...

where each space is homotopically the fiber of the Hurewicz fibration
formed by the next two. Applying 7(Z, —) we get the sequence

m(Z2,)Y)+ n(Z,B) + n(Z,F) « n(22,Y) + n(XZ,B) + - -
which is exact due to the CHP of Hurewicz fibrations. With Z = S°
we obtain the usual EHS of the pair (Y, B) since 7, (F') = m,11(Y, B).

We didn’t need all this to take (Y, B) = (Kn#X, Kn#A) and
obtain a LHS — however, with mein(KN#X/KN#A) in the defi-

nition of homology he(X, A) replaced by mer N (KN#X, Kn#A). In
this case it is the factorization axiom that needs explaining.
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To this end, we refer to 22.2C and 23.4CD in [2], where it is proved
(applying spectral sequences) that when Y and B are N-connected,
the natural map 7, (Y, B) — m,(Y/B) is an isomorphism for n < 2N
and epimorphism for n = 2N. From this, it can be derived that
the replacement of one with the other in the definition of homology
becomes inconsequential in the limit N — oo.

C. Two examples. (1) Let K( be any space and Ky := YN K.
This a X-spectrum, and up to homotopy equivalences any ¥-spectrum
has this form. Then A*(X;K) = liﬂﬂ'(ENX, e+ are stable coho-

motopy groups of X, while he(X;K) = @W..’.N(ZNX—F) are stable
homotopy groups of X which, due to generalized Freudenthal’s sus-
pension theorem (proved in 22.2C of [2] using spectral sequences)
stabilize when 2N > e.

Taking X = pt we find that the coefficients of the theory are
stable homotopy groups of spheres 75¢(S°). Computing them is a
separate branch of topology full of open problems. However, it is a
theorem of Serre (proved using spectral sequences, see 26.3 in [2])
that all but 75t(S%) = Z are finite. Consequently, when tensored
with @Q, the (co)homology theory with coefficients in the spectrum
K, = S™ turns into singular (co)homology with rational coefficients.

Every space X generates a X-spectrum "X T, and maps X — Y
induce morphisms X"X T — X"Y™T of the spectra. This suggests
expanding the homotopy category of spaces to the category of spectra
with morphisms F': K’ — K defined as sequences of maps F), : K/, —
K,, commuting (at least up to homotopy) with the structure maps of
the spectra: Fyyq10 f] ~ fnoXF,.

From this point of view, h"(X;K) is simply the set of homotopy
classes of maps from the spectrum YV X7 to the shifted spectrum
Kin := {Kn+n}, which generalizes to define cohomology of spectra:

(K K) = 7K', Kie).

(2) Spaces K, := K(G,n) and the usual homotopy equivalences

K(G,n) & QK(G,n + 1) define the Eilenberg-MacLane Q-spectrum
generating singular (co)homology with coefficients in G:

Hn(X;G):ﬂ-(X-i_aK(Gvn))a H,(X;G) = hﬂ 7Tn+N(K(G7N)#X+)'

N—o0

The first statement is familiar to us, but both follow from the abstract
uniqueness argument outlined in Section A, because the dimension
axiom (4) in this case is satisfied.
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When G is a ring, or more generally: an abelian group homo-
morphism G’ ® G” — G is given, it defines a cohomology class in
H™M™(K(G',m)#K(G",n);G) (= Hom(G'®G",G) by Hurewicz’ +
Kunneth’s theorems) and hence a homotopy unique map K (G’, m) x
K(G",n) = K(G;m+n). As we remarked in Section 24C, multipli-
cations in cohomology are induced by such maps. From this example,
one can guess how multiplicative structures of general extraordinary
cohomology theories are encoded in terms of spectra.

In fact, any spectrum X can be replaced with an Q-spectrum K
by taking direct limits with respect to g, : K, = QK,11:

Ky = lim QVK,y =Q lim OVK, v,

N—oo N—oo

That’s why Q-spectra are also called infinite loop spaces.

D. K-theory. In Lecture 15, we introduced the Grothendieck
ring K (X) of equivalence classes of virtual complex vector bundles
over X, and proved in Section 15E that for finite CW-complexes,
K(X) = m(XT,Z x BU) (recall that 7 here means 7, hence X
rather than X'), where BU = lim BUN ~ CG(00, 00) is the classifying
space for the group U = lii>nU N, the direct limit of block-diagonal
inclusions Uy C Un41 of unitary groups.

Lemma. U is weakly homotopy equivalent to QBU.

Proof. From the fibered square of Hurewicz fibrations
E 8%, BEG
G\L lG
E(BG) 2% Ba

where EG ~ pt ~ E(BG) we see that both inclusions G < E and
OBG — E are weak homotopy equivalences — for any group G. [J

So, we can try to form an Q-spectrum . .., Q2U, QU, U, Zx BU and
define KY(X) :=n(X*,Zx BU), K }X) :==n(X+,U), K 3X) :=
7(X1,QU), and so on — except that our “spectrum” is infinite in
the wrong direction. The deal is saved by celebrated

Bott’s periodicity theorem. QU ~ Z x BU.

It furnishes the 2-periodic Q-spectrum Ko, = Z X BU, Ko, 1 =
U which makes complexr K-theory, defined for finite CW-complexes
by K2(X) := K(X), K2 1(X) := K(2X1) = n(X*,U), an ex-
traordinary cohomology theory. The coefficient groups of complex
K-theory are K*™(pt) = Z, K*"~!(pt) = 0.

175



It is a multiplicative theory. The x-product K°(X) x K°(X)

— K9%(X x X ) is induced, as we already understand from Lecture 15,
by tensor product of vector bundles. It extends to “odd x even —
odd” and “odd x odd — even” degrees due to associativity of “#:

EXH#XT = 2(X x X)T and (SXH)#(EXH) = 23(X x X)T.

We leave it as an exercise for the reader to figure out the expression
of this in terms of the spectrum.

The Chern character defines a multiplicative morphism from com-
plex K-theory to rational cohomology made 2-periodic:

ch: K%(X) —» H®"(X;Q), ch: K'(X)— H(X;Q)

which after tensoring K*(X) with Q turns into an isomorphism. In
fact this is a general property, at the bottom of which lies the fact
that 73'(S°) ® Q = He(pt; Q):

Any extraordinary cohomology theory h tensored with Q turns into
singular cohomology with coefficients in h®(pt).

Here is another general fact illustrated by the Chern character:

A morphism between two (co)homology theories is an isomorphism
whenever it is an isomorphism of their coefficients.

Finally, real and quaternionic vector bundles lead to K-theories
too (due to respective Bott periodicity theorems — this time with
period 8), which turn out to be equivalent: KO® = KSp***. Their
Q-spectra (where all QK,, ~ K,,_1) and coefficient groups are:

U/O Sp/U Sp ZxBSp U/Sp O/U O 7Z x BO
0 0 0 Z 0 Lo 7o Z

EXERCISES

237. Make sense of the spaces in the top row of the above table and verify
the bottom one.

238. Verify exactness of the “dual Puppe sequence”.

239. Explain why a (co)homology theory tensored with @ still satisfies the
axioms (1-3).

240. Describe the x-product in complex K-theory in terms of its spectrum.
241. Construct ch : K1(X) — H°¥4(X:Q).

242. Show that C(¢ — 1), where & is the Mobius line bundle, has order 4
in K°(RP*) (in fact it generates the group) which is therefore not isomor-
phic to Heven(RP*) = Z2, although the coefficient groups of K9/*(—) and
Hever/odd(_) are isomorphic.
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Lecture 29. Cobordisms

Here we will finally understand why Thom spaces and transversality
theorems are named after the same person.

A. Bordism groups. By definition, a singular n-fold in a topo-
logical space X is a continuous map ¢ : M — X of a closed n-
dimensional manifold M. It is called bordant to another singular
n-fold ¢ : M — X if there exists an (n + 1)-dimensional compact

manifold W with boundary OW = M UM and a map & : W — X
such that ®|y; = ¢ and @[3 = ¢.

The set of bordism equivalence classes is a group with respect
to the operation of disjoint union ¢ + ¢’ : M UM’ — X, and in
fact a Za-vector space since ¢ + ¢ is the boundary of the cylinder
pxidy : M x I — X. This vector space is called the group of
n-dimensional (unoriented) bordisms of X and is denoted Q2 (X).

Maps f : X — Y induce homomorphisms f. : Q9(X) — Q9(Y)
via fy o (M,@) = (M, fop), and fo ~ fi = fo. = fi« because
(M, foop) and (M, f1 o ) are bordant by (frop): M x I — X.

Theorem (the Pontryagin-Thom construction).

Q7 (X) = lim mp N (XFH#TEN).

N—o0

Here the Thom spectrum is made of the Thom spaces TE&yN of
the tautological vector bundles {x over G(oco, N), and of the maps
fn X7, = T(En @ R) — Tényy defined by standard inclusions
G(o0,N) C G(o0, N + 1) which induce &y @ R from {41 and thus
induce maps between the bundle’s Thom spaces.

Proof. We will indicate maps in both directions.

Given a singular n-fold ¢ : M™ — X, smoothly embed M" into
S"*tN and denote by (U,0U) a tubular neighborhood of M in the
sphere. It is fibered over M with the fiber (DV,0D"). Inducing
the normal bundle of M in S"*¥ from the universal bundle £y over
BOpy = G(o00, N), we may assume that the disk bundle 7 over M is
induced from the universal disk bundle (E,0F) — BOn:

(U,0U) — (E,0E)

| |

M"™ ——— BOpn
Thus, we obtain a map F': (U,0U) — (E,0F). Together with g o :
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(U,0U) - M — X, they define a map (U,0U) — (X x E, X x OF)

and hence a map between the quotients:
U/OU — (X x E)/(X x OE) = X T#T¢N.

Pre-composing it by the quotient map S" N — §7+N /(§n+N _7) =
U/OU, we obtain an (n + N)-spheroid @ : S"tN — X+#T¢y.

The construction can be repeated for a bordism ® : Wn+l — X
between ¢g : My — X and ¢ : M; — X by embedding W™ into
SN % T so that its two boundaries My and M; are embedded into
SN %0 and S x 1 respectively (Figure 65). Inducing the normal
bundle of W from £ and proceeding as before we obtain a homotopy

d: SN x [ — X+H4TEN between 3y and 3.

Figure 65: Bordism in SV x I

In the reverse direction, given a spheroid 1 : S"tN — XTH#T¢y,
on the inverse image U of the open set X x (T¢y — 00), we have two
maps defined by composing 1|y with the projections to the factors:
m:U — X and F : U — (Téy — o0) (= the total space of the
tautological bundle &y over G(oo, N)).

The inverse image by F~! of the zero section of £y and of a closed
disk neighborhood V of it is closed (and hence compact) in S"*V, and
we conclude (by the weak topology of T¢y) that V := F~1(V) c U C
5™tV is mapped by F to a finite skeleton and lands, therefore, in the
Thom space T¢ of the tautological bundle over a finite dimensional
grassmannian G(K + N, N).

Moreover, by smooth approximation and the elementary transver-
sality theorem we may assume that F'is smooth on V and is transverse
to the zero section of &. The inverse image F~!(G(K + N, N)) of the
zero section is a closed submanifold M C V of codimension N. The
projection ¢ := m|py; : M — X is a singular n-dimensional manifold
in X. It is smoothly embedded into S™*¥, and it is clear that using
this embedding in the direct construction, we will end up with the
(n + N) spheroid @ in XT#7T¢y homotopic to the given 1.
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Finally, applying this procedure to a homotopy () : S"* x I —
X+#T¢n we end up with a manifold W € S*™N x I with boundary
OW C S"N x 0I and a bordism ® : W — X between the singular
n-folds g and ¢ corresponding to 1y and ;.

B. Cobordism rings. Once we have a spectrum, we have the
corresponding cohomology theory (at least for finite CW-complexes
X), the cobordism theory in our case:

0% (X) = lim 7(SVXT, Téesn).

N—oo

It comes with a graded ring structure. Namely the direct sum & X &
of the universal bundles over BOy x BO; is induced from &4 over
BOy.; by a fiberwise bundle map which in its turn induces a map of
Thom spaces:

TEHTE = T(Ep < &) — Tyt

By the general machinery of spectra this defines the cross-product
05 (X) x QL (X) — Q]E‘)-H(X x X)), and by means of the diagonal map
X = X x X (when X = X) the cobordic cup-product on Q¢,(X).

Yet, a cohomology theory defined by means of its spectrum re-
mains a tautological homotopy-theoretic study of the spectrum unless
the theory has another, more geometric interpretation. In the case of
cobordism theory, such an interpretation becomes apparent when the
space X itself is a closed manifold of certain dimension m, because
in this case we have the cobordic Poincaré isomorphism:

Proposition. QY (X™) = Q% *(X™).

Proof. This is a variant of the Pontryagin-Thom construction.
Given a singular n-fold ¢ : M™ — X™, which by virtue of approxi-
mation can be assumed smooth, we can smoothly embed M™ into RY
and induce the tubular neighborhood U of M™ c RN x X™ from the
universal DN *T"~"_bundle over BON1m—n. Contracting the comple-
ment of U we obtain a map

G:ONXt S SNXT/(ONXT —U) = U/0U = Ténin-m

representing the Poincaré-dual cobordism class.

In the reverse direction, 9 : YN X+ — T¢x.1,_n is smoothened
inside RV x X™ and made transverse to the zero section. Then
M™ := 1)~ (zero section) is a closed submanifold in X x RY whose
projection to X defines the singular n-fold ¢ such that @ ~ . [
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Thus, a cobordism class o € Q% (X™) is represented by a singular
manifold ¢ : M — X of codimension n. Given a (smooth) map
f Y — X of closed manifolds, the class f*« is Poincaré-dual to a
singular manifold N — Y of the same codimension. It is obtained
— in the spirit of intersection theory — by smoothly approximating
and perturbing ¢ X f: M xY — X x X to make it transverse to
the diagonal A C X x X, and projecting the inverse image N of the
diagonal from M XY to Y.

Given two cobordism classes Poincaré-dual to singular manifolds
o : M — X and ¢ : M — X , their cobordic cross-product is
Poincaré-dual to the product map ¢ x @ : M X M — X x X. Con-
sequently, the Poincaré-dual expression of cobordic cup-product is

obtained (when X = X) by perturbing ¢ x ¢ to make it transverse
to A C X x X, and mapping the inverse image of A back to A = X.

In the special case of X = pt we obtain the theory’s coefficient
ring QY = Q5° known as the Thom ring of unoriented (co)bordisms.
It is the graded Zs-algebra of equivalence classes of closed manifolds
with respect to the bordism equivalence relation, with the operations
of disjoint union and Cartesian product in the roles of addition and
multiplication, and with grading e defined by the (negative, in the
cobordism interpretation) dimension of the manifolds.

C. Other cobordism theories. There are many of them, dis-
tinguished by the choice of an additional structure the stable tangent
bundles of singular manifolds M — X and bordisms between W — X
them are required to carry.

Requiring that M and W are oriented, and OW is equipped with
the orientation induced by that of W (the exterior normal vector
followed by a right-oriented basis for OW is a right-oriented basis for
W), we obtain the theories Q¢ and Q% of oriented (co)bordisms.
Here the opposite of a singular manifold ¢ : M — X is obtained by
reversing the orientation of M: Together, they bound the cylinder
@ xidy : M x I — X. The spectrum of these theories consists of the
Thom spaces TQ%O of universal vector bundles over BSOy .

Requiring that M and W are stably almost complez, i.e. their
tangent bundles, possibly after adding a trivial bundle, are equipped
with complex structures (for the boundary W — compatible with
that of W in the sense that we let the reader to clarify), we arrive at
the theories QY and Qf; of complex (co)bordisms. Note that a stably
almost complex structure of M includes an orientation defined by
the complex orientation of the stabilized tangent bundle and by the
standard orientation of the trivial “stabilizing” bundle. The notion of
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the opposite to a singular bordism is a bit tricky here. If 73y @ R” is
made a complex vector bundle, then 73y ®RX & C is stably equivalent
to it. The opposite one is obtained by replacing C with C — the
trivial bundle R? equipped with the conjugate complex structure.

The Thom spaces T{% of the universal complex vector bundles
over BUy are related by maps 32T f% — T f% 41 Obtained by inducing
5% @ C from Q[\J, +1- To make of the sequence Tf% the Thom spectrum
of the complex (co)bordism theory, one needs to interlace it with the
sequence of suspensions XT¢Y; = T(¢§ ® R).

Likewise, one can introduce symplectic (co)bordism theories Q5P

and Q:gp by imposing stably quaternionic structures on the tangent
bundles of manifolds, with the Thom spectrum

ooy TEP, XTEP, S2Te, ST, TEXL, |, ...,

where §ifp is the universal quaternionic vector bundle over BSpy.

We stop here, but there are many other meaningful (co)bordism
theories and interesting Thom spectra.

D. Thom’s theorem. This is a celebrated 1954 result describ-
ing the coefficient rings of the four aforementioned cobordism the-
ories, i.e. the rings of bordism classes of closed manifolds whose
tangent bundles are equipped with stably complex or stably quater-
nionic structures, or merely orientations, or no structures at all, with
the operations of disjoint union and Cartesian product. In effect, it
computes stable homotopy groups (their ranks, in the SO-case) of
the corresponding Thom spectra.

Theorem. The rings of complex and quaternionic bordisms are free
polynomial algebras over Z with generators of degrees 2k (resp. 4k)
for which, over Q, projective spaces CP* and HP* can be taken:

Y (pt) ® Q = Q[CP!,CP?, CP,...],
O5P(pt) © Q = QHP!, HP?, HP?, .. ].

The ring of oriented bordisms tensored with Q is a free polynomial
algebra on generators CP?* of degree 4k:

059 (pt) ® Q = Q[CP?,CPY,CPS,...].

The ring of unoriented bordisms is a free polynomial Zo-algebra
on generators xy of degree k such that k + 1 is not a power of 2:

Q.O(pt) = ZQ [‘T27 T4,T5,T6, L8y L9, L10, - - - ]7

where for the generators xay, projective spaces RP%* can be taken.
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In all four theories, the bordism class of a manifold is uniquely
determined (in the SO-case — modulo torsion) by the characteristic
numbers of the manifold (Chern, Pontryagin, Pontryagin, and Stiefel-
Whitney respectively).

Examples. (1) Every non-orientable surface contains a Mobius
band, in which the Zs-valued self-intersection of the middle circle
equals 1. This implies that for M = sz or Kg, wi(r) # 0, and
hence (M, w?(7p)) = 1. Thus, M is bordant to RP2.

(2) Every closed 4-dimensional manifold is (unorientably) bordant
to RP* (RP?)?, their disjoint union, or . E.g. CP? is bordant to
RP?xRP?, as can be found by computing Stiefel-Whitney numbers of
both. The total Chern class of 7¢p2 is (1+2)® = 1+32+32? mod 23
(where z = ¢ (L*)), meaning that 7cp2 has wy = pax, wy = paz? and
consequently ([CP?],w3) = ([CP?],ws) = 1. We leave computing the
Stiefel-Whitney numbers of RP? x RP? as an exercise.

(3) According to a general theorem quoted in Section 28D,
(X)) @ Q =2 H*(X;Q%,(pt) ® Q). Consequently, any rational
cohomology class of a closed oriented manifold X is Poincaré-dual
to (a rational multiple of) the fundamental class p.[M] of a “singu-
lar” closed oriented manifold ¢ : M — X, where (thanks to Thom’s
theorem) M can be taken as a disjoint union of products of CP?*.

E. Signature. The signature o(M) of the intersection form on
the middle homology Ha,, (M) of a closed oriented 4m-dimensional
manifold turns out to be bordism-invariant. The proof can be ob-
tained form the Poincaré isomorphism between two LESequences:

H2™(W;Q) —"— H2M(0W;Q) —— H2M+L(W,0W;Q)

| | |

Hopy (W, 0W;Q) —2 Hop (OW;Q) —— Hypo (W;Q)

It shows that i, is adjoint to J,, and that keri, is an isotropic sub-

space in Hay, (OW;Q) of half its dimension. It cannot exist unless
the non-degenerate symmetric bilinear form has signature 0.

The Hirzebruch signature formula below is derived from Thom’s
description of Q59 (pt) ® Q. Express homogeneous terms L, of

el e
oo =14 L) + e+ L)

i

via elementary symmetric functions as Ly, (o1 (22), o2(22),...). Then

o(M) = ([M], L (p1(Ta1), p2(Tas), - - - ))-
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F. Cohomological operations. We have developed the intu-
ition that cohomology of interesting spaces might very well be com-
putable, but finding all homotopy groups, even of such simple spaces
as spheres, is a monstrous task. How does one succeed in comput-
ing all stable homotopy groups of Thom spectra, especially of T{%,
where the answer is far from trivial?

Here is the starting idea. Explore cohomology of X := T¢yn
and of Eilenberg-MacLane spaces well enough in order to find a map
X — Y = [[, K(Gi,n;) which would establish an isomorphism in
cohomology, at least in a range of degrees growing as N — oco. Then,
applying Whitehead’s homological theorem, conclude that the map
induces an isomorphism of homotopy groups in that growing range,
and enjoy the fact that all homotopy groups of Y are known.

Next, homotopically a map f : X — K(G,n) is an element
f*[Fan) € H"(X;G). But it comes not alone: Every element o €
H"*(K(G,n)) is mapped to some element f*a € H"*(X;G). In
other words, « corresponds to a map ¢, : K(G,n) — K(G,n + k),
and f*a = (f 0 pa)*[FG ktn)-

More generally, elements of (K (G,n), K(G',n')) (which merely
represent cohomology classes in H" (K (G, n); G')) define natural co-
homological operations H™(X;G) — H™ (X;G') working coherently
for all X. Even more generally, cohomological operations can be de-
fined in all extraordinary cohomology theories and between different
cohomology theories, and correspond to homotopy classes of maps
between their spectra. Yet, the most relevant ones for computing
QO (pt) are those which operate on Zs-cohomology and are stable,
meaning that they commute with suspensions. As a set they form

Ay = lim H*'N(K(Zy, N); Zs)

N—o0

with respect to homomorphisms induced by the structure maps
fn : ¥K(Zy,N) — K(Z2,N + 1) of the Eilenberg-MacLane spec-
trum, combined with suspension isomorphisms. Composition of co-
homological operations make it an associative Steenrod algebra, and
Zo-cohomology of any space is a module over it.

The structure of Ay is most efficiently described by its action on
H*(T (& X+ %x&1);Za). The description carries over to H*(TE¢n; Zs)
by the splitting principle. It turns out that in the limit N — oo the
latter becomes a free As-module with generators corresponding to
monomials in Zo[za, x4, x5, Te, Xs, . . . |, and this determines all stable
homotopy groups of the Thom spectrum.
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EXERCISES
248. Show that T'(n x {) = Tn# TC.

244. Derive the intersection theory descriptions of the cobordic pull-back
f* and cross-product from their spectrum-theoretic definitions.

245. Show that S? equipped with the following two stably almost complex
structures are not bordant as stably almost complex manifolds: One is the
complex structure of CP?', the other is obtained by adding to g2 the trivial
normal bundle vg2 of S2 in R3, then adding another trivial line R', and
then identifying 7¢2 ® vg2 @ R with the trivial bundle R* = C2.

246. Show geometrically that Pq2 and Kg are bordant to RP2.

247. Compute Stiefel-Whitney numbers of RP* and RP? x RP2.

248. Show that Ly = p1/3, Ly = (7ps — p?)/45, and verify the Hirzebruch
signature formula for CP?, CP* and CP? x CP2.

249. Compute Chern characteristic numbers of CP3, CP? x CP!, and
CP! x CP' x CP', and compare them with those of the flag manifold
F5(C) to express the complex bordism class of the latter as a rational lin-
ear combination of the former.

250. Let f : X™ — Y™ be a smooth map between closed oriented mani-
folds. Pick a smooth embedding ¢ : X — R and denote by U a tubular
neighborhood of X embedded in Y x RY by f x ¢. Show that the compo-
sitions of two Thom isomorphisms with the natural factorization map (the
middle arrow)

H*(X) &H N+t U — X) —
HeN (X RN, X x (RN = 0)) 5 HF"=™(Y)

coincides with the composition o — D;l f«Dxa of two Poincaré isomor-
phisms with the natural map f, in homology.

Remark. This “wrong direction” operation (somewhat in the spirit of
the Pontryagin-Thom construction in Proposition from Section B) of taking
direct image of « is known as cohomological push-forward f, and has a
meaning of “integration over the fibers” of the map f. The reversely defined
homological pull-back f' : He(Y) — Heym-n(X) is interpreted as taking
inverse images of cycles.
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