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Abstract

Riemann–Roch Theorems in Gromov–Witten Theory

by

Thomas Henry Coates

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Alexander Givental, Chair

Gromov–Witten invariants of a compact almost-Kähler manifold X are intersection num-

bers in moduli spaces of stable maps to X . These spaces, introduced by Kontsevich, are

compactifications of spaces of pseudo-holomorphic maps from marked Riemann surfaces to

X . Gromov–Witten invariants encode information about the enumerative geometry of X —

roughly speaking, they count the number of curves in X which pass through various cycles

and satisfy certain conditions on their complex structure. These invariants have important

applications in both symplectic topology and enumerative algebraic geometry.

In this dissertation we use various Riemann–Roch theorems, together with Givental’s for-

malism of quantized quadratic Hamiltonians, to develop tools for computing Gromov–

Witten invariants and their generalizations. As a consequence, we obtain a new proof of

the Mirror Conjecture of Candelas, de la Ossa, Green and Parkes, concerning the genus-0

Gromov–Witten invariants of quintic hypersurfaces in CP 4.

Following Kontsevich, we introduce a notion of Gromov–Witten invariant twisted by a

holomorphic vector bundle E over X and an invertible multiplicative characteristic class

c. Special cases of this construction are closely related to Gromov–Witten invariants of

hypersurfaces and to local Gromov–Witten invariants (these measure the contribution to
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the Gromov–Witten invariants of a space Y coming from curves in a neighbourhood of a

submanifold X , where the normal bundle to X in Y is E). We express all twisted Gromov–

Witten invariants, of all genera, in terms of untwisted Gromov–Witten invariants. This

result (Theorem 1) is a consequence of the Grothendieck–Riemann–Roch formula applied

to the universal family of stable maps.

As an application, we obtain the Quantum Lefschetz Hyperplane Principle (Theorem 2

and Corollary 5). This determines genus-0 Gromov–Witten invariants of a large class of

complete intersections in terms of genus-0 Gromov–Witten invariants of the ambient space.

It is more general than earlier versions, due to Givental, Kim, Lian–Liu–Yau, Bertram, Lee

and Gathmann, as it applies to complete intersections of arbitrary Fano index and does not

require “restriction to the small parameter space”. In particular, this gives a new proof of

the Mirror Conjecture of Candelas et al.. We also establish “non-linear Serre duality” in a

very general form.

Tangent-twisted Gromov–Witten invariants are intersection numbers involving character-

istic classes of virtual tangent bundles to moduli spaces of stable maps. They give a rich

supply of symplectic invariants of X . We determine all tangent-twisted Gromov–Witten

invariants, of all genera, in terms of untwisted Gromov–Witten invariants. A key step is

to interpret tangent-twisted Gromov–Witten invariants in terms of Gromov–Witten invari-

ants with values in complex cobordism. We extend Givental’s quantization formalism to

the cobordism-valued setting, and combine this with various Riemann–Roch calculations

to give a formula (Theorem 3) expressing cobordism-valued Gromov–Witten invariants in

terms of usual (cohomological, untwisted) Gromov–Witten invariants. This determines all

Gromov–Witten invariants with values in any complex-oriented cohomology theory in terms

of cohomological Gromov–Witten invariants. Theorem 3 reduces “quantum extraordinary

cohomology” to quantum cohomology, and in this sense can be regarded as a “quantum”

version of the Hirzebruch–Riemann–Roch theorem.

Professor Alexander Givental
Dissertation Committee Chair
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Chapter 0

Introduction

In this chapter, we state the main theorems proved in the later chapters and deduce some

simple corollaries of them. In order that the presentation be self-contained, we give some def-

initions both here and in later chapters. Proofs of those results concerning twisted Gromov–

Witten invariants can be found in Chapter 1. The results concerning quantum extraordinary

cohomology and quantum cobordism are proved in Chapter 2.

Gromov–Witten invariants

Let X be a compact Kähler manifold. Moduli spaces of stable maps, introduced by Kont-

sevich [37], are compactifications of spaces of holomorphic maps from marked Riemann

surfaces to X . Gromov–Witten invariants are certain integrals over moduli spaces of stable

maps. They encode information about the enumerative geometry of X — roughly speaking,

they count the number of curves in X which pass through various cycles and satisfy cer-

tain conditions on their complex structure. These invariants have been the subject of much

recent interest in connection with the mathematical implications of mirror symmetry.

Denote by Xg,n,d the moduli space of stable maps [8, 37] of degree d ∈ H2(X ; Z) from

n-pointed, genus-g curves to X . This space is compact, and a Riemann–Roch calculation
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shows that it has “expected dimension”

vdim = n+ (1 − g)(D − 3) +

∫

d
c1(TX)

where D is the complex dimension of X . The spaces Xg,n,d can be quite ill-behaved —

they may be singular, and may not have the expected dimension — but we can always

equip them with a virtual fundamental class [Xg,n,d] ∈ H2vdim(Xg,n,d; Q) of the expected

dimension. There are natural maps

evi : Xg,n,d −→ X i = 1, 2, . . . , n

given by evaluation at the ith marked point and line bundles

Li −→ Xg,n,d i = 1, 2, . . . , n

called universal cotangent lines. The fiber of Li at the stable map f : C −→ X is the cotangent

line to the curve C at the ith marked point. We denote the first Chern class of the line

bundle Li by ψi.

The genus-g Gromov–Witten potential

F g
X(t0, t1, . . .) =

∑

d∈H2(X ;Z)
n≥0

Qd

n!

∫

[Xg,n,d ]

i=n∧

i=1

(∑

ki≥0

ev?i tki
∧ ψki

i

)
(GW)

is a generating function for genus-g Gromov–Witten invariants. HereQd is the representative

of d in the group ring of H2(X ; Z) — this separates the contributions of curves of different

degrees — and t0, t1, . . . ∈ H?(X ; Λ) are cohomology classes on X . We take the coefficient

ring Λ to be a Novikov ring C[[Q]], which is a completion of the semigroup ring of degrees

of holomorphic curves in X . We regard F g
X as a formal function of t(z) = t0 + t1z + . . . ∈

H?(X ; Λ)[z] which takes values in Λ.

Givental’s quantization formalism

The structure of genus-0 Gromov–Witten theory is well-understood, following work of Di-

jkgraaf and Witten [14], Dubrovin [15], Kontsevich and Manin [38], and Barannikov [3].

Genus-0 Gromov–Witten invariants satisfy many universal identities: the string equation,
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the dilaton equation, the topological recursion relations and the celebrated WDVV equa-

tions. A recent insight of Givental [30, 12, 25] is that this structure admits a very simple

interpretation in terms of symplectic geometry and the theory of loop groups. It turns out

that the totality of Gromov–Witten invariants in genus 0 can be encoded by a Lagrangian

submanifold LX of a certain symplectic vector space H, and that the universal identities

mentioned above are equivalent to the assertion that LX takes a very special form — see

the Proposition below and [25]. Many natural operations in Gromov–Witten theory, such

as applying the string equation or (as we will see below) “twisting” Gromov–Witten poten-

tials in various ways, correspond to elements of a loop group of symplectic transformations

of H. The effect of such an operation on genus-0 Gromov–Witten invariants can be con-

cisely described in terms of the corresponding symplectic transformation S: it replaces the

Lagrangian submanifold LX with S(LX).

This point of view also gives insight into the structure of higher-genus Gromov–Witten

invariants, about which very little is currently known. Higher genus Gromov–Witten theory

can be regarded as a quantization of genus-0 Gromov–Witten theory, in the following sense.

Introduce the total descendent potential

DX = exp
(∑

g≥0

~g−1F g
X

)

which is a generating function for Gromov–Witten invariants of all genera. Consider an

element S of the loop group which, as above, corresponds to some operation in Gromov–

Witten theory. The process of geometric quantization associates to S a differential operator

ŜS . The total descendent potential DX can be regarded as a function on the symplectic

vector space H, and the effect of the operation corresponding to S on Gromov–Witten

invariants of all genera is to replace the generating function DX by ŜS(DX). The results in

this dissertation are phrased in terms of this “quantization formalism”, so we now describe

this language in more detail.

Introduce the supervector space

H = H?(X ; Λ)((z−1))

of cohomology-valued Laurent series in 1/z, where the indeterminate z is regarded as even.

(In fact we will need to consider a completion of this space — see section 1.3.2 for details.)
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We equip H with the even Λ-valued symplectic form

Ω(f, g) =
1

2πi

∮
(f(−z), g(z)) dz

where ( · , · ) is the Poincaré pairing on H?(X) and the contour of integration winds once

anticlockwise about the origin. The polarization

H = H+ ⊕H−

by Lagrangian subspaces

H+ = H?(X ; Λ)[z]

H− = z−1H?(X ; Λ)[[z−1]]

identifies H with the cotangent bundle T ?H+. (Here we need to complete H+ too; see section

1.3.2 again.) We regard the genus-0 Gromov–Witten potential F 0
X and the total descendent

potential DX , which are functions of t, as functions on H+ by setting

q(z) = t(z) − z

where q(z) = q0 + q1z + . . . is a co-ordinate on H+. In other words

q0 = t0 q1 = t1 − 1 q2 = t2 q3 = t3 . . .

This identification is called the dilaton shift. Via the dilaton shift, the genus-0 Gromov–

Witten potential generates (the germ near q(z) = −z of) a Lagrangian submanifold LX of

H:

LX = {(p, q) : p = dqF 0
X}

⊂ T ?H+
∼= H

Proposition ([12]). LX is (the germ of) a Lagrangian cone with vertex at the origin such

that each tangent space L to LX is tangent to LX exactly along zL. In other words,

L ∩ LX = zL

and the tangent space to LX at all points of zL is the same Lagrangian subspace L.

LX is therefore ruled by the family of isotropic subspaces

{zL : L is a tangent space to LX}
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It is clear from the proof of the Proposition given in section 1.5 that this family is of (finite)

dimension dimH?(X).

As mentioned above, and proved in [25], the Proposition is equivalent to various universal

identities between genus-0 Gromov–Witten invariants and hence holds whenever Dubrovin’s

axioms for a genus-0 topological field theory coupled to gravity are satisfied. The proof that

we give below is geometric in character, however, and so only applies to those Frobenius

structures which come from Gromov–Witten theory.

It remains to describe the action of symplectic transformations of H on Gromov–Witten

invariants. The process of geometric quantization associates to an infinitesimal symplecto-

morphism A : H −→ H a differential operator ÂA, in the following way. Consider the quadratic

Hamiltonian

hA(f) = 1
2 Ω(Af, f)

Choose Darboux co-ordinates {pα, qβ} adapted to the polarization (so that H+ is given by

p1 = p2 = . . . = 0 and H− is given by q1 = q2 = . . . = 0), express hA in terms of these

co-ordinates and define ÂA to be the quantization ĥAhA of hA, where

q̂αqβqαqβ =
qαqβ

~
q̂αpβqαpβ = qα

∂

∂qβ
p̂αpβpαpβ = ~

∂

∂qα
∂

∂qβ

and ·̂ is linear. This quantization procedure gives a projective representation of the Lie alge-

bra of infinitesimal symplectomorphisms as differential operators. We call transformations

of the form S = exp(A), where A is an infinitesimal symplectomorphism of the form

A =
∑

m∈Z

Amz
m Am ∈ End(H?(X))

elements of the loop group, and define

ŜS = exp(ÂA)

Such quantizations ŜS act (projectively) on the total descendent potential DX , which we

regard as a formal function of q via the dilaton shift. Taking the “semi-classical limit”

~ −→ 0 in the quantization procedure we find that acting on DX by ŜS

DX  ŜS (DX)
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corresponds to applying the (unquantized) linear transformation S to the Lagrangian sub-

manifold LX :

LX  S(LX)

Twisted Gromov–Witten invariants

The classical Riemann–Roch formula gives a purely topological expression for the index of

the Cauchy–Riemann operator acting on sections of a holomorphic vector bundle over a

compact complex curve. Such indices can be regarded as virtual vector spaces

ker ∂̄∂ 	 coker ∂̄∂

and in a parametric situation form a virtual vector bundle over the parameter space. Topo-

logical invariants of this index bundle take the form of characteristic classes in the coho-

mology of the parameter space. The parametric situation just described occurs in Gromov–

Witten theory, and allows us to enrich our notion of Gromov–Witten invariant. A holomor-

phic vector bundle E over the target space X restricted to the curves in X yields an index

bundle Eg,n,d over the moduli space Xg,n,d. The “fiber” of the virtual vector bundle Eg,n,d

at the stable map f : C −→ X is

H0(C, f?E)	H1(C, f?E)

Given an invertible multiplicative characteristic class c of complex vector bundles, we de-

fine twisted Gromov–Witten invariants by replacing the virtual fundamental class [Xg,n,d]

occurring in equation (GW) by the cap product [Xg,n,d]∩c(Eg,n,d). If c is the trivial charac-

teristic class then these are the usual Gromov–Witten invariants ofX . Two other important

special cases are as follows.

• Suppose that E is a line bundle which is sufficiently positive that H1(C, f?E) = 0 for

all genus-0 stable maps f : C −→ X . Such bundles are called convex; examples include

those bundles which are spanned fiberwise by global holomorphic sections. If we take

the characteristic class c to be the Euler class1 then genus-0 twisted Gromov–Witten

1The Euler class is not invertible, and so strictly speaking our construction does not apply. However, in
the convex case the virtual vector bundle Eg,n,d is in fact a bundle, so the Euler class of Eg,n,d is well-defined
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invariants of X coincide with genus-0 Gromov–Witten invariants of the hypersurface

cut out by a generic section of E. Understanding the relationship between twisted

and untwisted Gromov–Witten invariants will allow us to prove a very general version

of the Quantum Lefschetz Hyperplane Principle (Corollary 5 below), which relates

genus-0 Gromov–Witten invariants of complete intersections to those of the ambient

space. This implies the celebrated mirror formula, due to Candelas, de la Ossa, Green

and Parkes [11], for genus-0 Gromov–Witten invariants of quintic hypersurfaces in

CP 4.

• IfX is sufficiently negative thatH0(C, f?E) = 0 for all genus-0 stable maps f : C −→ X

— such bundles are called concave — then genus-0 Gromov–Witten invariants of X

twisted by the S1-equivariant inverse Euler class of E are closely related to so-called

local Gromov–Witten invariants in genus 0. (The S1-action here rotates the fibers of E

and the index bundles Eg,n,d, and leaves X and the moduli spaces Xg,n,d fixed.) Given

X a submanifold of the Kähler manifold Y with normal bundle E, local Gromov–

Witten invariants measure the contribution to Gromov–Witten invariants of Y coming

from curves lying in a neighbourhood of X . In genus 0, such curves of degree d 6= 0 in

fact lie insideX ; this follows from the concavity ofE. Local Gromov–Witten invariants

participate in the “non-linear Serre duality” of [26, 27], which has been used [27, 35]

to establish various enumerative predictions of mirror symmetry, including the mirror

formula. Corollary 2 below implies a very general form of non-linear Serre duality,

which is formulated as Corollary 1.8.2 on page 81.

Theorem 1 below determines the relationship between twisted and untwisted Gromov–

Witten invariants in all genera. It gives an explicit formula for twisted Gromov–Witten

invariants in terms of untwisted ones. The formula is written in terms of the quantization

formalism, which we extend to the “twisted” setting in the next section. Before doing this,

we give precise definitions of the twisted Gromov–Witten potentials.

and the Euler-twisted potentials make sense. We can fit this into our general framework by first considering
the S1-equivariant Euler class, which is invertible, and then passing to the non-equivariant limit. The S1-
action we consider here rotates the fibers of E and of Eg,n,d, and leaves X and the moduli spaces Xg,n,d

fixed.
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Twisted Gromov–Witten potentials

There is a natural map

π : Xg,n+1,d −→ Xg,n,d

given by forgetting the last marked point and contracting any components of the curve on

which the resulting map is unstable. This can be regarded as the universal family of stable

maps over Xg,n,d:

Xg,n+1,d
evn+1- X

Xg,n,d

π

?

Given a holomorphic vector bundle E over X , we can pull it back along the map evn+1 and

then take the K-theoretic push-forward along π to define a virtual vector bundle

Eg,n,d = π? ev?n+1 E

over Xg,n,d. The “fiber” of the virtual bundle Eg,n,d at the stable map f : C −→ X is

H0(C, f?E)	H1(C, f?E)

An invertible multiplicative characteristic class c of complex vector bundles can be written

as

c( · ) = exp
(∑

k≥0

sk chk( · )
)

for some choice of s0, s1, . . ., where chk is the degree-2k component of the Chern character.

We regard s0, s1, s2, . . . as formal parameters, and incorporate them in the ground ring Λ:

Λ = C[[Q]]⊗ C[[s0, s1, s2, . . .]]

The (c, E)-twisted genus-g Gromov–Witten potential

F g
c,E

(t0, t1, . . .) =
∑

d∈H2(X ;Z)
n≥0

Qd

n!

∫

[Xg,n,d ]

i=n∧

i=1

(∑

ki≥0

ev?i tki
∧ ψki

i

)
∧ c(Eg,n,d)
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is a generating function for (c, E)-twisted Gromov–Witten invariants. It is a formal function

of t(z) = t0 + t1z + . . . ∈ H?(X ; Λ)[z] which takes values in Λ. The (c, E)-twisted total

descendent potential of X

Dc,E = exp
(∑

g≥0

~g−1F g
c,E

)

is a generating function for (c, E)-twisted Gromov–Witten invariants of all genera.

Extending the quantization formalism to the twisted setting

The Poincaré pairing on the cohomology of the target space X occurs in untwisted Gromov–

Witten theory as an intersection index on the moduli space X0,3,0 = X :

(a, b) =

∫

[X0,3,0 ]
ev?1 a ∧ ev?2 1 ∧ ev?3 b

In the twisted setting this takes the form

(a, b)c,E :=

∫

[X0,3,0 ]

ev?1 a ∧ ev?2 1 ∧ ev?3 b ∧ c(E0,3,0)

=

∫

X
a ∧ b ∧ c(E)

which suggests that we should base the symplectic form occurring in the quantization for-

malism on this “twisted Poincaré pairing”. Except for this change, and the fact that the

ground ring Λ now contains s0, s1, . . ., all ingredients of the quantization formalism are

exactly as before.

We take the symplectic space to be2

Hc,E = H?(X ; Λ)((z−1))

with the Λ-valued symplectic form

Ωc,E(f, g) =
1

2πi

∮
(f(−z), g(z))c,E dz

As before, the polarization

Hc,E = Hc,E
+ ⊕Hc,E

−

2Again, we suppress some details about completions here: see section 1.3.2.
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by Lagrangian subspaces

Hc,E
+ = H?(X ; Λ)[z]

Hc,E
− = z−1H?(X ; Λ)[[z−1]]

identifies Hc,E with the cotangent bundle T ?Hc,E
+ . We regard the twisted Gromov–Witten

potentials F 0
c,E and Dc,E as functions on Hc,E

+ via the dilaton shift

q(z) = t(z) − z

where q(z) = q0 + q1z + . . . is a co-ordinate on Hc,E
+ . Via the dilaton shift, the twisted

genus-0 potential generates (the germ near q(z) = −z of) a Lagrangian submanifold Lc,E

of Hc,E :

Lc,E = {(p, q) : p = dqF 0
c,E}

We will want to apply quantized elements of the loop group to the twisted total descendent

potential Dc,E. We therefore need to identify Dc,E with a function on H+ (rather than on

Hc,E
+ ). We do this via the symplectomorphism

ϕ : Hc,E −→ H
x 7−→

√
c(E)x

ϕ maps Hc,E
+ isomorphically to H+.

Quantum Riemann–Roch

The following result determines all twisted Gromov–Witten invariants in terms of untwisted

Gromov–Witten invariants. Since certain twisted Gromov–Witten invariants are closely re-

lated to local Gromov–Witten invariants and to the Gromov–Witten invariants of hyper-

surfaces (see the discussion on pages 6 and 7), this will allow us to establish very general

versions of non-linear Serre duality and of the Quantum Lefschetz Hyperplane Principle.

Theorem 1. Let L be a line bundle with first Chern class z. Multiplication by the asymptotic

expansion of the infinite product
∞∏

m=1

c(E ⊗ L−m)
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defines a linear symplectomorphism 4 : H −→ Hc,E, and the quantization ϕ̂4ϕ4 identifies the

one-dimensional subspaces spanned by DX and by Dc,E:

〈Dc,E〉 = ϕ̂4ϕ4〈DX〉

Remark. The transformation ϕ4 : H −→ H is multiplication by the asymptotic expansion

of √
c(E)

∞∏

m=1

c(E ⊗ L−m)

We interpret this as follows. Let ρ1, . . .ρr be the Chern roots of E, and let s(·) be the

logarithm of c( · ):

s(x) =
∑

k≥0

sk
xk

k!

Then

ln
(√

c(E)
∞∏

m=1

c(E ⊗ L−m)
)
∼

r∑

i=1

[
s(ρi)

2
+

∞∑

m=1

s(ρi −mz)

]

∼
r∑

i=1

1

2

[
1 + ez∂x

1− ez∂x
s(x)

]∣∣∣∣
x=ρi

=

r∑

i=1

[∑

m≥0

B2m

(2m)!
(z∂x)

2m−1s(x)

]∣∣∣∣
x=ρi

=
∑

m≥0

∑

l≥0

B2m

(2m)!
sl+2m−1 chl(E)z2m−1

Here the Bk are Bernoulli numbers

t

1 − e−t
=

∑

k≥0

Bk
k!
tk

Multiplication by chl(E)z2m−1 is an infinitesimal symplectomorphism of H, so 4 is a linear

symplectomorphism. In Chapter 1 we prove (Theorem 1.6.4) that

exp

(
− 1

24

∑

l>0

sl−1

∫

X

chl(E)cD−1(TX)

)
(sdet

√
c(E))−

1
24 Dc,E =

exp

(∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
(chl(E)z2m−1)

∧
)

exp
(∑

l>0

sl−1(chl(E)/z)
∧)DX

where D is the complex dimension of X and sdet is the superdeterminant. Since the factor

in front of Dc,E is a non-vanishing scalar function of s, this implies Theorem 1.
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Corollary 1. The Lagrangian submanifolds Lc,E and LX satisfy

Lc,E = 4LX

In particular, Lc,E is (the germ of) a Lagrangian cone which satisfies the conclusions of the

Proposition on page 4.

Non-linear Serre duality

Let c∗ denote the multiplicative characteristic class

c∗( · ) = exp
(∑

k≥0

(−1)k+1sk chk( · )
)

so that

c∗(E∗) =
1

c(E)

Corollary 2. The one-dimensional spaces spanned by Dc,E and by Dc∗,E∗ are equal:

〈Dc∗,E∗〉 = 〈Dc,E〉

Proof. Dc∗,E∗ is obtained from DX by the quantization of

√
c∗(E∗)

∞∏

m=1

c∗(E∗ ⊗ L−m) =
1√

c(E)

∞∏

m=1

1

c(E ⊗ Lm)

Replacing Lm by L−m on the right-hand side of this formula corresponds to replacing z by

−z. But elements S(z) of the loop group satisfy

ST (−z)S(z) = I

where T denotes the adjoint with respect to the Poincaré pairing, and multiplication by a

cohomology class is self-adjoint, so

√
c∗(E∗)

∞∏

m=1

c∗(E∗ ⊗ L−m) =
√

c(E)
∞∏

m=1

c(E ⊗ L−m)

Now apply Theorem 1. �
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Note that the equality in Corollary 2 involves formal functions of q. The relationship between

Dc,E and Dc∗,E∗ as formal functions of t is described explicitly by Corollary 1.8.1 on page

80.

“Non-linear Serre duality”, discovered in [26, 27] in the context of fixed-point localization

formulas for genus-0 Gromov–Witten invariants of toric manifolds, is a close relationship

between Gromov–Witten invariants twisted by the S1-equivariant Euler class of a bundle E

(where S1 rotates the fibers of E) and those twisted by the inverse equivariant Euler class of

E∗ (equipped with the dual S1-action). More concretely, it gives a close relationship between

genus-0 Gromov–Witten invariants of hypersurfaces and certain local Gromov–Witten in-

variants (see page 7). If the characteristic class c in Corollary 2 is the S1-equivariant Euler

class then c∗ is almost equal to the S1-equivariant inverse Euler class. Corollary 2 therefore

implies a very general version of non-linear Serre duality, which applies to any compact

Kähler target space X and to twisted Gromov–Witten invariants in arbitrary genus. This

is formulated as Corollary 1.8.2 on page 81.

Quantum Lefschetz Hyperplane Principle

As mentioned above, if E is a positive line bundle then the genus-0 Gromov–Witten in-

variants of X twisted by the Euler class of E coincide with the genus-0 Gromov–Witten

invariants of the hypersurface cut out by a generic section of E. We now analyze the con-

sequences of Corollary 1 in the case where c is the S1-equivariant Euler class. By passing

to the non-equivariant limit, we will be able to prove a very general version of the Quan-

tum Lefschetz Hyperplane Principle (Corollary 5), which relates genus-0 Gromov–Witten

invariants of complete intersections to those of the ambient space. Our argument hinges on

the fact, explained in the next-but-one section, that the cone LX is entirely determined by

a generic family

τ 7−→ J(τ) τ ∈ H?(X)

of elements of LX . In the next-but-one section we also exhibit such a family, which we call

the J-function of X , and in addition give a family which determines the twisted cone Le,E,

called the twisted J-function. The J-function encodes all genus-0 Gromov–Witten invariants

of X and the twisted J-function encodes all genus-0 twisted Gromov–Witten invariants.
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Using Corollary 1 and the J-function of X we build another family, the I-function, and

prove that this also determines Le,E (Theorem 2). Since the I-function and the twisted

J-function determine the same cone, we can write one in terms of the other (Corollary

4). On passing to the non-equivariant limit, this gives the Quantum Lefschetz Hyperplane

Principle (Corollary 5). We then show that this implies the earlier mirror theorems of

[26, 4, 35, 47, 9, 43, 21], and in particular give a new proof of the mirror formula for genus-0

Gromov–Witten invariants of the quintic threefold [11].

The quantization formalism

In order to take the characteristic class c by which we twist to be the S1-equivariant

Euler class e, we need to base our ground ring Λ on the coefficient ring H?(BS1; C) of

S1-equivariant cohomology theory. We identify H?(BS1; C) with C[λ], where λ is the first

Chern class of the universal bundle over CP∞, and take

Λ = C[[Q]](
√
λ )[lnλ]

We adjoin the
√
λ and lnλ to ensure that the asymptotic expansion in Corollary 1 has

coefficients in Λ. We extend the quantization formalism to this situation exactly as on

pages 9–10: the only change is the new ground ring Λ.

Corollary 3. Multiplication by the asymptotic expansion

ΓE(z) ∼
∞∏

m=1

e(E ⊗ L−m)

gives a linear symplectomorphism � : (H,Ω) −→ (He,E ,Ωe,E) and

�LX = Le,E

The series ΓE(z) is closely related to the asymptotic expansion of the gamma function:

ΓE(z) ∼ 1

e(E)

r∏

i=1

1√
2πz

∫ ∞

0
e
−x+(λ+ρi) lnx

z dx

where ρ1, . . . , ρr are the Chern roots of E. This observation is the key to the proof of

Theorem 2 below.
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J-functions and slices of the cones

Recall from the discussion on pages 4 and 5 that the Lagrangian cone LX which encodes

genus-0 Gromov–Witten invariants of X is ruled by a (dimH?(X))-dimensional family of

subspaces

{zL : L is a tangent space to LX}

Given a family

τ 7−→ J(τ) τ ∈ H?(X)

of elements of LX which is transverse to the ruling, the cone LX is therefore swept out by

{zLτ : τ ∈ H?(X)} where Lτ = TJ(τ )LX

In other words

LX =
⋃

τ∈H?(X)

zLτ

Fix a basis {φ1, . . . , φN} forH?(X ; C). Since the family τ 7−→ J(τ) is transverse to the ruling,

the derivatives ∂1J(τ,−z), . . . , ∂NJ(τ,−z) in the directions φ1, . . . , φN ∈ H?(X ; Λ) form a

basis for the tangent space Lτ over3 Π = Λ[z]. In this sense, the family τ 7−→ J(τ) generates

the whole cone LX . We say that such a family is a slice of the cone LX .

One such slice is given by the intersection of LX with the affine subspace

−z + zH− ⊂ H

We call the function parameterizing this slice the J-function of X . A formula for it in terms

of genus-0 Gromov–Witten invariants is as follows. Let gαβ = (φα, φβ), and let gαβ be

the entries of the matrix inverse to that with entries gαβ. The J-function JX(τ,−z) is the

H-valued function of τ ∈ H?(X ; Λ) defined by

JX(τ,−z) = −z + τ +
∑

n,d

Qd

n!

(∫

[Xg,n+1,d ]

( n∧

i=1

ev?i τ
)
∧ φα

−z − ψn+1

)
gαβφβ

∈ −z + τ + H−
Here we interpret

1

−z − ψn+1
= −1

z
+
ψn+1

z2 − ψ2
n+1

z3 + . . .

3Again, we ignore some completion issues here: the relevant completion Π of Λ[z] is described on page
74.
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and sum over repeated Greek indices.

Corollary 1 implies that the Lagrangian cone Le,E ⊂ He is ruled in exactly the same way as

LX . A slice of Le,E is given by the intersection of Le,E with the affine subspace −z + zHe
−.

The H-valued function of τ ∈ H?(X ; Λ) which parameterizes this intersection is called the

twisted J-function Je,E(τ,−z). We can write it in terms of genus-0 twisted Gromov–Witten

invariants as follows. Let geαβ = (φα, φβ)e, and let gαβe be the entries of the matrix inverse

to that with entries geαβ. Then

Je,E(τ,−z) = −z + τ +
∑

n,d

Qd

n!

(∫

[Xg,n+1,d ]

( n∧

i=1

ev?i τ
)
∧ φα
−z − ψn+1

∧ e(E0,n+1,d)

)
gαβe φβ

∈ −z + τ + He
−

Another slice of Le,E

Theorem 2. Let ρ1, . . . , ρr be the Chern roots of E. Define an He,E-valued function of

t ∈ H?(X ; Λ) by

I(t, z) =

r∏

i=1




∫ ∞

0
ex/zJX(z, t+ (λ+ ρi) lnx) dx

∫ ∞

0

e
x−(λ+ρi) ln x

z dx




where the integrals represent their stationary phase asymptotics as z −→ 0. Then the family

t 7−→ I(t,−z) t ∈ H?(X ; Λ)

of elements of He,E lies on the Lagrangian cone Le,E.

In fact the family t 7−→ I(t,−z) is a slice of Le,E: it is transverse to the ruling of Le,E by

{zL : L is a tangent space to Le,E}

and so the derivatives ∂1I(t,−z), . . . , ∂NI(t,−z) in the directions φ1, . . . , φN ∈ H?(X ; Λ)

form a basis for the tangent space

Lt = TI(t,−z)Le,E
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over Π. The subspace zLt meets the affine subspace −z + zHe
− at a unique point

−z + τ(t) + He
−

and this defines a map t 7−→ τ(t), which we call the mirror map.

Corollary 4. The unique intersection of zLt with the affine subspace −z + zHe
− coincides

with Je,E(τ(t),−z). In other words,

Je,E(τ(t),−z) = I(t,−z) +

N∑

α=1

Cα(t, z)z ∂αI(t,−z)

where Cα(t, z) are the unique elements of Π such that the right-hand side lies in −z+ zHe
−.

The mirror map t 7−→ τ(t) is determined by the expansion −z+τ(t)+O(z−1) of the right-hand

side.

The mirror map and Birkhoff factorization

This procedure of calculating Je,E(τ, z) from I(t, z) is reminiscent of Birkhoff factorization

in the theory of loop groups. In fact, the corresponding procedure applied to first derivatives

of I and Je,E really is an example of Birkhoff factorization: let Se,E(τ, z) be the matrix with

columns

∂1Je,E(τ, z), . . . , ∂NJe,E(τ, z)

and let R(t, z) be the matrix with columns

∂1I(t, z), . . . , ∂NI(t, z)

Since the families I(t,−z) and Je,E(τ,−z) are transverse to the ruling of Le,E, the columns

of R(t,−z) and Se,E(τ(t),−z) both form bases for Lt over Π, and so

R(t,−z) = Se,E(τ(t),−z)C(t, z) (BF)

for some matrix C(t, z) with entries in Π. But Se,E(τ, z) is a matrix-valued power series in

1/z and C(t, z) is a matrix-valued power series in z, so (BF) is the Birkhoff factorization of

R(t,−z) in the loop group of symplectomorphisms of H. The factorization (BF) determines

the mirror map, since applying the linear transformation Se,E(τ, z) to 1 ∈ H?(X ; Λ) gives

1 +
τ

z
mod

1

z2
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Complete intersections

Suppose now that the Chern roots ρ1, . . . , ρr of E are defined over Z — for example, E

could be a direct sum of line bundles. Write

JX(t, z) =
∑

d

Jd(t, z)Q
d

Applying the string and divisor equations and integrating by parts gives

I(t, z) =
∑

d

Jd(t, z)Q
d

r∏

i=1

∏ρi(d)
k=−∞(λ+ ρi + kz)∏0
k=−∞(λ+ ρi + kz)

Corollary 5 explains how to obtain the twisted J-function Je,E from this “hypergeometric

modification” of JX .

If E is a direct sum of convex line bundles (see page 6) then both I(t, z) and Je,E(τ, z)

admit non-equivariant limits. Let j : Y −→ X denote the inclusion into X of the complete

intersection cut out by a generic section of E. The non-equivariant limit limλ−→0 I(t, z) is

IX,Y (t, z) =
∑

d

Jd(t, z)Q
d

r∏

i=1

ρi(d)∏

k=1

(ρi + kz)

and limλ−→0 Je,E(τ, z) is JX,Y (τ, z) where

enon(E)JX,Y (u, z) =H2(Y )−→H2(X) j?JY (j?u, z)

Here enon is the non-equivariant Euler class, JY is the J-function of Y (defined as on page 15)

and the long subscript indicates that the corresponding homomorphism between Novikov

rings should be applied to the right-hand side of the equation. We see that JX,Y determines,

up to some “blurring” of Novikov variables, all genus-0 Gromov–Witten invariants of Y

which involve cohomology classes coming from X .

Corollary 5. The series IX,Y (t,−z) and JX,Y (τ,−z) determine the same cone. In partic-

ular, JX,Y (τ,−z) is determined from IX,Y (t,−z) by the “Birkhoff factorization” procedure

followed by the mirror map t 7−→ τ as described in Corollary 4.

This is the Quantum Lefschetz Hyperplane Principle advertised above. It essentially deter-

mines the genus-0 Gromov–Witten invariants of the complete intersection Y in terms of the
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genus-0 Gromov–Witten invariants of the ambient space X . It applies to convex complete

intersections of arbitrary Fano index, and without restriction on the parameter τ ∈ H?(X).

We can combine Corollary 5 with the Birkhoff factorization procedure outlined on page 17

to compute gravitational descendents of Y — these are Gromov–Witten invariants which

involve powers of the universal cotangent line classes ψi. We will see below that in the case

where Y is either Fano or Calabi–Yau and where τ is restricted to lie in the “small parame-

ter space” H≤2(X), Corollary 5 gives the earlier Quantum Lefschetz theorems of Givental,

Batyrev et al., Kim, Lian et al., Bertram, Lee and Gathmann [26, 4, 35, 47, 9, 43, 21].

Example: a quintic 3-fold in CP
4

Take X = CP 4, E = O(5) and j : Y −→ X the inclusion of the hypersurface cut out by a

generic section of E. Let P be the hyperplane class generating H?(X ; C) = C[P ]/(P 5). The

restriction of the J-function of X to H2(X) is known to be [26]

JX(tP, z) = zetP/z
∑

d≥0

Qdedt∏d
k=1(P + kz)5

so

IX,Y (tP, z) = zetP/z
∑

d≥0

Qdedt
∏5d
k=1(5P + kz)∏d
k=1(P + kz)5

= f(t)z + Pg(t) +O(z−1)

where

f(t) =
∑

d≥0

Qdedt
(5d)!

(d!)5

g(t) = tf(t) + 5
∑

d≥0

Qdedt
(5d)!

(d!)5

k=5d∑

k=d+1

1

k

According to Corollary 5, IX,Y and JX,Y determine the same cone. But IX,Y (tP,−z) deter-

mines the same cone as

IX,Y (tP,−z)
f(t)

= −z + P
g(t)

f(t)
+O(z−1)

and

JX,Y (τP,−z) = −z + τP +O(z−1)
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so if

τ(t) =
g(t)

f(t)

then

JX,Y (τ(t)P,−z) =
IX,Y (tP,−z)

f(t)

This is the celebrated quintic mirror formula of Candelas, de la Ossa, Green and Parkes.

More generally:

Corollary 6. If E is a direct sum of convex line bundles such that c1(E) ≤ c1(X) then the

restriction of IX,Y (t, z) to the small parameter space H≤2(X ; Λ) takes the form

IX,Y (t, z) = zF (t) +
∑

i

Gi(t)φi +O(z−1)

where the {φi} are a basis for H≤2(X) and F (t), Gi(t) are scalar-valued functions such that

F (t) is invertible. The restriction of JX,Y (τ, z) to H≤2(X ; Λ) is given by

JX,Y (τ, z) =
IX,Y (t, z)

F (t)

where

τ =
∑

i

Gi(t)

F (t)
φi

Thus we recover the Quantum Lefschetz theorems of [26, 4, 35, 47, 9, 43, 21].

Quantum cobordism

Recall from the discussion on page 2 that even though the moduli space Xg,n,d may be

singular and may not have the dimension predicted by Riemann–Roch, we can always

equip it with a virtual fundamental class [Xg,n,d] of the expected dimension. This coincides

with the usual fundamental class when Xg,n,d is smooth and of the expected dimension.

We can similarly equip Xg,n,d with a virtual vector bundle T vir
g,n,d ∈ K0(Xg,n,d), called

the virtual tangent bundle, which coincides with the usual tangent bundle when Xg,n,d

is smooth and of the expected dimension. This gives another way to enrich our notion

of Gromov–Witten invariant: we can twist by characteristic classes of the virtual tangent
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bundle. Given an invertible multiplicative characteristic class c of complex vector bundles,

we define tangent-twisted Gromov–Witten invariants by replacing the virtual fundamental

class [Xg,n,d] occurring in equation (GW) by the cap product [Xg,n,d] ∩ c(T vir
g,n,d).

The virtual tangent bundle is

T vir
g,n,d = T − N

where the tangent sheaf T and the obstruction sheaf N fit into the exact sequence

0 −→ Aut(C) −→ H0(C, f?TX) −→ T −→ Def(C) −→ H1(C, f?TX) −→ N −→ 0

of sheaves on Xg,n,d (see [31, 13]). Here we denote sheaves on Xg,n,d by their fibers at the

stable map f : C −→ X . Aut(C) is the vector space of holomorphic vector fields on C which

vanish at the marked points and Def(C) is the space of infinitesimal deformations of the

complex structure on C. The virtual tangent bundle T vir
g,n,d therefore consists of two parts,

one

H0(C, f?TX)	H1(C, f?TX)

coming from variations of the map f : C −→ X , where the complex structure on C is fixed,

and the other

Def(C) 	 Aut(C)

coming from variations of the complex structure on C. We can describe the contribution of

the first part of T vir
g,n,d to tangent-twisted Gromov–Witten invariants using Theorem 1, since

H0(C, f?TX)	H1(C, f?TX) = (TX)g,n,d

The remaining part, coming from deformations of complex structure on the domain curve,

contributes to tangent-twisted Gromov–Witten invariants in a rather complicated way.

Theorem 3 below expresses tangent-twisted Gromov–Witten invariants in terms of untwisted

Gromov–Witten invariants. The key geometrical argument, which is contained in section

2.5.3, identifies the virtual tangent bundle T vir
g,n,d as the sum of three parts. One of these

parts is (TX)g,n,d, another has a simple description in terms of universal cotangent lines Li

and the third is supported entirely on the boundary of the moduli space Xg,n,d. Since the

boundary ofXg,n,d is made up of products of “smaller” moduli spaces Xg′,n′,d′ , this allows us

to write down recursion relations which determine tangent-twisted Gromov–Witten invari-

ants in terms of untwisted Gromov–Witten invariants. The key combinatorial step, which
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allows us to solve these recursion relations, is to interpret tangent-twisted Gromov–Witten

invariants in terms of Gromov–Witten invariants with values in complex cobordism. The

idea of defining Gromov–Witten invariants with values in cobordism goes back to Gromov

[32], who constructed invariants of symplectic manifolds in the form of bordism classes in

certain spaces of (pseudo)holomorphic curves; it was later pursued by Kontsevich [37] and

Morava [52, 51]. Extending the quantization formalism to this cobordism-valued setting al-

lows us to express the relationship between tangent-twisted and untwisted Gromov–Witten

invariants in a very simple form. In the next section we give a brief introduction to complex

cobordism. We then define cobordism-valued Gromov–Witten invariants and extend the

quantization formalism to deal with them. Finally, we state Theorem 3 and discuss some of

its consequences.

Complex cobordism

The complex cobordism of a topological space Y is the extraordinary cohomology of Y with

values in the Thom spectrum MU . If Y is a complex manifold of dimension n then the

cobordism group MU i(Y ), which is defined in terms of homotopy classes of maps to Thom

spaces MU(k) of universal bundles over BU(k)

MU i(Y ) = lim
j−→∞

[ΣjY,MU(i+ j)]

can be described more concretely in Poincaré-dual terms. The Pontryagin–Thom construc-

tion identifies MU i(Y ) with the complex bordism group MU2n−i(Y ) — this plays the role

of the Poincaré isomorphism between complex cobordism and complex bordism — and com-

plex bordism groups admit the following geometric description [55, 66]. A weakly complex

manifold M is a smooth real manifold together with a complex vector bundle over M whose

underlying real vector space is of the form TM ⊕ RN . We identify complex structures on

TM ⊕RN which are homotopic, and identify the complex structure on TM ⊕RN with the

obvious complex structure on TM ⊕ RN ⊕ R2. The complex bordism group MUi(Y ) is the

free Abelian group on the set of continuous maps M −→ Y , where M is a closed weakly

complex manifold of real dimension i, modulo the relations

[
M1

∐
M2 −→ Y

]
= [M1 −→ Y ] + [M2 −→ Y ]

[∂W −→ Y ] = 0
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Here W is a weakly complex manifold with boundary and ∂W inherits a weakly complex

structure in the obvious way.

We consider cobordism groups with complex coefficients, so the coefficient ring of the theory

is

Ω?
MU = MU?(pt) ⊗ C

∼= C[p1, p2, . . .]

where pi is the degree (−2i) class represented by CP i −→ pt. We can define cobordism-valued

characteristic classes of complex vector bundles exactly as we do for usual cohomology. The

cobordism-valued first Chern class of the bundle O(1) over CPn is Poincaré-dual to the

inclusion CPn−1 −→ CPn of a hyperplane section. If u is the cobordism-valued first Chern

class of the universal bundle ξ over CP∞ then

MU?(CP∞) ∼= Ω?
MU [[u]]

Much as for K-theory, there is a multiplicative natural transformation from cobordism to

cohomology which gives ring isomorphisms

chMU : MU?(X)⊗ C −→ H?(X ; Ω?
MU)

for all X . This is called the Chern–Dold character. The image of u ∈ MU?(CP∞) under

the Chern–Dold character is a formal power series

u(z) = z + a2z
2 + a3z

3 + . . .

where z is the (cohomological) first Chern class of the universal line bundle ξ.

Given a proper map of complex manifolds π : Y −→ Z there is a pushforward

π? : MU i(Y ) −→ MU i+dimZ−dim Y (Z)

which (in Poincaré-dual terms) sends [f : M −→ Y ] to [πf : M −→ Z]. We can compute the

push-forward to a point in terms of cohomology via the Riemann–Roch formula

π?(α) =

∫

Y
chMU(α)TdMU(TY ) (RR)

Here α is a cobordism class on Y , π is the map from Y to a point, and TdMU is the

multiplicative H?(·; Ω?
MU)-valued characteristic class which takes the value

TdMU(ξ) =
z

u(z)
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on the universal line bundle. If we write

TdMU( · ) = exp
(∑

k>0

sk chk( · )
)

then s1, s2, . . . give another set of generators for Ω?
MU :

Ω?
MU = C[s1, s2, . . .]

Cobordism-valued Gromov–Witten invariants

We base the ground ring Λ on the coefficient ring of complex cobordism theory, taking

Λ = C[[Q]] ⊗ C[[s1, s2, . . .]]

Using the Riemann–Roch formula (RR) we can define cobordism-valued Gromov–Witten

invariants in purely cohomological terms. The genus-g cobordism potential of X , which is

a generating function for cobordism-valued Gromov–Witten invariants, is defined to be

F g
MU(t0, t1, . . .) =

∑

d∈H2(X ;Z)
n≥0

Qd

n!

∫

[Xg,n,d ]

i=n∧

i=1

(∑

ki≥0

ev?i (chMU tki
) ∧ u(ψi)ki

)
∧ TdMU(T vir

g,n,d)

Here t0, t1, . . . ∈MU?(X ; Λ) are cobordism classes on X and, as before, ψi is the (cohomo-

logical) first Chern class of the ith universal cotangent line Li. We regard F g
MU as a formal

function of t = t0 + t1u+ . . . ∈MU?(X ; Λ)[u] which takes values in Λ. The total cobordism

potential of X

DMU = exp
(∑

g≥0

~g−1F g
MU

)

is a generating function for cobordism-valued Gromov–Witten invariants of all genera.

Since any invertible multiplicative characteristic class is a scalar multiple of

TdMU( · ) = exp
(∑

k>0

sk chk( · )
)

for appropriate values of s1, s2, . . ., the total cobordism potential encodes all tangent-twisted

Gromov–Witten invariants.



25

The quantization formalism

The symplectic space H associated to usual Gromov–Witten theory consists of cohomology-

valued Laurent series in 1/z

H = H?(X ; Λ)((z−1))

and the symplectic form is based on the Poincaré pairing

Ω(f1, f2) =
1

2πi

∮
(f1(−z), f2(z)) dz

We can regard z here as the first Chern class of the universal line bundle ξ over CP∞.

We take the symplectic space U associated to cobordism-valued Gromov–Witten theory to

consist of cobordism-valued Laurent series4 in 1/u

U = MU?(X ; Λ)((u−1))

equipped with the symplectic form5

ΩMU(f1, f2) =
1

2πi

∮
(f1(u(−z)), f2(u(z)))MU dz

based on the Poincaré pairing in cobordism theory

(a, b)MU =

∫

X
chMU(a) ∧ chMU(b) ∧ TdMU(TX)

We can regard u as the cobordism-valued first Chern class of the universal line bundle ξ.

Define Laurent series vk(u), k = 0, 1, 2, . . . by

1

u(−x− y)
=

∑

k≥0

(u(x))kvk(u(y))

where we expand the left-hand side in the region where |x| < |y|. We prove in section 2.3.2

that (appropriate completions of) the subspaces

U+ = MU?(X ; Λ)[u]

U− =
{∑

n≥0

αnvn(u) : αn ∈MU?(X ; Λ)
}

4Once again we suppress some details about completions here: see section 2.3.2.
5We can write this more invariantly as

ΩMU(f1, f2) =
1

2πi

I

(f1(u
?), f2(u))MU dg(u)

where u? is the inverse to u in the formal group corresponding to complex cobordism [55, 2]. Here g(u) is
the power series inverse to u(z), so dg(u) is the invariant differential on the formal group.
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are Lagrangian. The polarization

U = U+ ⊕ U−

identifies the symplectic space (U ,ΩMU) with the cotangent bundle T ?U+.

Let

u? = −u+ b1u
2 + b2u

3 + . . .

be the cobordism-valued first Chern class6 of the Hopf bundle ξ−1 over CP∞. We regard

the cobordism potentials F 0
MU and DMU as formal functions on U+ via the dilaton shift

q(u) = t(u) + u?

where q(u) = q0 + q1u + q2u
2 + . . . is a co-ordinate on U+. Via the dilaton shift and

the identification U ∼= T ?U+, the genus-0 cobordism potential generates (the germ near

q(u) = u? of) a Lagrangian submanifold LMU of U :

LMU = {(p, q) : p = dqF 0
MU}

The quantum Hirzebruch–Riemann–Roch theorem

We want to compare the total cobordism potential DMU , which is a function on U+, with

the total descendent potential DX , which is a function on H+. We define the quantum

Chern–Dold character to be the map

qch : U −→ H∑

n∈Z

αnu
n 7−→

√
TdMU(TX)

∑

n∈Z

chMU(αn)(u(z))
n

This is a symplectomorphism from U to H. It maps U+ isomorphically to H+, and we regard

DMU as a function on H+ via this identification.

Although the quantum Chern–Dold character maps U+ to H+, it does not map U− to H−.

We can, however, find a symplectomorphism H : H −→ H which sends H+ to H+ and sends

qch(U−) to H−. A simple formula for H in terms of the power series u(z), together with a

discussion of its representation-theoretic meaning, can be found in section 2.3.2.

6As the reader may have noticed, this does not lie in the ring of Laurent series MU?(X ; Λ)((u−1)). It
does, however, lie in the appropriate completion U of this ring — see section 2.3.2.
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Theorem 3. Applying the quantized operator ĤH to the total cobordism potential DMU yields

the Gromov–Witten potential of X twisted by the characteristic class TdMU and the bundle

TX :

ĤHDMU = DTdMU ,TX

In other words,

〈DMU〉 = ĤH−1
N̂N〈DX〉

where N : H −→ H is multiplication by the asymptotic expansion of

√
TdMU(TX)

∞∏

m=1

TdMU(TX ⊗ L−m)

This determines all cobordism-valued Gromov–Witten invariants, and hence all tangent-

twisted Gromov–Witten invariants, in terms of the the usual (untwisted, cohomology-

valued) Gromov–Witten invariants. Remarkably, the entire contribution to the virtual tan-

gent bundle from deformations of the complex structure on the domain curve is absorbed

by the comparison qch between the cohomology-valued and cobordism-valued formalisms,

and the change of polarization H. Theorem 3 reduces “quantum cobordism” to quantum

cohomology, and hence can be regarded as a “quantum” version of the Hirzebruch–Riemann–

Roch theorem.

Corollary 7. qch(LMU) coincides with the Lagrangian cone for (TdMU , TX)-twisted Gromov–

Witten theory, so

qch(LMU) = NLX

In particular, LMU is (the germ of) a Lagrangian cone which satisfies the conclusions of

the Proposition on page 4.

When X is a point, LX is invariant under N.

Corollary 8. If X = pt then qch(LMU) = LX .

Given any complex-oriented extraordinary cohomology theory E we can define quantum E-

cohomology much as we did quantum cobordism, replacing the Chern–Dold character chMU

with an appropriate Chern character chE and the Todd class TdMU with an appropriate

Todd class TdE . Complex cobordism is the universal complex-oriented cohomology theory,
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so there is a natural transformation θE : MU −→ E from complex cobordism to E. We

can compute the “total E-potential” DE , which is defined (in the obvious way) on page

86, by applying θE to the total cobordism potential DMU . Thus Theorem 3 determines

all Gromov–Witten invariants with values in an arbitrary complex-oriented extraordinary

cohomology theory.

Almost-Kähler manifolds

Gromov–Witten invariants can be defined whenever the target space X is a compact sym-

plectic manifold equipped with an almost-complex structure J which is tamed by the sym-

plectic form. The results described in this chapter, with the exception of Corollaries 5 and

6, go through to this almost-Kähler setting; this is established in Appendix B. Corollar-

ies 5 and 6 rely on a comparison result between algebraic virtual fundamental classes, the

almost-Kähler analog of which does not seem to be known.
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Chapter 1

Quantum Cohomology

1.1 Introduction

A major goal of this chapter is to understand, at least in genus zero, the relationship be-

tween Gromov–Witten invariants of a complete intersection and those of the ambient space.

Following Kontsevich [37], we approach this problem by studying not Gromov–Witten in-

variants of the complete intersection directly, but instead Gromov–Witten invariants of the

ambient space twisted by the bundle which determines the complete intersection (see sec-

tion 1.6.1). Kontsevich originally defined genus-0 Gromov–Witten invariants of sufficiently

positive complete intersections in terms of Gromov–Witten invariants of the ambient space

twisted by the Euler class; as discussed in section 1.7.1, his definition agrees with the general

definitions of [44, 6] in this case.

The main result of this chapter, Theorem 1.6.4, determines the relationship between twisted

and untwisted Gromov–Witten invariants in all genera. Our approach, following [53, 17],

is to apply the Grothendieck–Riemann–Roch theorem to the universal family over the

moduli space of stable maps. In [17], Faber and Pandharipande interpreted Mumford’s

Grothendieck–Riemann–Roch calculation [53] as giving differential equations satisfied by

generating functions for Gromov–Witten invariants twisted by the Euler class and the triv-

ial bundle. Exactly the same approach gives differential equations satisfied by generating

functions for more general twisted Gromov–Witten invariants. The main new ingredient in
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Theorem 1.6.4 is the quantization formalism [30] outlined in Chapter 0, which allows us to

interpret these differential equations in geometric terms — as the quantizations of certain

infinitesimal symplectic transformations — and consequently to solve them.

Extracting genus-0 Gromov–Witten invariants corresponds to taking a “semi-classical limit”

of the full genus picture. It turns out (Theorem 1.5.3) that the totality of gravitational

descendents in genus-0 Gromov–Witten theory can be encoded by a semi-infinite ruled

cone LX in the cohomology of X with coefficients in the field of Laurent series in 1/z,

and that another such cone corresponds to each twisted theory. Taking the semi-classical

limit of Theorem 1.6.4, we find that the twisted and untwisted cones are related by a

symplectic transformation. In the case of twistings by the Euler class of a line bundle E,

this transformation can be described in terms of the stationary phase asymptotics of the

oscillating integral

1√
2πz

∫ ∞

0
e
−x+(λ+ρ) ln x

z dx

where ρ is the first Chern class of E. This allows us to derive a Quantum Lefsctetz Hy-

perplane Principle (Corollary 1.7.5) which is more general than earlier versions [4, 35, 47,

9, 43, 21] in the sense that the restrictions t ∈ H≤2(X) on the space of parameters and

c1(E) ≤ c1(X) on the Fano index are removed.

The material of this chapter represents joint work with Givental, and has previously ap-

peared in the preprint [12].

The chapter is arranged as follows. In section 1.2, we fix notation for moduli spaces of sta-

ble maps and Gromov–Witten potentials. Section 1.3 describes the quantization formalism

[30] in detail; in particular, Examples 1.3.1.1 and 1.3.3.1 introduce notation which is used

throughout the rest of the chapter. Section 1.4 describes the geometry associated to the

semi-classical limit of the quantization formalism, and explains the role of various objects

familiar from genus-0 Gromov–Witten theory in this geometric framework. In section 1.5 we

introduce gravitational ancestors, describe their relationship to gravitational descendents

(following Givental [30]) and use them to prove that the ruled cone LX which encodes

genus-0 gravitational descendents is indeed a ruled cone. In section 1.6, we define twisted

Gromov–Witten invariants and describe their relationship to untwisted Gromov–Witten in-

variants. We use this relationship in section 1.7 to derive the Quantum Lefschetz Hyperplane

Principle, and in section 1.8 to derive a very general version of “non-linear Serre duality”
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[26, 27].

1.2 Stable maps and Gromov–Witten invariants

1.2.1 Moduli spaces of stable maps

Throughout, let X denote a compact projective complex manifold of complex dimension

D. Denote by Xg,n,d the moduli space of stable maps [8, 37] of degree d ∈ H2(X ; Z) from

n-pointed, genus g curves to X . This is a compact complex orbifold. In the case where the

target space X is a point, it coincides with the Deligne–Mumford space Mg,n. The space

Xg,n,d can be equipped [7, 44, 60] with a virtual fundamental class [Xg,n,d] ∈ H∗(Xg,n,d; Q)

of complex dimension (1 − g)(D − 3) + n+ 〈c1(TX), d〉.

There are natural maps

evi : Xg,n,d −→ X i = 1, 2, . . . , n

given by evaluation at the ith marked point,

π : Xg,n+1,d −→ Xg,n,d

given by forgetting the last marked point and contracting any components of the curve on

which the resulting map is unstable, and

ct : Xg,n,d −→ Mg,n

given by forgetting the map and contracting any unstable components of the curve. The

diagram

Xg,n+1,d
evn+1- X

Xg,n,d

π

?

is the universal family over Xg,n,d. The marked points define sections

σi : Xg,n,d −→ Xg,n+1,d i = 1, 2, . . . , n

of the universal family.
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1.2.2 Gromov–Witten potentials

Gromov–Witten invariants are intersection indices of the form

∫

[Xg,n,d ]

ev?1 α1 ∧ ψk11 ∧ . . .∧ ev?n αn ∧ ψkn
n

where α1, . . . , αn ∈ H∗(X), k1, . . . , kn ∈ N and ψi is the first Chern class of the ith universal

cotangent line bundle Li −→ Xg,n,d. If any of the ki are non-zero, the corresponding Gromov–

Witten invariant is called a gravitational descendent invariant. We will use the following

correlator notation: given polynomials (or power series)

a1(ψ) = a0
1 + a1

1ψ + a2
1ψ

2 + . . .

a2(ψ) = a0
2 + a1

2ψ + a2
2ψ

2 + . . .

...

an(ψ) = a0
n + a1

nψ + a2
nψ

2 + . . .

in H?(X)[ψ] (or H?(X)[[ψ]]) and b ∈ H?(Xg,n,d), define

〈a1, a2, . . . , an; b〉g,n,d =

∫

[Xg,n,d ]

( ∑

k1≥0

ev?1 a
k1
1 ∧ ψk11

)
∧ . . .∧

( ∑

kn≥0

ev?n a
kn
n ∧ ψkn

n

)
∧ b

and

〈a1, a2, . . . , an〉g,n,d = 〈a1, a2, . . . , an; 1〉g,n,d

The genus-g Gromov–Witten potential

F g
X =

∑

n,d

Qd

n!
〈t(ψ), t(ψ), . . . , t(ψ)〉g,n,d

is a generating function for genus-g Gromov–Witten invariants. It is a formal function of

t(z) = t0 + t1z+ . . . ∈ H?(X ; Λ)[z] taking values in the ring Λ, which is assumed to contain

an appropriate Novikov ring C[[Q]] (see [49]). We will specify Λ more precisely in the next

section. The total descendent potential

DX = exp
(∑

g

~g−1F g
X

)

is a formal function of t which takes values in Λ[[~, ~−1]]. Despite the presence of both ~

and ~−1 in the exponent, it is well-defined : see Lemma 1.3.1 below.
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1.3 Givental’s quantization formalism

1.3.1 A symplectic vector space

Consider the symplectic (super)vector space

H0 = H?(X ; Λ0)((z
−1))

where the indeterminate z is regarded as even, equipped with the (even) symplectic form

Ω(f, g) =
1

2πi

∮
(f(−z), g(z)) dz

Here Λ0 = C[[Q]] is an appropriate Novikov ring, ( · , · ) denotes the Poincaré pairing on

H?(X) and the contour of integration winds once anticlockwise about the origin. The po-

larization of (H0,Ω) by the Lagrangian subspaces

H0
+ = H?(X)[z]

H0
− = z−1H?(X)[[z−1]]

gives a symplectic identification of H0 with the cotangent bundle T ?H0
+. Pick a homogeneous

co-ordinate system {qa} on H0
+ and let {pa} be the dual co-ordinate system on H0

−, so that

{pa, qb} forms a Darboux co-ordinate system for Ω:

Ω(f, g) =
∑

a

(pa(f)qa(g) − (−1)p̄paq̄qaqa(f)pa(g))

Example 1.3.1.1 This example introduces notation which we will use throughout Chapter

1 without further comment. Denote the dimension of H?(X) by N . Let

{φα : α = 1, . . . , N}

be a homogeneous basis for H?(X) such that φ1 = 1, and let gαβ = (φα, φβ). Write gαβ for

the entries of the matrix inverse to that with entries gαβ. Then

∑

k≥0

qαk φαz
k +

∑

l≥0

pβl g
βεφε(−z)−1−l (1.1)

gives such a Darboux co-ordinate system on (H0,Ω0). Here and throughout this chapter,

we use the summation convention for Greek indices but not Roman indices. In other words,

we sum over repeated Greek indices. Such indices will always correspond to directions in

H?(X). We raise (respectively lower) indices with gαβ (respectively gαβ), so for instance in

(1.1) we could write gβεφε as φβ. �
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1.3.2 Completions

In what follows, we will need to extend the ground ring Λ0 in various ways and work with

various completions of H0. For instance, we will often equip the ground ring Λ0 with the

Q-adic topology and replace H0 by the space

H1 =
{∑

k∈Z

hkz
k : hk ∈ H?(X ; Λ0), hk −→ 0 in the topology of Λ0 as k −→ ∞

}

Also, we often work with S1-equivariant Gromov–Witten invariants [26], which take values

in H?(BS1; C); here and throughout we identify H?(BS1; C) with C[λ], where λ is the first

Chern class of the universal line bundle over CP∞. In this situation, we extend the ground

ring to Λ2 = Λ0(λ), equip Λ2 with the (Q, 1/λ)-adic topology, and replace H0 by the space

H2 =
{∑

k∈Z

hkz
k : hk ∈ H?(X ; Λ2), hk −→ 0 in the topology of Λ2 as k −→ ∞

}

Also, in section 1.6.3, we will need to extend the ground ring to Λ3 = Λ0[[s0, s1, . . .]]. Here

we equip Λ3 with the topology induced from the (Q, 1/λ)-adic topology on Λ3 by the map

Λ3 −→ Λ2

sk 7−→ λ−k

and replace H0 by the space

H3 =
{∑

k∈Z

hkz
k : hk ∈ H?(X ; Λ3), hk −→ 0 in the topology of Λ3 as k −→ ∞

}

Throughout, we will denote the relevant ground ring by Λ, the relevant completions of

H0, H0
+ and H0

− by H, H+ and H− respectively and assume that Ω and the Darboux co-

ordinates {pa, qb} have been extended to H in the obvious way. Exactly which completion

and ground ring we are using at any point should be clear from context. The completions

are necessary to ensure that various symplectic transformations, such as those in Theorem

1.5.1 and Theorem 1.6.4, really do act on H.

1.3.3 Quantization procedure

We associate to each infinitesimal symplectomorphism A : H −→ H a differential opera-

tor ÂA of at most second order via the following (standard) procedure. The infinitesimal
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symplectomorphism A corresponds to a quadratic Hamiltonian

hA(f) = 1
2 Ω(Af, f)

In Darboux co-ordinates {pa, qb}, we set

q̂aqbqaqb =
qaqb
~

q̂apbqapb = qa
∂

∂qb

p̂apbpapb = ~
∂

∂qa

∂

∂qb

By linearity, this determines a differential operator ÂA acting on functions on H+. We will also

need to quantize certain non-infinitesimal symplectomorphisms. We call transformations of

the form S = exp(A), where A is an infinitesimal symplectomorphism of the form

A =
∑

m∈Z

Amz
m Am ∈ End(H?(X))

elements of the loop group, and set

ŜS = exp(ÂA)

Define the Fock space Fock to be the space of formal functions of t(z) = t0 + t1z + . . . ∈
H?(X ; Λ)[z] which take values in Λ[[~, ~−1]]. We regard this as a space of formal functions

in q(z) = q0 + q1z + . . . ∈ H+ via the identification

q(z) = t(z) − z

which we call the dilaton shift. The dilaton shift identifies the Fock space with a space of

formal functions on H+ near q = −z. The differential operators q̂aqbqaqb , q̂apbqapb , and p̂apbpapb act on

Fock via this identification. Note, however, that the quantizations ÂA may contain infinite

sums of such operators and so do not in general act on Fock. Each time that we apply the

quantization of an infinitesimal symplectomorphism (or of an element of the loop group) to

an element of Fock, we will therefore need to check that the result is well-defined. Many of

these verifications have very little geometrical content; these are relegated to Appendix A.

Example 1.3.3.1 Consider an infinitesimal symplectomorphism of H of the form

A = Bzm
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where the matrix entries of B ∈ End(H?(X)) with respect to the basis of Example 1.3.1.1

are Bαβ. Here and throughout the rest of the chapter, set

∂α,k =
∂

∂qαk

A straightforward calculation shows that

if m < 0 then ÂA =
1

2~

∑

k

(−)k+mBαβq
β
k q

α
−1−k−m −

∑

k

Bαβq
β
k ∂α,k+m (1.2)

and

if m ≥ 0 then ÂA = −
∑

k

Bαβq
β
k∂α,k+m +

~

2

∑

k

(−)kBαβ∂β,k∂α,m−1−k (1.3)

In particular, this shows that infinitesimal symplectomorphisms of the form

∑

−∞<m≤N

Amz
m Am ∈ End(H?(X))

have quantizations which act on Fock.

Denote the expression
∑

k

Bαβq
β
k ∂α,k+m

occurring in (1.2) and (1.3) by ∂A. We have

∂Aq =
(∑

k

Bαβq
β
k∂α,k+m

)(∑

l

qγl φγz
l
)

=
[∑

k

Bαβq
β
kφαz

k+m
]
+

= [Aq]+

Also, ∂β,k∂α,m−1−k is the bivector field corresponding to

φβψ
k
+ ⊗ φαψ

m−1−k
− ∈ H?(X)[ψ+] ⊗H?(X)[ψ−] ∼= H+ ⊗H+

For m odd and positive, we have

m−1∑

k=0

(−)kψk+ψ
m−1−k
− =

ψm+ + ψm−
ψ+ + ψ−
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and consequently we can interpret the term

∑

k

(−)kBαβ∂β,k∂α,m−1−k

occurring in (1.3) as the bivector field ∂ ⊗A ∂ corresponding to

[
A(ψ+) +A(ψ−)

ψ+ + ψ−

]

+
∈ End(H?(X))[[ψ+, ψ−]]

where we identify End(H?(X))[[ψ+, ψ−]] with H+ ⊗ H+ via the metric. The [ · ]+ here,

which denotes the part involving non-negative powers of both ψ+ and ψ−, ensures that this

interpretation is (vacuously) correct for m odd and negative also. �

Example 1.3.3.2 The string equation (see e.g. [54]) asserts that for (g, n, d) 6= (0, 3, 0),

(1, 1, 0) we have

〈t1(ψ), . . . , tn−1(ψ), 1〉g,n,d =
n−1∑

i=1

〈
t1(ψ), . . . ,

[
ti(ψ)

ψ

]

+
, . . . , tn−1(ψ)

〉

g,n−1,d

Thus

∑

g,n,d

Qd~g−1

(n− 1)!
〈t(ψ), . . . , t(ψ), 1〉g,n,d =

∑

g,n,d

Qd~g−1

(n − 1)!

〈[
t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉

g,n,d

+
1

2~
〈t(ψ), t(ψ), 1〉0,3,0 + 〈1〉1,1,0

and so

− 1

2~
tα0 gαβt

β
0 −

∑

g,n,d

Qd~g−1

(n− 1)!

〈[
t(ψ)− ψ

ψ

]

+
, t(ψ), . . . , t(ψ)

〉

g,n,d
= 0

But we can write this as

− 1

2~
qα0 gαβq

β
0 −

∑

g,n,d

Qd~g−1

(n− 1)!

〈[
q(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉

g,n,d
= 0

or in other words as

− 1

2~
qα0 gαβq

β
0 − ∂1/z

(∑

g

~g−1F g
X

)
= 0

Thus the string equation is (̂
1

z

)(
1

z

)
DX = 0

�



38 CHAPTER 1. QUANTUM COHOMOLOGY

Example 1.3.3.3 Let ρ ∈ H2(X). Multiplication by ρ defines a transformation of H?(X)

which is self-adjoint with respect to the Poincaré pairing, so multiplication by ρ/z is an

infinitesimal symplectomorphism of H. The divisor equation (see e.g. [54]) asserts that for

(g, n, d) 6= (0, 3, 0), (1, 1, 0) we have

〈t1(ψ), . . . , tn−1(ψ), ρ〉g,n,d =〈ρ, d〉〈t1(ψ), . . . , tn−1(ψ)〉g,n−1,d

+

n−1∑

i=1

〈
t1(ψ), . . . ,

[
ρ

ti(ψ)

ψ

]

+
, . . . , tn−1(ψ)

〉

g,n−1,d

Thus

∑

g,n,d

Qd~g−1

(n − 1)!
〈t(ψ), . . . , t(ψ), ρ〉g,n,d =

∑

g,n,d

Qd~g−1

(n− 1)!

〈[
ρ

t(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

n!
〈ρ, d〉〈t(ψ), . . . , t(ψ)〉g,n,d

+
1

2~
〈t(ψ), t(ψ), ρ〉0,3,0 + 〈ρ〉1,1,0

(1.4)

Let {Qi} be the generators of the Novikov ring corresponding to some choice of basis for

H2(X ; Z), and let ρi be the co-ordinates of ρ with respect to the dual basis. We can rewrite

(1.4) as

− 1

2~
(t0ρ, t0)−

∑

g,n,d

Qd~g−1

(n − 1)!

〈[
ρ

q(ψ)

ψ

]

+
, t(ψ), . . . , t(ψ)

〉

g,n,d
=

∑

i

ρiQi
∂

∂Qi

(∑

g

~g−1F g
X

)
− 1

24

∫

X

ρ ∧ cD−1(TX)

The left-hand side of this equation is

− 1

2~
(t0ρ, t0) − ∂ρ/z

(∑

g

~g−1F g
X

)

and so we can write the divisor equation as

(̂
ρ

z

)(
ρ

z

)
DX =

(∑

i

ρiQi
∂

∂Qi
− 1

24

∫

X

ρ ∧ cD−1(TX)

)
DX

�
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Lemma 1.3.1. DX is well-defined as a formal function of t(z) taking values in Λ[[~, ~−1]].

Proof. Let the (~, t, Q)-degree of a monomial

Qd~g−1(tα1
i1

)j1 . . . (tαn

in
)jn (1.5)

be (g− 1, j1 + . . .+ jn, d). Since j1 + . . .+ jn is the degree of (1.5) with respect to the Euler

vector field
∑

j

tαj
∂

∂tαj

this quantity has invariant meaning. Monomials in

∑

g≥0

~g−1F g
X

of (~, t, Q)-degree (a, b, c) correspond to non-zero Gromov–Witten invariants coming from

the moduli space Xa+1,b,c. Since the moduli spaces X0,0,0 and X1,0,0 are empty, if c = 0

then at least one of a and b is strictly positive. Also, since each moduli space Xg,n,d is

finite-dimensional, there are only finitely many such monomials of any given degree.

A monomial of degree (a, b, c) arises in

DX = exp
(∑

g≥0

~g−1F g
X

)

only if we can find monomials in
∑

g≥0

~g−1F g
X

of degrees (a1, b1, c1), . . . , (an, bn, cn) such that

a1 + . . .+ an = a b1 + . . .+ bn = b c1 + . . .+ cn = c

In view of the above, there are only finitely many choices for the {(ai, bi, ci)}. But there are

only finitely many monomials of each given degree in

∑

g≥0

~g−1F g
X

and so there are only finitely many monomials of each given degree in DX . �
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1.3.4 Cocycle

The quantization procedure gives only a projective representation of the Lie algebra of

infinitesimal symplectomorphisms. For infinitesimal symplectomorphisms F and G we have

[F̂F , ĜG] = {F,G}∧ + C(hF , hG)

where {· , · } is the Lie bracket, [ · , · ] is the supercommutator, hF (respectively hG) is the

quadratic Hamiltonian corresponding to F (respectively G), and C is the cocycle defined by

C(papb, qaqb) = δab + (−1)q̄qap̄pb

C = 0 on any other pair of quadratic Darboux monomials

We will often abuse notation and write C(F,G) for C(hF , hG).

Example 1.3.4.1 Let A,B ∈ End(H?(X)) be self-adjoint with respect to the Poincaré

pairing, so that A/z and Bz define infinitesimal symplectomorphisms of H. Then

C(A/z, Bz) = 1
2 str(AB)

In the even case, for example

C(A/z, Bz) = C
(
− 1

2
Aαβq

β
0 q

α
0 −

∑

k

Aαβq
β
kp

α
k−1,−

∑

l

Bµνq
ν
l p

µ
l+1 +

1

2
Bµνpν0p

µ
0

)

= 1
4 AαβB

µνC(pν0p
µ
0 , q

β
0 q
α
0 )

= 1
4 AαβB

µν (δνβδµα + δµβδνα)

= 1
4
(AαβB

αβ +AαβB
βα)

= 1
2 A

α
βB

β
α

= 1
2 str(AB)

The general case is entirely analogous, but involves more minus signs. �

If we write

sp+ = {infinitesimal symplectomorphisms A =
∑

m>0 Amz
m, Am ∈ End(H?(X))}

sp− = {infinitesimal symplectomorphisms A =
∑

m<0 Amz
m, Am ∈ End(H?(X))}

then quadratic Hamiltonians corresponding to operators in sp+ contain no qaqb terms, and

quadratic Hamiltonians corresponding to operators in sp− contain no papb terms. The cocy-

cle therefore vanishes when restricted to sp+ or to sp−, and so the quantization procedure
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gives genuine representations of these subalgebras. As a consequence, given an element S

of one of the groups

Sp+ = {symplectomorphisms A =
∑

m≥0 Amz
m, Am ∈ End(H?(X)), A0 = I}

Sp− = {symplectomorphisms A =
∑

m≤0 Amz
m, Am ∈ End(H?(X)), A0 = I}

(which have Lie algebras sp+, sp− respectively) we can define its quantization ŜS to be exp ÂA

where S = expA. We record here explicit formulae for the quantization of elements of Sp−

and Sp+:

Proposition 1.3.2 ([30]). Consider a symplectomorphism of H of the form

S(z) = I + S1/z + S2/z
2 + . . . ∈ End(H?(X))[[z−1]]

Define a quadratic form on H+ by

WS(q) =
∑

k,l

(Wklqk, ql)

where

q = q0 + q1z + . . .

and1

∑

k,l

Wkl

wkzl
=
S?(w)S(z) − I

z +w

Then the quantization of S−1 acts on Fock by

(ŜS−1G)(q) = exp

(
WS(q)

2~

)
G([Sq]+)

where [Sq]+ is the power series truncation of S(z)q.

Proposition 1.3.3 ([30]). Consider a symplectomorphism of H of the form

R(z) = I + R1z +R2z
2 + . . . ∈ End(H?(X))[[z]]

Define a quadratic form on H− by

VR(p) =
∑

k,l

(pk, Vklpl)

1This definition makes sense as S?(−z)S(z) = I .
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where

p =
p0

−z +
p1

(−z)2 + . . .

and2

∑

k,l

(−)k+lVklw
kzl =

R?(w)R(z) − I

z +w

Then the quantization of R acts on Fock by

(R̂RG)(q) =

[
exp

(
~VR(∂q)

2

)
G
]
(R−1q)

where VR(∂q) is the second-order differential operator obtained from VR(p) by replacing pk

by differentiation ∂k in the direction of qk.

1.4 The genus-zero picture

We regard the genus-0 Gromov–Witten potential F 0
X as a function on H+ via the dilaton

shift. Since the polarization

H = H+ ⊕H−

identifies H with the cotangent bundle T ?H+, the function F 0
X defines a Lagrangian sub-

manifold

LX = {(p, q) : p = dqF 0
X} ⊂ H

We will see in the next section that LX has some very special properties — it is a homo-

geneous Lagrangian cone swept out by a finite-dimensional family of isotropic subspaces of

H.

Taking the limit ~ −→ 0 in the quantization procedure described in the previous section, we

find that applying a quantized infinitesimal symplectomorphism ÂA to an element

exp
(∑

g≥0

~g−1fg(q)
)
∈ Fock (1.6)

corresponds to changing the Lagrangian submanifold

{(p, q) : p = dqf0} ⊂ H (1.7)

2This definition makes sense as R?(−z)R(z) = I .
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by the Hamiltonian flow of hA. Exponentiating this statement, we see that applying a

quantized symplectic transformation exp(ÂA) to (1.6) corresponds to moving the Lagrangian

submanifold (1.7) using the (unquantized) symplectic transformation exp(A).

We next identify the roles of two objects familiar from genus-zero Gromov–Witten theory

— the J-function and the fundamental solution [26, 28, 15] — in our geometric framework.

It will be convenient to extend our correlator notation: for polynomials (or power series)

a1(ψ) = a0
1 + a1

1ψ + a2
1ψ

2 + . . .

a2(ψ) = a0
2 + a1

2ψ + a2
2ψ

2 + . . .

...

am(ψ) = a0
m + a1

mψ + a2
mψ

2 + . . .

in H?(X)[ψ] (or H?(X)[[ψ]]) and τ ∈ H?(X), we set

〈〈a1, a2, . . . , am〉〉g,m(τ) =
∑

n,d

Qd

n!
〈a1, a2, . . . , am,

n︷ ︸︸ ︷
τ, τ, . . . , τ〉g,m+n,d

1.4.1 The J-function

The J-function [26, 28] is a formal function of t ∈ H?(X ; Λ) defined by

(JX(t), a) = (z + t, a) +

〈〈
a

z − ψ

〉〉

0,1
(t) ∀a ∈ H?(X ; Λ)

It takes values in H?(X ; Λ)((z−1)). We expand the term 1/(z − ψ) which occurs here as a

power series in ψ.

Consider the slice

{−z + t+ H−} ⊂ H

which corresponds to setting the descendent variables t1, t2, . . . to zero. A point of LX which

lies on this slice is

−z + t+
∑

n,d

Qd

(n − 1)!

∑

i,α

〈
n−1︷ ︸︸ ︷

t, t, . . . , t, φαψ
i〉0,n,d

φα

(−z)i+1

Rewriting this as

−z + t+
∑

α

〈〈
φα

−z − ψ

〉〉

0,1
(t)φα

we see that the point of LX above −z + t ∈ H+ is JX(t,−z).
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1.4.2 The fundamental solution

The fundamental solution [15, 26]

Sτ (z) = I + S1/z + S2/z
2 + . . . ∈ End(H?(X))[[z−1]]

is defined by

(Sτ (z)u, v) = (u, v) +

〈〈
u

z − ψ
, v

〉〉

0,2
(τ) ∀u, v ∈ H?(X ; Λ)

Note that Sτ (z) depends on τ . We will see that, for each τ , Sτ (z) defines a symplectomor-

phism of H. This will follow from:

Proposition 1.4.1. Let

Sαβ(z) = (Sτ (z)φβ, φα)

Then

Sµα(w)gµνSνβ(z) = (z +w)

〈〈
φα

w − ψ
,
φβ
z − ψ

〉〉

0,2
(τ) + gαβ

Proof. The string equation shows that

Sµα(z) = z

〈〈
φα
z − ψ

, 1, φµ

〉〉

0,3
(τ)

and so

Sµα(w)gµνSνβ(z) = zw

〈〈
φα

w − ψ
, 1, φµ

〉〉

0,3
(τ)gµν

〈〈
φν , 1,

φβ
z − ψ

〉〉

0,3
(τ)

The argument which proves the WDVV identity (see e.g. [54]) also shows that this quantity

is equal to

zw

〈〈
φα

w − ψ
,
φβ

z − ψ
, φµ

〉〉

0,3
(τ)gµν〈〈φν, 1, 1〉〉0,3(τ)

Schematically:

1 1 1 1

z z
w

w

Figure 1.1: A cryptic picture
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Applying the string equation again, we see that

〈〈φν, 1, 1〉〉0,3(τ) = 〈φν , 1, 1〉0,3,0

and so

Sµα(w)gµνSνβ(z) = zw

〈〈
φα

w − ψ
,
φβ
z − ψ

, 1

〉〉

0,3
(τ)

A final application of the string equation yields

Sµα(w)gµνSνβ(z) = zw

((
1

z
+

1

w

)〈〈
φα

w − ψ
,
φβ

z − ψ

〉〉

0,3
(τ) +

〈
φα

w − ψ
,
φβ

z − ψ
, 1

〉

0,3,0

)

= (z + w)

〈〈
φα

w− ψ
,
φβ

z − ψ

〉〉

0,2
(τ) + gαβ

�

Corollary 1.4.2. For each τ , the operator Sτ (z) is a symplectomorphism of H.

Proof. In view of our choices in section 1.3.2, Sτ (z) defines a linear transformation from H
to itself. Putting w = −z in Proposition 1.4.1 gives S?(−z)S(z) = I . �

1.5 Ancestors and descendents

There is a map

ctm+n,m : Xg,m+n,d −→ —MMg,m

defined by forgetting the map and the last n marked points and then contracting any

unstable components of the resulting marked curve. Denote by L̄Lm,i the pullback of the ith

universal cotangent line over
—MMg,m via ctm+n,m, and let ψ̄ψm,i ∈ H?(Xg,m+n,d) be the first

Chern class of L̄Lm,i. We further extend our correlator notation as follows: given polynomials

(or power series)

a1(ψ, ψ̄ψ) =
∑

i,j

aij1 ψ
iψ̄ψ j

a2(ψ, ψ̄ψ) =
∑

i,j

aij2 ψ
iψ̄ψ j

...

am(ψ, ψ̄ψ) =
∑

i,j

aijmψ
iψ̄ψ j
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in H?(X)[ψ, ψ̄ψ] (or H?(X)[[ψ, ψ̄ψ]]), together with cohomology classes

{bm,n,d ∈ H?(Xg,m+n,d) : n ∈ N, d ∈ H2(X ; Z)}

and τ ∈ H?(X), we set

〈〈a1, a2, . . . , am; {bm,n,d}〉〉g,m(τ) =

∑

n,d

Qd

n!

∫

[Xg,m+n,d ]
em,1 ∧ em,2 ∧ . . . ∧ em,m ∧

( m+n∧

i=m+1

ev?i τ
)
∧ bm,n,d

where

em,k =
∑

i,j

(ev?k a
ij
k

)ψikψ̄ψ
j
m,k k = 1, 2, . . . , m

Write

〈〈a1, a2, . . . , am〉〉g,m(τ) = 〈〈a1, a2, . . . , am; {1}〉〉g,m(τ)

The genus-g ancestor potential [30] is

F g
τ =

∑

m

1

m!
〈〈t̄t(ψ̄ψ), . . . , t̄t(ψ̄ψ)〉〉g,m(τ)

where the sum is over m such that
—MMg,m is non-empty. It is a formal function of τ ∈

H?(X ; Λ) and t̄t(z) = t̄t0 + t̄t1z + . . . ∈ H?(X ; Λ)[z] which takes values in Λ. The total

ancestor potential is

Aτ = exp
(∑

g≥0

~g−1F g
τ

)

We regard this as a formal function of t̄t depending on the (formal) parameter τ . It is

identified with an element of the Fock space via the dilaton shift

q(z) = t̄t(z) − z

The argument of Lemma 1.3.1 shows that Aτ is an element of Fock (which depends on τ).

In other words, Aτ is well-defined as a formal function of t̄t (and τ) with values in Λ[[~, ~−1]].

The following Theorem, due to Givental, describes the connection between the total de-

scendent potential DX and the ancestor potentials Aτ . It is essentially a reinterpretation

in our framework of a result of Kontsevich and Manin [39]. A similar result was obtained

independently, in a different context, by Getzler [22, 23].
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Theorem 1.5.1 ([30, 12]). Let

F 1(τ) = F 1
X(t)|t0=τ,t1=t2=...=0

denote the genus-1 non-descendent Gromov–Witten potential of X . Then

DX = eF
1(τ )ŜS−1

τ Aτ

Proof. Proposition A.0.1 in Appendix A shows that the right-hand side is well-defined as

a formal function of t and τ near t = 0, τ = 0. We will see below that it in fact does not

depend on τ .

Suppose that g and m are such that
—MMg,m is non-empty. The bundles L1 and L̄Lm,1 over

Xg,m+n,d are identified outside the locus D consisting of maps such that the first marked

point is situated on a component of the curve which gets collapsed by ctm+n,m.

tree of genus-0 components carrying the first marked point
and any number of forgotten marked points

rest of the curve, carrying
marked points 2,3, . . . , n

1

Figure 1.2: The locus where L1 and L̄Lm,1 differ

This locus D is the image of the gluing map

i :
∐

n′+n′′=n
d′+d′′=d

X0,1+•+n′,d′ ×X Xg,m−1+◦+n′′,d′′ −→ Xg,m+n,d
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We denote the domain of this map by Ym,n,d. The virtual normal bundle to D at a generic

point is Hom(L̄Lm,1, L), and so D is “virtually Poincaré-dual” to ψ1− ψ̄ψm,1 in the sense that

[Xg,m+n,d] ∩ (ψ1 − ψ̄ψm,1) = i?[Ym,n,d]

We will concentrate on the first marked point, so suppress the content of the other marked

points from our notation. For any θ ∈ H?(X), we have

〈〈θψaψ̄ψb, . . .〉〉g,m(τ) = 〈〈θψa−1ψ̄ψb(ψ − ψ̄ψ + ψ̄ψ), . . .〉〉g,m(τ)

=〈〈θψa−1ψ̄ψb+1, . . .〉〉g,m(τ)

+ 〈〈θψa−1ψ̄ψb, . . . ; {i![Ym,n,d]}〉〉g,m(τ)

and so
〈〈θψaψ̄ψb, . . .〉〉g,m(τ) =〈〈θψa−1ψ̄ψb+1, . . .〉〉g,m(τ)

+ 〈〈θψa−1, φµ〉〉0,2(τ)gµν〈〈φνψ̄ψ b, . . .〉〉g,m(τ)
(1.8)

Thus

〈〈t0 + t1ψ + t2ψ
2 + . . . , . . .〉〉g,m(τ) = 〈〈t0, . . .〉〉g,m(τ)

+ 〈〈t1ψ̄ψ , . . .〉〉g,m(τ) + 〈〈t1, φµ〉〉0,2(τ)gµν〈〈φν , . . .〉〉g,m(τ)

+ 〈〈t2ψψ̄ψ, . . .〉〉g,m(τ) + 〈〈t2ψ, φµ〉〉0,2(τ)gµν〈〈φν, . . .〉〉g,m(τ)

+ . . .

which, applying (1.8) repeatedly, is

〈〈(t0 + 〈〈t1, φµ〉〉0,2(τ)gµνφν + 〈〈t2ψ, φµ〉〉0,2(τ)gµνφν + . . .), . . .〉〉g,m(τ)

+ 〈〈(t1 + 〈〈t2, φµ〉〉0,2(τ)gµνφν + 〈〈t3ψ, φµ〉〉0,2(τ)gµνφν + . . .)ψ̄ψ, . . .〉〉g,m(τ)

+ 〈〈(t2 + 〈〈t3, φµ〉〉0,2(τ)gµνφν + 〈〈t4ψ, φµ〉〉0,2(τ)gµνφν + . . .)ψ̄ψ2, . . .〉〉g,m(τ)

+ . . .

But

(ti + 〈〈ti+1, φµ〉〉0,2(τ)gµνφν + 〈〈ti+2ψ, φµ〉〉0,2(τ)gµνφν + . . .)

is the coefficient of zi in Sτ t, and so

〈〈t(ψ), . . .〉〉g,m(τ) = 〈〈t̄t(ψ̄ψ), . . .〉〉g,m(τ)

where

t̄t = [Sτt]+
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Applying the same argument at each marked point, we find that

〈〈t(ψ), . . . , t(ψ)〉〉g,m(τ) = 〈〈t̄t(ψ̄ψ), . . . , t̄t(ψ̄ψ)〉〉g,m(τ)

where

t̄t = [Sτt]+

If instead, however, we set

q̄q = [Sτq]+

then this sets

t̄t = [Sτ t− Sτz]+ + z

We know that, for any v

([Sτz]+, v) = [z(Sτ1, v)]+

=

[
z(1, v) + z

〈〈
1

z − ψ
, v

〉〉

0,2
(τ)

]

+

= (z, v) +
∑

n,d

Qd

n!
〈1, v, τ, . . . , τ〉0,n+2,d

= (z, v) + 〈1, v, τ〉0,3,0 (string equation!)

= (z + τ, v)

and so

[Sτz]+ = z + τ

Setting

q̄q = [Sτq]+

therefore sets

t̄t = [Sτ t]+ − τ

But

F g
X =

∑

g≥0

1

m!
〈〈t(ψ), . . . , t(ψ)〉〉g,m(0)

which by Taylor’s theorem is equal to

∑

g≥0

1

m!
〈〈t(ψ)− τ, . . . , t(ψ)− τ〉〉g,m(τ)
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For g > 1, therefore, we have shown that

F g
X(q) = F g

τ (q̄q) where q̄q = [Sτq]+

Note that F g
τ depends on τ here, but F g

X does not. For g = 0 and g = 1 the same argument

applies but we need also to take care of the discrepancy arising from the “missing” moduli

spaces
—MM0,0,

—MM0,1,
—MM0,2, and

—MM1,0. Thus:

DX(q) = exp

(
1

~
〈〈 〉〉0,0(τ) +

1

~
〈〈t(ψ)− τ〉〉0,1(τ) +

1

2~
〈〈t(ψ)− τ, t(ψ)− τ〉〉0,2(τ)

)

exp(〈〈 〉〉1,0(τ)) exp
(∑

g≥0

F g
τ (q̄q)

)

The contribution from
—MM1,0 is

〈〈 〉〉1,0(τ) = F 1(τ)

The contribution from the missing genus-zero moduli spaces is

〈〈 〉〉0,0(τ) + 〈〈t(ψ)− τ〉〉0,1(τ) + 〈〈t(ψ)− τ, t(ψ)− τ〉〉0,2(τ)

or in other words

∑

n,d

Qd

n!
〈τ, . . . , τ〉0,n,d +

∑

n,d

Qd

n!
〈t, τ, . . . , τ〉0,n+1,d

−
∑

n,d

Qd

n!
〈τ, . . . , τ〉0,n+1,d +

1

2

∑

n,d

Qd

n!
〈t, t, τ, . . . , τ〉0,n+2,d

−
∑

n,d

Qd

n!
〈t, τ, . . . , τ〉0,n+2,d +

1

2

∑

n,d

Qd

n!
〈τ, . . . , τ〉0,n+2,d

=
1

2
〈〈t, t〉〉0,2(τ) +

∑

n,d

Qd

n!
(1 − n)〈t, τ, . . . , τ〉0,n+1,d

+
1

2

∑

n,d

Qd

n!
(n − 1)(n − 2)〈τ, . . . , τ〉0,n,d

=
1

2
〈〈t, t〉〉0,2(τ) − 〈〈t, ψ〉〉0,1(τ) +

1

2
〈〈ψ, ψ〉〉0,2(τ) (dilaton equation)

=
1

2
〈〈t − ψ, t− ψ〉〉0,2(τ)

=
1

2
〈〈q, q〉〉0,2(τ)
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So

DX(q) = eF
1(τ )e(1/2~)〈〈q,q〉〉0,2(τ )Aτ ([Sq]+)

Applying Propositions 1.3.2 and 1.4.1, we are done. �

Corollary 1.5.2. If Lτ is the Lagrangian submanifold

Lτ = {(p, q) : p = dqF 0
τ} ⊂ H

then

Lτ = SτLX

Recall that we denote the dimension of H?(X) by N . We are now in a position to prove

Theorem 1.5.3. LX is a homogeneous Lagrangian cone swept out by an N -dimensional

family of isotropic subspaces. More precisely, for each f ∈ LX the tangent space Lf =

TfLX ⊂ H satisfies

LX ∩ Lf = zLf

Proof. That LX is a cone follows immediately from the divisor equation. We will deduce

the rest of the Theorem from the corresponding statement about Lτ .

We first show that we can choose τ such that [Sτ f ]+ ∈ zH+. Write f = (p, q). We need to

set the coefficient of z0 in

(Sτq, v)

equal to zero for all v ∈ H?(X). By the string equation,

(Sτq, v) = z

〈〈
1,

q(z)

z − ψ
, v

〉〉

0,3
(τ)

and so we need to solve

〈〈1, q(ψ), v〉〉0,3(τ) = 0 for all v ∈ H?(X)

Thus we need τ to be a critical point of the function

τ 7−→ 〈〈1, q(ψ)〉〉0,2(τ)
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(which depends on the parameter q ∈ H+). Since when q = −z this function has a non-

degenerate critical point at τ = 0, there is a unique critical point τ(q) for all q in a formal

neighbourhood of q = −z. Choosing τ = τ(q) gives [Sτ f ]+ ∈ zH+.

For any q̄q ∈ zH+ — in other words, for any q̄q such that q̄q0 = 0 — the ancestor potential

F 0
τ has zero 2-jet at q̄q. This follows from the fact that the dimension of

—MM0,m is m − 3.

Thus

(q̄q, 0) ∈ Lτ

and

T(q̄q,0)Lτ = H+

In particular,

T(q̄q,0)Lτ ∩ Lτ ⊇ zH+

Since the component of dF 0
τ in the p0

0-direction (i.e. the (−g0αφα/z)-component) is

gµνq
µ
0 q

ν
0 + higher-order terms

we see that

H+ ∩ Lτ ⊆ zH+

and so

T(q̄q,0)Lτ ∩ Lτ = zH+

= zT(q̄q,0)Lτ

Applying Corollary 1.5.2 completes the proof. �

In particular this implies that the tangent spaces Lf to LX are Lagrangian subspaces closed

under multiplication by z. They consequently belong to the Grassmannian corresponding

to the twisted loop group A(2). For more on this point of view, see [25].

1.5.1 The J-function and the fundamental solution again

Since the codimension of zLf in Lf is N , Theorem 1.5.3 shows that given a generic N -

dimensional slice of LX :

{J(t) : t ∈ H?(X)} ⊂ LX
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the cone is swept out by

{zLJ(t) : t ∈ H?(X)}

To see that the J-function JX(t,−z) gives such a slice, we need to check that the image

of t 7−→ JX(t,−z) is transverse to the ruling by zLJX(t,−z). The tangent space LJX(t,−z) is

spanned by the vectors

vα,i = φαz
i +

∑

j

∂α,i∂b,jF 0
X |q=t−z

φβ

(−z)j+1 1 ≤ α ≤ N, i ∈ N

= φαz
i + O(1/z)

and so the ruling is spanned by

zvα,i = φαz
i+1 +O(1) 1 ≤ α ≤ N, i ∈ N

Since
∂

∂tβ
JX(t,−z) = φβ + O(1/z)

the family t 7−→ JX(t,−z) is indeed transverse to the ruling.

Also

Sαβ(−z) = ∂α,0(JX(t,−z))β
= gαβ +O(1/z)

and so the same argument shows that the columns of the matrix Sαβ(−z) form a basis for

LJX(t,−z)/zLJX(t,−z).

1.6 Twisted Gromov–Witten invariants

1.6.1 Twisted Gromov–Witten invariants

Consider the universal family over Xg,n,d

Xg,n+1,d
evn+1- X

Xg,n,d

π

?
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Given a holomorphic vector bundle E over X , set

Eg,n,d = π? ev?n+1 E ∈ K0(Xg,n,d)

Given also an invertible multiplicative characteristic class of complex vector bundles c( · ),
define the (c, E)-twisted genus-g Gromov–Witten potential to be

F g
c,E =

∑

n,d

Qd

n!
〈t(ψ), . . . , t(ψ); c(Eg,n,d)〉g,n,d

This is a formal function of t(z) = t0 + t1z+ . . . ∈ H?(X ; Λ)[z] which takes values in Λ. The

Taylor coefficients of F g
c,E at t = 0 are called (c, E)-twisted Gromov–Witten invariants.

The (c, E)-twisted total descendent potential of X is defined to be

Dc,E = exp
(∑

g

~g−1F g
c,E

)

The argument of Lemma 1.3.1 shows that this is well-defined as a formal function of t

taking values in Λ[[~, ~−1]]. We identify it with a formal function of q (near q = −
√

c(E)z)

via the twisted dilaton shift3

q(z) =
√

c(E)(t(z) − z)

Since the intersection pairing arises in Gromov–Witten theory via intersection indices on

X0,3,0
∼= X , when working with the (c, E)-twisted theory we use the twisted intersection

pairing

(θ1, θ2)c,E =

∫

X
θ1 ∧ θ2 ∧ c(E)

The symplectic space associated with the (c, E)-twisted theory is (Hc,E ,Ωc,E), where

Hc,E = H

and

Ωc,E(f, g) =
1

2πi

∮
(f(−z), g(z))c,E dz

The map

(H?(X), (· , · )c,E) −→ (H?(X), ( · , · ))
x 7−→

√
c(E) x

3Note that in the equivariant situation considered below this requires that we further extend the ground
ring Λ by

√
λ .
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identifies the twisted and untwisted intersection pairings, so the map

(Hc,E ,Ωc,E) −→ (H,Ω)

x 7−→
√

c(E) x

identifies the symplectic spaces (Hc,E ,Ωc,E) and (H,Ω).

Notation

Any invertible multiplicative characteristic class c( · ) takes the form

c( · ) = exp
(∑

k≥0

sk chk( · )
)

We write s = (s0, s1, s2, . . .) throughout. We will often suppress the notation for the bundle

E and write s instead of c, for example writing

(Hs,Ωs) instead of (Hc,E ,Ωc,E)

and

F g
s instead of F g

c,E

Lagrangian cones

The twisted genus-0 potential, regarded as a function on H+ via the twisted dilaton shift,

determines a Lagrangian section

Ls = {(p, q) : p = dqF 0
s } ⊂ H

One can think of this as arising in two stages. First, regard F 0
s as a function on (Hs)+ ⊂

(Hs,Ωs) via the untwisted dilaton shift. The graph of its differential gives a Lagrangian

submanifold Lnat
s ⊂ (Hs,Ωs) which is identified with the submanifold Ls ⊂ (H,Ω) via the

map

(Hc,E ,Ωc,E) −→ (H,Ω)

x 7−→
√

c(E) x

The twisted J-function Jc,E is defined to be the section of Lnat
c,E over the slice

{−z + t+ H− : t ∈ H?(X)}
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In other words

(Jc,E(t, z), a)c,E = (z + t, a)c,E +
∑

n,d

Qd

n!

〈 n︷ ︸︸ ︷
t, . . . , t,

a

z − ψ
; c(E0,n+1,d)

〉

0,n+1,d

If we write g̃gαβ = (φα, φβ)c,E and g̃gαβ for the entries of the matrix inverse to that with

entries g̃gαβ then

Jc,E(t, z) = z + t+

〈〈
φα
z − ψ

; c(E0,n+1,d)

〉〉
(t)0,1g̃g

αβφβ

S1-equivariant Gromov–Witten invariants

In applications below — in particular, in the proofs of the Quantum Lefschetz Hyperplane

Principle and Quantum Serre Duality — we will need to take c equal to the Euler class.

This currently falls outside the domain of our construction: the Euler class is multiplicative,

but it is not invertible. We get around this problem by turning on the natural S1-action

on all vector bundles: if F is a vector bundle over a space Y then the Euler class of F is

not invertible, but the S1-equivariant Euler class of F , where Y carries the trivial action

and F carries the action which rotates fibers, is invertible over C(λ). We therefore often

work with S1-equivariant Gromov–Witten invariants [26], where X and the moduli spaces

Xg,n,d carry the trivial S1-action and E and the sheaves Eg,n,d carry the S1-action which

rotates fibers, and regard all characteristic classes as S1-equivariant. This entails extending

our ground ring Λ (see section 1.3.2), but otherwise all constructions from previous sections

go through word-for-word.

1.6.2 Various preparatory lemmas

In section 1.6.3 below, we will apply the Grothendieck–Riemann–Roch theorem to the uni-

versal family π : Xg,n+1,d −→ Xg,n,d to determine the relationship between twisted and

untwisted Gromov–Witten invariants. We collect here various lemmas of a geometrical char-

acter which will be needed in that computation. The first concerns the behaviour of Eg,n,d

on a certain stratum consisting of nodal curves.

Define the singular locus Z in the universal family Xg,n+1,d to be the locus of nodes of the

fibers of π. This has virtual codimension 2 in the universal family. It coincides with the



1.6. TWISTED GROMOV–WITTEN INVARIANTS 57

range of the gluing map

Z̃Z red

∐
Z̃Z irr −

γred

‘

γirr−−−−−−−−→ Z −i→ Xg,n+1,d (1.9)

where

Z̃Z red =
∐

g=g++g−
n=n++n−
d=d++d−

Xg+,n++•,d+ ×X X0,1+•+◦,0 ×X Xg−,n−+◦,d−

and

Z̃Z irr = Xg−1,n+•+◦ ×X×X X0,1+•+◦,0

The virtual fundamental class behaves well on this locus, in the sense that the restriction of

the virtual fundamental class of Xg,n+1,d to Z coincides with the pushforward of the virtual

fundamental class of the domain of (1.9) via the gluing map.

Lemma 1.6.1. Denote by p+ and p− be the projections onto the first and third factors of

Z̃Z irr. We have

γ?redi
?Eg,n+1,d = p?+Eg+,n++•,d+ + p?−Eg−,n−+◦,d− − ev?∆E (1.10)

and

γ?irri
?Eg,n+1,d = Eg−1,n+•+◦,d − ev?∆E (1.11)

where ev∆ is the evaluation map at the point of gluing.

Proof. Since π : Xg,n+1,d −→ Xg,n,d is a local complete intersection morphism [58], there is

a complex

0 - E0
g,n,d

- E1
g,n,d

- 0

of vector bundles on Xg,n,d with cohomology sheaves equal to

R0π? ev?n+1(E) and R1π? ev?n+1(E)

Eg,n,d is defined to be the difference [E0
g,n,d] − [E1

g,n,d]; this does not depend on the choice

of complex. Consider first the case where R0π? ev?n+1(E) = 0. Then

0 - E0
g,n,d

- E1
g,n,d
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is an exact sequence of vector bundles, and so R1π? ev?n+1(E) is a bundle also. We will prove

(1.10) in this case by comparing the fibers of the vector bundles

−γ?redi?Eg,n+1,d and (−p?+Eg+,n++•,d+) ⊕ (−p?−Eg−,n−+◦,d−)

at the point

(((C+, ε+), f+), ((C−, ε−), f−)) ∈ Z̃Z red

Applying Serre duality, the fibers in question are

H0(C, f?E∨ ⊗ ωC)∨ and H0(C+, f
?
+E
∨ ⊗ ωC+

)∨ ⊕H0(C−, f
?
−E
∨ ⊗ ωC−

)∨

where

((C, ε), f)

is the stable map obtained from the stable maps

((C+, ε+), f+) and ((C−, ε−), f−)

by gluing, and ωC , ωC+ , ωC−
are the dualizing sheaves on C, C+, C− respectively. But the

dualizing sheaf ωC consists of meromorphic 1-forms on C which are holomorphic away from

the nodes and have at most simple poles at the nodes, such that the two residues at each

node sum to zero. There is therefore an exact sequence

0 −→ H0(C+, f
?
+E
∨⊗ωC+

)⊕H0(C−, f
?
−E
∨⊗ωC−

) −→ H0(C,f?E∨⊗ωC) −→ ev?∆E
∨ −→ 0

which when dualized gives (1.10). An entirely analogous argument proves (1.11) in this case

also.

For the general case, take L to be a positive line bundle, N � 0 and consider the exact

sequence

0 - Ker - H0 ( X,E ⊗ LN ) ⊗ L−N - E - 0

of vector bundles on X . Write

A = H0(X,E ⊗ LN )⊗ L−N

B = Ker

If d 6= 0 then for sufficiently large N both R0π? ev?n+1 A and R0π? ev?n+1 B vanish. In this

case we have

Eg,n,d = Ag,n,d − Bg,n,d
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where the argument above applies to both Ag,n,d and Bg,n,d.

In the remaining case, when d = 0, R0π? ev?n+1 E does not vanish. However, in this case

R0π? ev?n+1 E is the trivial bundle with fiber E and R1π? ev?n+1 E is also a vector bundle.

Our previous argument therefore deals with this case also. This completes the proof. �

A similar argument proves

Lemma 1.6.2.

π?Eg,n,d = Eg,n+1,d

1.6.3 A quantum Riemann–Roch theorem

We will determine the relationship between twisted and untwisted Gromov–Witten in-

variants by applying the Grothendieck–Riemann–Roch theorem to the universal family

π : Xg,n+1,d −→ Xg,n,d (see [53, 17]). We justify this as follows. Fulton [19] proves the

Grothendieck–Riemann–Roch theorem for proper l.c.i. morphisms of schemes f : X −→ Y

ch(f?α) = f?(ch(α) TdTf ) for any α ∈ K0(X)

The map f : X −→ Y is l.c.i. if for some (and hence for any) factorization

X
i - P

f
R

Y

p

?

with i a closed embedding and p smooth, i is in fact a regular embedding. This means that

the normal sheaf of X in P is locally free, which is exactly what we need to define the

“virtual tangent bundle”

Tf = [i?TP/Y ]− [NX/P ] ∈ K0(X)

Note that, despite the suggestive terminology, this has no simple relationship to the virtual

fundamental class.

We apply this to our situation as follows: the moduli space Xg,n,d can be realized [20] as

the orbifold (stack) quotient of a subscheme J of a Hilbert scheme by a proper action of
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the group G = PGL. The universal family π : Xg,n+1,d −→ Xg,n,d is the quotient by G of

the universal family U −→ J. One way4 to define the Chow groups (or cohomology groups)

of Xg,n,d with rational coefficients is as the G-equivariant Chow groups (or cohomology

groups) of J. In other words [16] we take a family of finite-dimensional approximations

J(N) to the Borel space EG×G J and define the Chow groups (or cohomology groups) of

Xg,n,d to be the limit of the Chow groups (or cohomology groups) of the J(N). Let U(N)

be a similar family of finite-dimensional approximations to EG ×G U . We apply Fulton’s

Grothendieck–Riemann–Roch theorem to the maps

π(N) : U(N) −→ J(N)

These maps are l.c.i. since the universal family U −→ J is manifestly l.c.i. We find that

ch(π? ev?E) = π?(ch(ev?E)·Td∨Ωπ) (GRR)

where Ωπ is the sheaf of relative differentials of π : Xg,n+1,d −→ Xg,n,d.

Recall that σi : Xg,n,d −→ Xg,n+1,d is the section of the universal family defined by the ith

marked point. Let ψ+, ψ− denote the first Chern classes of the bundles over Z formed by

the cotangent lines at the nodes.

Proposition 1.6.3.

[Xg,n,d] ∩ ch(Eg,n,d) = [Xg,n,d] ∩ π?(ev?(ch(E)) · ( codim-0 + codim-1 + codim-2 ))

(1.12)

where

codim-0 = Td∨ Ln+1

codim-1 = −
n∑

i=1

σi?

[
Td∨ (Li)

ψi

]

+

codim-2 = i?

[
1

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

+

and [ · ]+ denotes the power series truncation of a Laurent series in ψi or in ψ+ and ψ−.

Proof. We will express the sheaf Ωπ of relative differentials appearing in (GRR) in terms

of universal cotangent lines.

4That this agrees with the usual definition of cohomology groups is obvious; that it agrees with the usual
definition of Chow groups follows from work of Kresch [40] (see also [16]).
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Assume first that the image π(Z) of the singular locus forms a divisor with normal crossings

in Xg,n,d. Then there are exact sequences

0 - Ωπ
- ωπ - i?OZ - 0 (1.13)

and

0 - ωπ - Ln+1
- ⊕n

i=1σi?OXg,n,d
- 0 (1.14)

where ωπ is the relative dualizing sheaf of the family π : Xg,n+1,d −→ Xg,n,d. To establish

(1.13), note first that Ωπ and ωπ coincide away from Z . Let C be a point of Z . We can find

co-ordinates (z, ε) near π(C) and (z, x, y) near C where z is a (vector) co-ordinate along Z
and the map π in these co-ordinates is

π : (z, x, y) 7−→ (z, xy)

Sections of ωπ near C have the form

f(z, x, y)
dx ∧ dy
d(xy)

where

f(z, x, y) =
∑

i,j≥0

fij(z)x
iyj

Sections of Ωπ near C have the form

α(z, x, y)dx+ β(z, x, y)dy

where

α(z, x, y) =
∑

i,j≥0

αij(z)x
iyj

β(z, x, y) =
∑

i,j≥0

βij(z)x
iyj

and we impose the relation x dy + y dx = 0. There is a natural inclusion

Ωπ −→ ωπ

α(z, x, y)dx+ β(z, x, y)dy 7−→ (xα(z, x, y)− yβ(z, x, y))
dx∧ dy
d(xy)

The cokernel consists of elements of the form

f00(z)
dx ∧ dy
d(xy)
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The expression
dx ∧ dy
d(xy)

represents a locally constant section of the (orbi)bundle

∧2
(L+ ⊕ L−) ⊗ L−1

+ ⊗ L−1
−

over Z , so we can identify the cokernel with i?OZ . This establishes (1.13); an entirely

analogous argument gives (1.14).

Combining (1.13) and (1.14), we find that

Ωπ = Ln+1 −
n∑

i=1

σi?OXg,n,d
− i?OZ in K0(Xg,n+1,d) (1.15)

and so

Td∨ (Ωπ) = Td∨ (Ln+1)
( n∏

i=1

Td∨ (−σi?OXg,n,d
)
)

Td∨ (−i?OZ ) (1.16)

We can write

Td∨ ( · ) = exp
(∑

k≥0

tk chk( · )
)

where t0 = 0 (and in fact t1 = 1
2 and tk = −Bk/k for k ≥ 2, but we will not need this).

Thus

Td∨ (−i?OZ) = exp
(
−

∑

k≥0

tk chk(i?OZ)
)

Applying Grothendieck–Riemann–Roch again, we see that

chk(i?OZ) = i?(Td∨ (−L+ − L−))k−2

since the (l.c.i.) virtual tangent bundle Ti is −L−1
+ −L−1

− . Here (x)r denotes the component

of the cohomology class x in degree 2r. Therefore

chk(i?OZ) = i?

( ∑

a+b=k−2
a,b≥0

ψa+ψ
b
−

(a+ 1)! (b+ 1)!

)

and if we set

α = −
∑

k≥2

tk
∑

a+b=k−2
a,b≥0

ψa+ψ
b
−

(a+ 1)! (b+ 1)!
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then

Td∨ (−i?OZ ) = exp(i?α)

= 1 + (i?α)
∑

r≥1

(i?α)r−1

r!

= 1 + i?

(
exp(α ∪ i?1) − 1

i?1

)

But

α ∪ i?1 = −
∑

k≥2

tk
∑

a+b=k−2
a,b≥0

ψa+1
+ ψb+1

−

(a+ 1)! (b+ 1)!

= −
∑

k≥2

tk
k!

((ψ+ + ψ−)k − ψk+ − ψk−)

=
∑

k≥0

tk(chk(L+) + chk(L−) − chk(L+ ⊗ L−))

and so

Td∨ (−i?OZ ) = 1 + i?

(
1

ψ+ψ−

(
Td∨ (L+)Td∨ (L−)

Td∨ (L+ ⊗ L−)
− 1

))

= 1 + i?

[
1

ψ+ + ψ−

eψ++ψ− − 1

(eψ+ − 1)(eψ− − 1)

]

+

Applying the inclusion-exclusion formula for the Poincaré polynomial of C[x, y]/(xy)

1 − uv

(1 − u)(1 − v)
=

1

1 − u
+

1

1 − v
− 1

with u = eψ+ , v = eψ− we find that

Td∨ (−i?OZ ) = 1 + i?

[
1

ψ+ + ψ−

(
1

eψ+ − 1
+

1

eψ− − 1

)]

+

= 1 + i?

[
1

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

+
(1.17)

A similar calculation yields

Td∨ (−σi?OXg,n,d
) = 1− σi?

[
Td∨ (Li)

ψi

]

+
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Substituting into (1.16), we find

Td∨ (Ωπ) =Td∨ (Ln+1) ×
( n∏

i=1

(
1 − σi?

[
Td∨ (Li)

ψi

]

+

))

×
(

1 + i?

[
1

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

+

)

Since the divisors Di = σi(Xg,n,d) and Z are mutually disjoint, and Ln+1 is trivial on Di

and on Z , this gives

Td∨ (Ωπ) = Td∨ (Ln+1) −
n∑

i=1

σi?

[
Td∨ (Li)

ψi

]

+
+ i?

[
1

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

+

(1.18)

which implies the Proposition.

In the general case, where π(Z) is not a divisor with normal crossings, this argument remains

“virtually correct” in the sense that we can find an embedding [17]

Xg,n+1,d
- C

Xg,n,d

?
- M

?

of Xg,n,d into a non-singular space M with a flat family of curves C −→ M such that

- the family C −→ M restricts to the universal family over Xg,n,d

- we can extend the bundle ev?(E) over Xg,n+1,d to a bundle over C

- the argument above is valid for the family C −→ M

We recover the Proposition by capping (1.17) for the family C −→ M with the virtual

fundamental class [Xg,n,d]. �

Proposition 1.6.3 will be the main tool in the proof of our “quantum Riemann–Roch theo-

rem”.
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Theorem 1.6.4.

exp

(
− 1

24

∑

l>0

sl−1

∫

X
chl(E)cD−1(TX)

)
(sdet

√
c(E) )−

1
24 Ds =

exp

(∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
(chl(E)z2m−1)

∧
)

exp
(∑

l>0

sl−1(chl(E)/z)
∧)DX

(1.19)

Proof. Proposition A.0.2 in Appendix A shows that the right-hand side is well-defined as a

formal function of t taking values in Λ[[~, ~−1]], where the ground ring Λ is C[[Q]][[s0, s1, . . .]].

It suffices to prove the infinitesimal statement

∂

∂sk
Ds =

( ∑

2m+r=k+1
m≥0

B2m

(2m)!
(chr(E)z2m−1)

∧
)
Ds

+




1

24

∫

X
cD−1(X) ∧ chk+1(E) +

1

48

∫

X
e(X) ∧ chk(E)

− 1

24

∫

X
e(X) ∧ chk+1(E) ∧

(∑

l

sl+1 chl(E)
)


Ds

(1.20)

Here the second exceptional term arises from the superdeterminant

sdet
√

c(E) = exp(str(ln
√

c(E) ))

= exp

(
1

2

∫

X
e(X) ∧

(∑

j

sj chj(E)
))

and the third exceptional term is the cocycle value

C
(
B2

2

∑

l

sl+1 chl(E)z, chk+1(E)/z

)
= − 1

2
str

(
chk+1(E) · 1

12

∑

l

sl+1 chl(E)
)

= − 1

24

∫

X

e(X) ∧ chk+1(E) ∧
(∑

l

sl+1 chl(E)
)

coming from commuting the sk-derivative of the 1/z-terms past the terms involving z (see

Example 1.3.4.1).

Now
∂Ds

∂sk
=

∑

g,n,d

Qd~g−1

n!
〈t, . . . , t; chk(Eg,n,d) ∧ c(Eg,n,d)〉g,n,dDs

+
∑

g,n,d

Qd~g−1

(n − 1)!

〈
∂t

∂sk
, t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

(1.21)
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Applying Proposition 1.6.3, we see that the first summand splits into three contributions

which we will call the codimension-0, codimension-1 and codimension-2 terms. We will

calculate these contributions, and also the derivative contribution (the other summand

in (1.21)), separately. The codimension-2 contribution will match up with the bivector

field part of the quantization in (1.20) (see Example 1.3.3.1). The other contributions will

combine to give the rest of the quantization and the exceptional terms in in (1.20).

Codimension-2 terms

These are

∑

g,n,d

Qd~g−1

n!

〈
t, . . . , t; π?i?

[(
ch(E)

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

))

k−1

]

+
c(Eg,n,d)

〉

g,n,d
Ds

Pulling back to Z̃Z red
∐ Z̃Z irr and using Lemma 1.6.1, Lemma 1.6.2, and the properties of

the virtual fundamental class discussed on page 57, we can write this as

1

2

∑

g1,g2

∑

n1,n2

∑

d1,d2

Qd1+d2~g1+g2−1

n1! n2!

∑

r,s

〈
t, . . . , t,

αr,sψ
r
+√

c(E)
; c(Eg1,n1+1,d1)

〉

g1,n1+1,d1

×
〈

ψs−√
c(E)

, t, . . . , t; c(Eg2,n2+1,d2)

〉

g2,n2+1,d2

+
1

2

∑

g,n,d

Qd~g−1

n!

∑

r,s

〈
t, . . . , t,

αr,sψ
r
+√

c(E)
,

ψs−√
c(E)

; c(Eg−1,n+2,d)

〉

g−1,n+2,d

where

∑

r,s

αr,sψ
r
+ψ

s
− =

[(
ch(E)

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

))

k−1

]

+
∧ (gαβφα ⊗ φβ)

∈ H?(X)[[ψ+]]⊗H?(X)[[ψ−]]

and we have applied Lemmas 1.6.1 and 1.6.2. The factor of 1/2 here comes from the fact

that the map

Z̃Z red

∐
Z̃Z irr −

γred

‘

γirr−−−−−−−−→ Z

is generically 2-to-1.

Since the twisted dilaton shift gives

∂α,k =
1√

c(E)

∂

∂tαk
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a comparison with Example 1.3.3.1 shows that we can write the codimension-2 terms as

~

2
(∂ ⊗Ak

∂)Ds (1.22)

where

Ak =

(
ch(E)

Td∨ (L)

ψ

)

k
+

chk(E)

2

We are abusing notation here: for consistency with Example 1.3.3.1 we should identify ψ

with z:

Ak =

(
ch(E)

ez − 1

)

k
+

chk(E)

2

Note that Ak is a series in odd powers of z with coefficients in H?(X), so multiplication by

Ak defines an infinitesimal symplectomorphism of H.

Codimension-1 terms

These are

−
∑

g,n,d

Qd~g−1

n!

〈
t, . . . , t;

( n∑

i=1

π?σi?

[
ch(E)

Td∨ (Li)

ψi

]

+

)

k
c(Eg,n,d)

〉

g,n,d
Ds

= −
∑

g,n,d

Qd~g−1

(n − 1)!

〈([
ch(E)

Td∨ (L)

ψ

]

+

)

k
t(ψ), t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

(1.23)

Codimension-0 terms

These are

∑

g,n,d

Qd~g−1

n!
〈t, . . . , t; (π?(ch(E)Td∨ (Ln+1)))kc(Eg,n,d)〉g,n,dDs

=
∑

g,n,d

Qd~g−1

n!
〈π?t, . . . , π?t, (ch(E)Td∨ (L))k+1; π

?c(Eg,n,d)〉g,n+1,dDs

Applying Lemma 1.6.2 and the comparison result (see e.g. [67, 54]) for universal cotangent

lines

π?t(ψi) = t(ψi) − σi?

[
t(ψi)

ψi

]

+



68 CHAPTER 1. QUANTUM COHOMOLOGY

we can write this as

∑

g,n,d

Qd~g−1

n!

〈
t(ψ)− σ1?

[
t(ψ)

ψ

]

+
, . . . , (ch(E)Td∨ (L))k+1; c(Eg,n+1,d)

〉

g,n+1,d
Ds

=
∑

g,n,d

Qd~g−1

n!
〈t, . . . , t, (ch(E)Td∨ (L))k+1; c(Eg,n+1,d)〉g,n+1,dDs

−
∑

g,n,d

Qd~g−1

(n − 1)!

〈
chk+1(E)

[
t(ψ)

ψ

]

+
, t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

=
∑

g,n,d

Qd~g−1

(n − 1)!
〈t, . . . , t, (ch(E)Td∨ (L))k+1; c(Eg,n,d)〉g,n,dDs

− 1

2~
〈t, t, (ch(E)Td∨ (L))k+1; c(E0,3,0)〉0,3,0 − 〈(ch(E)Td∨ (L))k+1; c(E1,1,0)〉1,1,0

−
∑

g,n,d

Qd~g−1

(n − 1)!

〈
chk+1(E)

[
t(ψ)

ψ

]

+
, t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

(1.24)

We next calculate the exceptional terms in (1.24), which arose in the reindexing since the

moduli spaces X0,2,0 and X1,0,0 are empty and so X0,3,0 and X1,1,0 cannot be interpreted as

universal families.

− 1

2~
〈t, t, (ch(E)Td∨ (L))k+1; c(E0,3,0)〉0,3,0 = − 1

2~

∫

X

t0 ∧ t0 ∧ chk+1(E) ∧ c(E)

=
1

2~
Ωs((Akq)(−z), q(z)) (1.25)

where we used the facts that [X0,3,0] = [X ] and E0,3,0 = E. Also (see e.g. [24])

- X1,1,0 = X × —MM1,1

- [X1,1,0] = e(TX ⊗ L−1
1 ) ∩ [X × —MM1,1]

- E1,1,0 = E ⊗ (1 − L−1
1 )

- L1 −→ X1,1,0 coincides with the pullback of the universal cotangent line over
—MM1,1

and ∫
—
MM1,1

ψ1 =
1

24
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so

−〈(ch(E)Td∨ (L))k+1; c(E1,1,0)〉1,1,0

= −
∫

X×
—
MM1,1

(
chk+1(E)− chk(E)

2
ψ1

)
c(E)c(−E ⊗ L−1

1 ) e(TX ⊗ L−1
1 )

But

c(−E ⊗ L−1
1 ) = c(−E)

(
1 + ψ

∑

j

sj+1 chj(E)
)

and

e(TX ⊗ L−1
1 ) = e(TX)− ψ1cD−1(TX)

so

−〈(ch(E)Td∨ (L))k+1; c(E1,1,0)〉1,1,0

= −
∫

X×
—
MM1,1

(
chk+1(E)− chk(E)

2
ψ1

)(
1 + ψ

∑

j

sj+1 chj(E)
)

× (e(TX)− ψ1cD−1(TX))

=
1

48

∫

X
chk(E)e(TX)− 1

24

∫

X
chk+1(E)

(∑

j

sj+1 chj(E)
)
e(TX)

+
1

24

∫

X
chk+1(E)cD−1(TX)

(1.26)

Derivative contribution

Because of the twisted dilaton shift,

∂t(z)

∂sk
= − 1

2
chk(E)(t(z) − z)

and so the second summand in (1.21) contributes

−
∑

g,n,d

Qd~g−1

(n− 1)!
〈1
2 chk(E)(t(ψ)− ψ), t, . . . , t; c(Eg,n,d)〉g,n,dDs

Putting everything together

Since
[(

ch(E)
Td∨ (L)

ψ

)

k

]

+
t(ψ) + chk+1(E)

[
t(ψi)

ψ

]

+
=

[(
ch(E)

Td∨ (L)

ψ

)

k
t(ψ)

]

+
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we can write the sum of the codimension-0 and codimension-1 contributions as

∑

g,n,d

Qd~g−1

(n− 1)!
〈t, . . . , t, (ch(E)Td∨ (L))k+1; c(Eg,n,d)〉g,n,dDs

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[(
ch(E)

Td∨ (L)

ψ

)

k
t(ψ)

]

+
, t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

+ ( exceptional terms (1.25) and (1.26) )Ds

But

(ch(E)Td∨ (L))k+1 =

[(
ch(E)

Td∨ (L)

ψ

)

k
ψ

]

+

so we can write the sum of the codimension-0, codimension-1 and derivative contributions

as

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[((
ch(E)

Td∨ (L)

ψ

)

k
+

chk(E)

2

)
q(ψ)

]

+
, t, . . . , t; c(Eg,n,d)

〉

g,n,d
Ds

+ ( exceptional terms (1.25) and (1.26) )Ds

or in other words as

−∂Ak
Ds + ( exceptional terms (1.25) and (1.26) )Ds

Combining this with (1.22), we find that

∂Ds

∂sk
=

(
1

2~
Ωs((Akq)(−z), q(z)) − ∂Ak

Ds +
~

2
(∂ ⊗Ak

∂)

)
Ds

+




1

24

∫

X
cD−1(X) ∧ chk+1(E) +

1

48

∫

X
e(X) ∧ chk(E)

− 1

24

∫

X
e(X) ∧ chk+1(E) ∧

(∑

l

sl+1 chl(E)
)


Ds

But Example 1.3.3.1 shows that

1

2~
Ωs((Akq)(−z), q(z)) − ∂Ak

Ds +
~

2
(∂ ⊗Ak

∂) = ÂkAk

and

Ak(z) =

(
ch(E)

ez − 1

)

k
+

chk(E)

2

=
∑

2m+r=k
r,m≥0

B2m

(2m)!
chr(E)z2m−1

This establishes (1.20). The Theorem follows. �



1.7. THE QUANTUM LEFSCHETZ HYPERPLANE PRINCIPLE 71

Corollary 1.6.5. The Lagrangian submanifolds Ls are related by

Ls = exp

( ∑

m≥0

∑

0≤l≤D

s2m−1+l
B2m

(2m)!
chl(E)z2m−1

)
LX

In particular, each Ls satisfies the conclusions of Theorem 1.5.3.

1.7 The quantum Lefschetz hyperplane principle

We specialize now to the case where c( · ) = e( · ), the S1-equivariant Euler class. The

corresponding values of sk satisfy

λ+ x = exp

(∑

k≥0

sk
xk

k!

)

so5

sk =





lnλ k = 0

(−)k−1(k − 1)!

λk
k > 0

Corollary 1.7.1. Let ρi be the (non-equivariant) Chern roots of E. Then

∏

i

exp

(
− 1

24

∫

X

((λ+ρi) ln(λ+ρi)−(λ+ρi))cD−1(TX)

)∏

i

(sdet
√
λ+ρi )

− 1
24 De =

∏

i

exp

(∑

m>0

B2m

2m(2m−1)

(
ẑ

λ+ρi

)
2m−1

)∏

i

exp

((
(λ+ρi) ln(λ+ρi)−(λ+ρi)

z

)
∧
)
DX

Proof. The first exponent on the right-hand side of (1.19) becomes

∑

i

∑

m>0

∑

l≥0

(−)l(2m+ l − 2)!

λ2m−1+l

B2m

(2m)!

ρli
l!
z2m−1

Using the binomial theorem

(1 + x)1−2m =
∑

l≥0

(−)l(2m+ l− 2)!

(2m− 2)! l!
xl

we can write this as

∑

i

∑

m>0

B2m

(2m)(2m− 1)

(
1 +

ρi
λ

)
1−2m

(
z

λ

)
2m−1

5As a consequence, we see that we need to further extend our ground ring Λ by lnλ.
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which is
∑

i

∑

m>0

B2m

(2m)(2m− 1)

(
z

λ+ ρi

)
2m−1

The second exponent on the right-hand side of (1.19) is

1

z

∑

l>0

sl−1 chl(E) =
1

z

∑

i

(
ρi lnλ+

∑

l≥2

(−)l(l − 2)!

λl−1

ρli
l!

)

=
1

z

∑

i

(
ρi lnλ+

∑

k≥1

(−)k+1

k(k + 1)

ρk+1
i

λk

)

=
1

z

∑

i

∫ ρi

0
ln(λ+ x) dx

=
1

z

∑

i

[(λ+ x) ln(λ+ x) − (λ+ x)]
ρi

0

This converges in the 1/λ-adic topology. We may discard the constant terms (λ lnλ− λ)/z

as we know from Example 1.3.3.2 that the string operator 1̂/z1/z annihilatesDX . The Corollary

follows. �

Corollary 1.7.2. The Lagrangian cone Le ⊂ H is obtained from LX by multiplication (in

H) by the product over Chern roots ρi of

γρ(z) = exp

(
(λ+ ρ) ln(λ+ ρ) − (λ+ ρ)

z
+

∑

m>0

B2m

2m(2m− 1)

(
z

λ+ ρ

)
2m−1

)

Now

lnΓ(x) ∼ (x− 1
2
) lnx−x+

1

2
ln2π+

∑

m>0

B2m

2m(2m−1)

1

x2m−1 as x −→ ∞, |argx| < π

(see e.g. [1]) and so γρ(z) coincides, up to some differences in the principal term, with the

asymptotic expansion of the gamma function Γ((λ+ρ)/z). More precisely, it coincides with

the stationary phase asymptotics of the integral

1√
2πz(λ+ ρ)

∫ ∞

0
e
−x+(λ+ρ) lnx

z dx

near the critical point x = λ+ ρ of the phase function.
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Let us assume now that E is the direct sum of line bundles, so that the Chern roots ρi of

E lie in H2(X ; Z). Consider the J-function

JX(t, z) =
∑

d

Jd(t, z)Q
d

and introduce the following hypergeometric modification of JX :

IE(t, z) =
∑

d

Jd(t, z)Q
d
∏

i

∏〈ρi,d〉
k=−∞(λ+ ρi + kz)

∏0
k=−∞(λ+ ρi + kz)

Due to our choice of topology on Λ, this gives a well-defined element of H for each t ∈ H?(X).

Theorem 1.7.3. The family

t 7−→ IE(t,−z) t ∈ H?(X,Λ)

of vectors in (He,E,Ωe,E) lies on the Lagrangian submanifold Lnat
e,E defined by the differential

of the twisted genus-0 descendent potential.

Proof. This is equivalent to the assertion that the family

t 7−→
√

e(E) IE(t,−z) t ∈ H?(X,Λ)

lies on Le ⊂ (H,Ω). Thus we need to show that

√
e(E) IE(t,−z) ∈

(∏

i

γρi
(z)

)
LX ∀t ∈ H?(X ; Λ)

or in other words that (∏

i

γρi
(−z)

)√
e(E) IE(t,−z) ∈ LX

But (∏

i

γρi
(z)

)√
e(E) IE(t, z)

is equal to (the asymptotic expansion of)

√
e(E)

∑

d

Jd(t, z)Q
d
∏

i

1√
2πz(λ+ ρi)

∫ ∞

0

e
−xi+(λ+ρi) lnxi

z dxi

∏〈ρi,d〉
k=−∞(λ+ ρi + kz)∏0
k=−∞(λ+ ρi + kz)

=
∑

d

Jd(t, z)Q
d
∏

i

1√
2πz

∫ ∞

0
e
−xi+(λ+ρi+〈ρi,d〉) lnxi

z dxi (integrating by parts)

=
∑

d

∏

i

1√
2πz

∫ ∞

0
dxi e

−xi+(λ+ρi) lnxi

z x
〈ρi,d〉/z
i QdJd(t, z)
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Using the string equation (see Example 1.3.3.2) and the divisor equation (see Example

1.3.3.3) we find that

∏

i

e
(λ+ρi) lnxi

z
∑

d

x
〈ρi,d〉/z
i QdJd(t, z) = JX

(
t+

∑

i

(λ+ ρi) lnxi, z
)

and so

(∏

i

γρi
(z)

)√
e(E) IE(t, z) =

(∏

i

1√
2πz

∫ ∞

0
dxi

)
e−

P

xi/zJX

(
t+

∑

i

(λ+ ρi) lnxi, z
)

We need to show that this belongs to the cone determined by the family

t 7−→ JX(t, z) t ∈ H?(X,Λ)

In fact, we will show

Claim. For each t ∈ H?(X) there exists t∗ ∈ H?(X) such that the element

(∏

i

γρi
(z)

)√
e(E) IE(t, z)

differs from

λ(dimE)/2JX(t∗, z)

by a linear combination of first derivatives of JX at t∗ with coefficients in zΛ[[z]] which

converge in the sense of Section 1.3.2.

This will follow from the fact that JX is the generator for the quantum D-module [28] of

X . In other words, JX satisfies the system of partial differential equations

z
∂

∂tα
∂

∂tβ
JX(t, z) = A γ

αβ (t)
∂

∂tγ
JX(t, z) (1.27)

where A γ
αβ are the structure constants of the quantum cohomology algebra

φα • φβ = A γ
αβ φγ

We know that

(∏

i

γρi
(z)

)√
e(E) IE(t, z) =

(∏

i

1√
2πz

∫ ∞

0
dxi

)
e−

P

xi/zJX

(
t+

∑

i

(λ+ ρi) lnxi, z
)

=
∏

i

(
1√
2πz

∫ ∞

0
dxi e

−xi/z+ln xi(λ∂1+∂ρi
)

)
JX(t, z)
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where ∂v denotes the derivative in the direction of v ∈ H?(X). Since z∂1JX = JX , this is

∏

i

(
1√
2πz

∫ ∞

0
dxi e

−xi+ln xi(λ+z∂ρi)
z

)
JX(t, z) (1.28)

We can evaluate (1.28) using the relations (1.27) in the D-module generated by JX(t, z).

These relations imply that

(z∂v1) . . . (z∂vn
)JX(t, z) = (z∂v1•...•vn

) JX(t, z) + o(z) (1.29)

where o(z) denotes a linear combination of z∂φαJX(t, z) with coefficients in zΛ[[z]], con-

vergent in the above-mentioned sense. We take the asymptotic expansion of the oscillating

integral appearing in (1.28) and apply the relations (1.29):

1√
2πz

∫ ∞

0
dxe(−x+ln x(λ+z∂ρ))/zJX(t, z)

∼
√
λ+ z∂ρ

(
e

(λ+z∂ρ) ln(λ+z∂ρ)−(λ+z∂ρ)
z

+
P

m>0
B2m

2m(2m−1)

„

z
λ+z∂ρ

«

2m−1)
JX(t, z)

=
√
λ+ z∂ρ

(
e

(λ+z∂ρ) ln(λ+z∂ρ)−(λ+z∂ρ)
z

)(
JX(t, z) +

o(z)

z

)

=
√
λ+ z∂ρ (e∂[(λ+ρ•) ln(λ+ρ•)−(λ+ρ•)]1)

(
JX(t, z) +

o(z)

z

)

But
√
λ+ z∂ρ =

√
λ

(
1 +

1

2λ
(z∂ρ) −

1

8λ2 (z∂ρ)
2 + . . .

)

so

1√
2πz

∫ ∞

0
dxe

−x+ln x(λ+z∂ρ)
z JX(t, z) =

√
λ (e∂[(λ+ρ•) ln(λ+ρ•)−(λ+ρ•)]1)

(
JX(t, z) +

o(z)

z

)

Applying this to (1.28), we find that

∏

i

(
1√
2πz

∫ ∞

0

dxi e
−xi+ln xi(λ+z∂ρi)

z

)
JX(t, z)

is equal to

λ(dimE)/2JX(t∗, z) +Cα(t∗, z)z∂φαJX(t∗, z)

where

t∗ = t+
∑

i

[(λ+ ρi•) ln(λ+ ρi•)− (λ+ ρi•)]1

and the coefficients Cα(t∗, z) are appropriately convergent elements of Λ[[z]]. This proves

the Claim. Since the cone LX is ruled by zTfLX , the Theorem follows. �
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Let Lt denote the tangent space to Lnat
e,E at the point IE(t,−z). Since

IE(t, z) ≡ JX(t, z)modQ

the argument of section 1.5.1 shows that the family

t 7−→ IE(t,−z) t ∈ H?(X,Λ)

is transverse to the ruling of Lnat
e,E by zLt. Thus zLt meets the slice −z + zH− at a unique

point.

Corollary 1.7.4. The intersection of zLt with −z + zH− coincides with the value

Je,E(τ(t),−z) ∈ −z + τ(t) + H−

where Je,E is the (e, E)-twisted J-function (see section 1.6.1). In other words

Je,E(τ, z) = IE(t, z) + Cα(t, z)z ∂φαIE(t, z) (1.30)

where the Cα(t, z) are appropriately convergent elements of Λ[[z]] and τ(t) is determined by

the asymptotics z + τ +O(z−1) of the right-hand side of (1.30).

Remarks:

(i) This procedure for computing Je,E from IE is reminiscent of Birkhoff factorization in

the theory of loop groups. Indeed, the procedure applied to the first derivatives of IE rather

than IE actually is an example of Birkhoff factorization.

(ii) The Corollary gives a geometrical description of the “mirror map” t 7−→ τ : the J-

function obtained as the intersection Lt ∩ (−z + zH−) comes naturally parameterized by t

which may have little common with the projections τ − z of the intersection points along

H−.

1.7.1 Mirror theorems

Let us assume now that E is a direct sum of convex line bundles (a line bundle F over

X is convex if H1(C, f?F ) = 0 for all genus-0 stable maps f : C −→ X). Let j : Y ↪→ X

be the inclusion into X of a complete intersection Y cut out by a generic global section of
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E. We will deduce the relationship between Gromov–Witten invariants of X and of Y by

taking the non-equivariant limit λ −→ 0 in Corollary 1.7.4. Although the proof of Theorem

1.7.3 fails when λ = 0, the statement of Corollary 1.7.4 survives: both IE and Je,E have

non-equivariant limits, and the relationship between them is that described by Corollary

1.7.4.

We can write

Je,E(t, z) = z + t+
∑

n,d

Qd

n!
(evn+1)?

[
ev?1 t ∧ . . .∧ ev?n t ∧

e(E ′0,n+1,d)

z − ψn+1

]

where (evn+1)? denotes the cohomological pushforward along evn+1 : Xg,n+1,d −→ X and

E ′0,n+1,d is the kernel of the evaluation map

E0,n+1,d = H0(C, f?E) −→ E

at the (n+ 1)st marked point. In the non-equivariant limit, Je,E(t, z) degenerates to

JX,Y (t, z) = z + t+
∑

n,d

Qd

n!
(evn+1)?

[
ev?1 t ∧ . . .∧ ev?n t ∧

e(E ′0,n+1,d)

z − ψn+1

]

where e denotes now the non-equivariant Euler class. The function JX,Y encodes Gromov–

Witten invariants of Y via

e(E)JX,Y (u, z) =H2(Y )−→H2(X) j?JY (j?u, z) (1.31)

since [Y0,n+1,d] = e(E0,n+1,d) ∩ [X0,n+1,d] (see [36]). The long subscript here indicates that

corresponding homomorphism between Novikov rings should be applied to the right-hand

side of the equation.

The non-equivariant limit of IE(t, z) is

IX,Y (t, z) =
∑

d

Jd(t, z)Q
d
∏

i

〈ρi,d〉∏

k=1

(ρi + kz)

where, as before, {ρi} are the Chern roots of E.

Corollary 1.7.5. The series IX,Y (t,−z) and JX,Y (τ,−z) determine the same cone. In par-

ticular, JX,Y (τ,−z) is determined from IX,Y (t,−z) by the “Birkhoff factorization” procedure

followed by the mirror map t 7−→ τ as described in Corollary 1.7.4.
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Now, restricting IX,Y and JX,Y to the small parameter space H≤2(X ; Λ) and assuming that

c1(E) ≤ c1(TX) we can derive the quantum Lefschetz theorems of [35, 4, 43, 21, 9].

Proposition 1.7.6. If c1(E) ≤ c1(X) then, for t ∈ H≤2(X ; Λ)

IX,Y (t, z) = zF (t) +
∑

i

Gi(t)φi +O(z−1)

for some scalar-valued functions F (t) and Gi(t) with F (t) invertible. The {φi} here are a

basis for H≤2(X).

Proof. Since IX,Y (t, z) ≡ JX(t, z)modQ,

IX,Y (t) = z + t+
∑

d>0

QdJd(t, z)
∏

i

〈ρi,d〉∏

k=1

(ρi + kz) +O(z−1)

We need to work out the highest power of z occurring in Jd(t, z). But, for d > 0,

Jd(t, z) =
∑

n,k

1

n!

〈 n︷ ︸︸ ︷
t, . . . , t,

φαψ
k

zk+1

〉

0,n+1,d
φα (1.32)

and the highest power of z occurs here with the lowest power of ψ. In other words, we should

take the degree of t equal to 2 and the degree of φα equal to D = dimX . The maximum

power of z occurring is −(k + 1) where

n+D + k = dimCX0,n+1,d

= n+D − 2 + 〈c1(TX), d〉

Thus the highest power of z occurring in

Jd(t, z)
∏

i

〈ρi,d〉∏

k=1

(ρi + kz)

is

1 + 〈c1(E), d〉 − 〈c1(TX), d〉

which is at most 1. For this to equal 1, we need φα in (1.32) to be a volume form, in which

case φα has degree zero. Similarly, for z0 to occur we need deg φα ≥ 2D − 2, in which case

φα has degree at most 2. Thus

IX,Y (t, z) = zF (t) +
∑

i

Gi(t)φi +O(z−1)
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where F (t) and Gi(t) are scalar-valued functions such that

F (t) ≡ 1 modQ

Gi(t) ≡ ti modQ

�

We see from the proof that if c1(E) − c1(TX) is sufficiently negative then F (t) = 1 and

Gi(t) = ti.

Corollary 1.7.7. When c1(E) ≤ c1(TX), the restriction of JX,Y (τ, z) to the small param-

eter space τ ∈ H2(X ; Λ) is given by

JX,Y (τ, z) =
IX,Y (t, z)

F (t)

where

τ =
∑

i

Gi(t)

F (t)
φi

The J-function of X = CPn−1 restricted to the small parameter space t0 + tP , where P is

the hyperplane class generating the algebra H∗(X ; Λ) = Λ[P ]/(Pn), takes the form

JX = z e(t0+Pt)/z
∑

d≥0

Qdedt∏d
k=1(P + kz)n

For a hypersurface Y of degree l in CPn−1 we then have

IX,Y = ze(t0+Pt)/z
∑

d≥0

Qdedt
∏ld
k=1(lP + kz)∏d
k=1(P + kz)n

Corollary 1.7.8. On the small parameter space

(i) for l < n− 1,

JX,Y (t0, t, z) = IX,Y (t0, t, z)

(ii) for l = n− 1,

JX,Y (τ0, t, z) = IX,Y (t0, t, z)

where τ0 = t0 + l!Qet.
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(iii) for l = n,

JX,Y (t0, τ, z) = IX,Y (t0, t, z)/F (t)

where τ = G(t)/F (t) and the series F and G are found from the expansion IX,Y =

exp(t0/z)(zF +GP +O(z−1)).

Taking n = l = 5 and applying the relation (1.31) we recover the quintic mirror formula of

Candelas et al. [11].

1.8 Quantum Serre duality

Consider again the general situation where E −→ X is a holomorphic vector bundle with

Chern roots ρi and

c( · ) = exp
(∑

k

sk chk( · )
)

is a multiplicative characteristic class. Put

c∗( · ) = exp
(∑

k

(−)k+1sk chk( · )
)

so that in particular

c∗(E∗) =
1

c(E)

Despite the fact that there is no obvious relationship between c∗((E∗)g,n,d) and c(Eg,n,d),

the twisted descendent potentials Dc,E and Dc∗,E∗ are closely related.

Corollary 1.8.1. We have

Dc∗,E∗ = (sdet(c(E)))−1/24Dc,E

More explicitly,

Dc∗,E∗(t∗) = (sdet(c(E)))−
1
24Dc,E(t)

where t∗(z) = c(E)t(z) + (1 − c(E))z.

Proof. Replacing chl(E) with (−1)l chl(E), and sk with (−1)k+1sk in Theorem 1.6.4 pre-

serves all terms except the super-determinant. �
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Corollary 1.8.2. Consider the dual bundle E∗ equipped with the dual S1-action, and the

S1-equivariant inverse Euler class e−1. Put

t∗(z) = z + (−1)dimE/2e(E)(t(z) − z)

and introduce the change ± : Qd 7−→ Qd(−1)〈c1(E),d〉 in the Novikov ring. With this notation

De−1,E∗(t∗, Q) = sdet((−1)(dimE)/2e(E))−
1
24De,E(t,±Q)

Proof. We have

e−1(E∗) =
∏

i

(−λ− ρi)
−1

Since

(−λ+ x)−1 = exp

(
− ln(−λ) +

∑

k

xk

kλk

)

we find that

e−1( · ) = exp
(∑

s∗k chk( · )
)

where

s∗k =





− ln(−λ) k = 0

(k − 1)!

λk
k > 0

For k > 0 we have s∗k = (−1)k+1sk as in Corollary 1.8.1. However, s∗0 = −s0 − π
√
−1 .

Examining Theorem 1.6.4, we see that s0 occurs on the right-hand side of (1.19) only in

the form exp (s0ρ/z)
∧ where ρ = ch1(E). Example 1.3.3.3 therefore implies that the action

of the s0-flow can be absorbed by the change

Qd 7−→ Qd exp(s0〈ρ, d〉) (1.33)

together with multiplication of DX by the factor exp(s0(dimE)/48) coming from the su-

perdeterminant. In our case, where we need to move along the s0-flow for time −π
√
−1 ,

(1.33) becomes the change Qd 7−→ ±Q. �
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Chapter 2

Quantum extraordinary

cohomology

2.1 Introduction

Given the spectacular progress in enumerative geometry associated with the study of quan-

tum cohomology, it is natural to ask whether one can obtain more detailed enumerative

information by studying the extraordinary cohomology of moduli spaces of stable maps.

The goal of this chapter is to define quantum extraordinary cohomology — a collection

of invariants of a Kähler manifold X which encodes information about the extraordinary

cohomology of the spaces Xg,n,d — and to understand the relationship between this and the

usual quantum cohomology of X . The main result of this chapter, Theorem 2.4.1, expresses

the extraordinary descendent potential for complex cobordism (and hence that for any other

complex-oriented cohomology theory) in terms of the cohomological descendent potential.

As we have seen in chapter 0, this determines all tangent-twisted Gromov—Witten invari-

ants of X — Gromov–Witten invariants of X twisted by characteristic classes of the virtual

tangent bundles T vir
g,n,d — in terms of untwisted Gromov–Witten invariants. The relation-

ship is formulated in terms of an extension of the quantization formalism. In particular,

it implies that each genus-0 extraordinary descendent potential of X can be encoded by a

semi-infinite ruled cone in the corresponding extraordinary cohomology groups of X with
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coefficients in certain Laurent series in 1/z. As in chapter 1, our main technical tool will be

the Grothendieck–Riemann–Roch theorem, which we apply to various calculations on the

universal family over the moduli space of stable maps.

The material of this chapter represents joint work with Givental. The chapter is organized

as follows. In section 2.2 we recall various facts about complex-oriented cohomology theories

and fix the notation involved. In section 2.3 we define quantum extraordinary cohomology

and extend the quantization formalism to this setting. In section 2.4, we formulate the main

result of this chapter, Theorem 2.4.1, and various corollaries of it. The proof of Theorem

2.4.1 is contained in section 2.5.

2.2 Complex-oriented cohomology theories

In this section we collect various standard results about complex-oriented cohomology the-

ories which we will need below. Good references for this material include [2] and Appendix

4 of [63]. A complex-oriented cohomology theory is a multiplicative cohomology theory E?

together with a choice of element u ∈ ẼE 2(CP∞) such that if j : CP 1 −→ CP∞ is the in-

clusion map then j?u is the standard generator for ẼE 2(CP 1). The element u is called the

orientation. We write Ω?
E = E?(pt). For any space X , the map X −→ pt makes E?(X) into

a module over Ω?
E.

Given a complex-oriented cohomology theory (E, u) we can construct Chern classes in the

usual way; the first Chern class of the universal line bundle over CP∞ is u, and

E?(CP∞) ∼= Ω?
E [[u]]

The operation of tensor product of complex line bundles equips E?(CP∞) with the structure

F (u, v) ∈ Ω?
E[[u, v]] of a formal group over Ω?

E . The inversion u 7−→ u? in this formal group

is induced by inversion of complex line bundles.

Example 2.2.0.1 Take E?(X) = H?(X ; C) and u to be the usual first Chern class of the

universal line bundle ξ over CP∞. Then F (u, v) = u+ v, and u? = −u. �

Example 2.2.0.2 Take E?(X) = K?(X ; Z)⊗ C and let u = 1 − ξ−1 ∈ ẼE 0(CP∞). (The
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orientation can be regarded as lying in ẼE 2(CP∞) via Bott periodicity.) Then F (u, v) =

u+ v − uv, and u? = −u− u2 − u3 − . . . �

We will always assume that the ground ring Ω?
E contains C, so there is a logarithm gE ∈

Ω?
E [[u]] such that

gE(u) = u+
∑

i>0

βiu
i+1 βi ∈ Ω−2i

E

and

gE(F (u, v)) = gE(u) + gE(v)

This logarithm is unique, and it determines the complex-oriented cohomology theory. We

write uE(z) ∈ Ω?
E [[z]] for the power series inverse to gE.

The Chern–Dold character [10]

chE : E?( · ) −→ H?( · ; Ω?
E)

is the unique multiplicative natural transformation from E?( · ) to H?( · ; Ω?
E) which is the

identity map on Ω?
E . If z is the standard orientation of H?( · ; Ω?

E) and uE is the orientation

of E?( · ) then chE(uE) = uE(z). Given a proper l.c.i. map of quasi-projective schemes

f : X −→ Y , Baum, Fulton and MacPherson have constructed [5] a push-forward f? :

E?(X) −→ E?(Y ). Their construction is functorial, and satisfies

E?(X) −chE( · )TdE(Tf)−−−−−−−−−−−−→ H?(X,Ω?
E)

f? ↓ 2 ↓ f?
E?(Y ) −chE( · )−−−−−→ H?(Y,Ω?

E)

(RR)

where Tf ∈ K0(X) is the l.c.i. virtual tangent bundle of f and TdE( · ) is the multiplicative

characteristic class (with values inH?( · ; Ω?
E)) which on a line bundle L with (cohomological)

first Chern class ρ takes the value

TdE(L) =
ρ

uE(ρ)

In order to work with many complex-oriented cohomology theories at once, we consider

complex cobordism MU? equipped with the standard orientation u [2, page 38]. MU?(pt)

is a polynomial algebra [55, 64] on generators p1, p2, . . . of degree −2,−4, . . ., where pi is

Poincaré-dual (see page 22) to [CP i −→ pt]. Since we consider only complex-oriented co-

homology theories with ground rings that contain C, we tensor with C throughout. This



2.3. QUANTUM EXTRAORDINARY COHOMOLOGY 85

gives Ω?
MU = C[p1, p2, . . .]. Complex cobordism is universal among complex-oriented co-

homology theories: given a complex-oriented cohomology theory (E, uE) there is a unique

multiplicative natural transformation θE : MU −→ E such that θE(u) = uE . For any space

X , MU?(X) defines a sheaf on Spec Ω?
MU . The natural transformation θE : MU −→ E gives

a map

θ̃θE : Spec Ω?
E −→ Spec Ω?

MU

and the pullback of the sheaf MU?(X) by θ̃θE is E?(X).

Since Ω?
MU

∼= C[p1, p2, . . .], the pi give co-ordinates on Spec Ω?
MU . Using Miščenko’s formula

for the logarithm in complex cobordism

g(u) = u+
∑

n>0

pn
n + 1

un

we see that if we define s1, s2, . . . by

exp

(∑

k>0

sk
xk

k!

)
=

x

u(x)

then Ω?
MU

∼= C[s1, s2, . . .]. We take x to have degree 2 in the above formula, so deg si = −2i.

The si give another co-ordinate system on Ω?
MU , which we make extensive use of below; we

write s = (s1, s2, . . .) throughout.

2.3 Quantum extraordinary cohomology

In view of the Riemann–Roch formula (RR), we define the genus-g extraordinary descendent

potential F g
E of X to be

F g
E
(t0, t1, . . .) =

∑

d∈H2(X ;Z)
n≥0

Qd

n!

∫

[Xg,n,d ]

i=n∧

i=1

(∑

ki≥0

chE(ev?i tki
) ∧ uE(ψi)

ki

)
∧ TdE(T vir

g,n,d) (2.1)

Here t0, t1, . . . ∈ E?(X) are extraordinary cohomology classes on X and T vir
g,n,d is the virtual

tangent bundle to Xg,n,d (see pages 20–21). We regard F g
E as a formal function of

t(u) = t0 + t1u+ t2u
2 + . . . ∈ E?(X)[[u]]
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which takes values in Ω?
E[[Q]]. The total extraordinary descendent potential

DE = exp
(∑

g≥0

~g−1F g
E

)

is a generating function for E-valued Gromov–Witten invariants of all genera. The argument

of Lemma 1.3.1 shows that this is well-defined as a formal function of t which takes values

in Ω?
E [[Q]][[~, ~−1]]. The Ω?

E-module E?(X)[[u]] defines a sheaf on Spec Ω?
E , and DE is a

function on a formal neighbourhood of the zero section of this sheaf. The pullback of the

total cobordism potentialDMU by the map θ̃θE : Spec Ω?
E −→ Spec Ω?

MU coincides with DE , so

we can think of DMU as a family of functions (depending on s1, s2, . . . ∈ Ω?
MU) which encodes

the extraordinary descendent potentials for all complex-oriented cohomology theories.

2.3.1 Aside: quantum K-theory

Note that if we take the complex-oriented cohomology theory E to be complex K-theory

then our E-valued Gromov-Witten invariants do not coincide with the K-theoretic Gromov-

Witen invariants of Givental and Lee [29, 41, 42]. In essence, this is because we deal with

the K-theory of the moduli spaces Xg,n,d as topological spaces, whereas Givental and Lee

consider the orbifold K-theory of Xg,n,d. For example, to define the K-theoretic correlator

χ(Xg,n,d; ev
?
1 α1 ⊗ Li11 ⊗ . . .⊗ ev?n αn ⊗ Linn ) (2.2)

where αi ∈ K0(X), they take the orbibundle push-forward of

ev?1 α1 ⊗ Li11 ⊗ . . .⊗ ev?n αn ⊗ Linn

from Xg,n,d to a point. This can be computed using the Kawasaki–Riemann–Roch formula

[34]. We take (2.2) to be

∫

[Xg,n,d ]
ch(ev?1 α1 ⊗ Li11 ⊗ . . .⊗ ev?n αn ⊗ Linn ) Td(T vir

g,n,d) (2.3)

where ch is the usual Chern character and Td is the usual Todd class. This corresponds to

taking only the principal term in Kawasaki–Riemann–Roch. In this sense, our K-theoretic

correlators give an approximation to the quantum K-theory of [29, 41].
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2.3.2 The quantization formalism

The main result of this chapter, Theorem 2.4.1, determines the total cobordism potential

DMU in terms of the usual (cohomological) total descendent potential DX . The Theorem is

formulated in terms of an extension of Givental’s quantization formalism to the cobordism-

valued setting. In order to make this extension, we need:

(a) to find a symplectic space U over a ground ring which contains Ω?
MU — we can

regard this as a family of symplectic spaces Us depending on s — and a polarization

U = U+ ⊕ U− which identifies U with T ?U+.

(b) to equip U with the structure of (some completion of) an algebra of Laurent polyno-

mials.

(c) to regard DMU as function on U , or in other words as a family of elements of the Fock

spaces corresponding to Us.

(d) to identify the Fock spaces corresponding to different Us, so that DMU gives a family

Ds of functions in a single Fock space. We can then study how Ds varies with s.

Note that (a) and (b) are essential ingredients of the formalism — without (a) there is no

quantization and without (b) there is no loop group. In order to achieve both (a) and (b),

we will need to restrict attention to a formal neighbourhood of s = (0, 0, . . .) in Spec Ω?
MU .

This corresponds to working in a formal neighbourhood of (usual) cohomology.

We work over the ground ring

Ω̃Ω?
MU = C[[Q]] ⊗ C[[s1, s2, . . .]]

and regard F g
E (respectively DE) as a formal function of

t = t0 + t1u+ . . . ∈MU?(X ; Ω̃Ω?
MU)[[u]]

which takes values in Ω̃Ω?
MU (respectively Ω̃Ω?

MU [[~, ~−1]]). We equip Ω̃Ω?
MU with the topology

coming from the norm

‖Qdsj1i1 . . . s
jn
in
‖ = 2−

R

d
ω−i1j1−...−injn
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where ω is the symplectic form on X . Consider the supervector space

U =
{∑

n∈Z

αnu
n : αn ∈MU?(X ; Ω̃Ω?

MU), αn −→ 0 as n −→ ∞
}

⊂MU?(X ; Ω̃Ω?
MU)[[u, u−1]]

where the degree of u is 2, equipped with the even symplectic form

Ω(f1, f2) =
1

2πi

∮
(f1(u

?), f2(u)) dg(u) (2.4)

Here ( · , · ) denotes the Poincaré pairing in cobordism and the integral denotes the residue1

at u = 0. Note that since u? is a power series in u of degree 2, f1(u
?) ∈ U whenever

f1(u) ∈ U . The symplectic form Ω takes values in Ω̃Ω?
MU , and so we can regard it as a family

of symplectic structures depending on s.

Darboux co-ordinates and the polarization

Using the Chern–Dold character, we can write the symplectic form Ω in cohomological

terms. Let Tds be the multiplicative characteristic class with values in H(· , Ω̃Ω?
MU) defined

by

Tds ( · ) = exp
(∑

k>0

sk chk( · )
)

It is the composition of TdMU with the inclusion Ω?
MU −→ Ω̃Ω?

MU . Define an Ω̃Ω?
MU -valued

inner product on MU?(X ; Ω̃Ω?
MU) by

(α, β)s =

∫

X

chs(α) ∧ chs(β) ∧ Tds (TX)

where chs : MU?( · ; Ω̃Ω?
MU) −→ H?( · , Ω̃Ω?

MU) is the map induced by the Chern–Dold character

chMU . Then

Ω(f1, f2) =
1

2πi

∮
(f1(u(−z)), f2(u(z)))s dz

This makes it easy to write down Darboux co-ordinates on (U ,Ω).

Pick a basis {φα : α = 1, . . . , N} for MU?(X ; Ω̃Ω?
MU) over Ω̃Ω?

MU and let gsαβ = (φα, φβ)s.

Write gαβs for the entries of the matrix inverse to that with entries gsαβ. Define Laurent series

vk(u), k = 0, 1, 2, . . . by
1

u(−x− y)
=

∑

k≥0

(u(x))kvk(u(y))

1Note that the differential dg occurring in (2.4) is the invariant differential on the formal group Ω?
MU [[u]].
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where we expand the left-hand side in the region where |x| < |y|.

Claim.

f = qαk (f)φαu
k + pβl (f)g

βε
s φεvl(u) f ∈ U (2.5)

gives a Darboux co-ordinate system on U .

Proof. Expressions of the form (2.5) certainly lie in U . We have

∑

k,l≥0

(u(x))kvl(u(y))Ω(gβεs φεvk(u), φαu
l)

= Ω
(
gβεs φε

∑

k≥0

(u(x))kvk(u), φα
∑

l≥0

ulvl(u(y))
)

= gβεs (φε, φα)s
1

2πi

∮ (∑

k≥0

(u(x))kvk(u(−z))
)(∑

l≥0

(u(z))lvl(u(y))
)
dz

=
δβα
2πi

∮
1

u(−x + z)

1

u(−z − y)
dz

Here |x| < |z| < |y|, so the only pole inside the contour of integration is the simple pole of

1/u(−x + z) at z = x. Thus

∑

k,l≥0

(u(x))kvl(u(y))Ω(gβεs φεvk(u), φαu
l) =

δβα
u(−x− y)

= δβα
∑

m≥0

(u(x))mvm(y)

and so

Ω

(
∂

∂pβl
,
∂

∂qαk

)
= δαβδkl for all α, β, k, l

Also,

Ω
(
φα

∑

k≥0

vk(u(x))u
k, φβ

∑

l≥0

ulvl(u(y))
)

= gsαβ
1

2πi

∮
1

u(−x+ z)

1

u(−z − y)
dz

where |z| < |x| and |z| < |y|. This is zero, as there is no pole inside the contour of integration,

and so

Ω

(
∂

∂qαk
,
∂

∂qβl

)
= 0 for all α, β, k, l
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Similarly,

Ω
(
gαεs φε

∑

k≥0

(u(x))kvk(u), g
βε′

s φε′
∑

l≥0

vl(u)(u(y))
l
)

=
gαβs

2πi

∮
1

u(−x + z)

1

u(−y − z)
dz

where |x| < |z| and |y| < |z|. The contributions from the (simple) poles at z = x and z = −y
cancel, so

Ω

(
∂

∂pαk
,
∂

∂pβl

)
= 0 for all α, β, k, l

Since

(u(z))k ≡ zk mod s and vk(u(z)) ≡ (−z)−1−k mod s

any element f ∈ U such that

Ω

(
∂

∂pαk
, f

)
= Ω

(
∂

∂qαk
, f

)
= 0 for all k, α

is in fact zero, so every element in U has the form (2.5). Thus {pαk , q
β
l } forms a Darboux

co-ordinate system on U . �

The polarization of (U ,Ω) by the Lagrangian subspaces

U+ =
{∑

n≥0

αnu
n : αn ∈MU?(X ; Ω̃Ω?

MU), αn −→ 0 as n −→ ∞
}

U− =
{∑

n≥0

αnvn(u) : αn ∈MU?(X ; Ω̃Ω?
MU)

}

gives a symplectic identification of (U ,Ω) with the cotangent bundle T ?U+. We can regard

this as a formal family of polarizations, depending on s, of the formal family of symplectic

spaces (Us,Ωs). Thus we have achieved (a) and (b).

The dilaton shift

Recall that the cobordism-valued potentials DMU and F 0
MU are formal functions of

t(u) = t0 + t1u + . . . ∈MU?(X ; Ω̃Ω?
MU)[[u]]

We regard them as formal functions of

q(u) = q0 + q1u+ . . . ∈ U+
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via the dilaton shift

q(u) = t(u) + u? (2.6)

(cf section 1.3.3). This achieves (c).

Identification of Fock spaces

It remains to deal with (d). We will first identify the symplectic spaces corresponding to

different values of s via the Chern–Dold character. This will not induce an identification of

the Fock spaces Focks: the representation of the Lie algebra of infinitesimal symplectomor-

phisms on Focks is built from a representation of the Heisenberg algebra which is determined

by the polarization corresponding to s. Since the Chern–Dold character identifies the sym-

plectic spaces corresponding to different s but not the polarizations, there is more work to

do. We discuss this further below, after introducing the cohomological version (H,Ω0) of

the symplectic space which is the target of the Chern–Dold character.

Define an Ω̃Ω?
MU -valued inner product on H?(X ; Ω̃Ω?

MU) by

(α, β)0 =

∫

X
α ∧ β

and set

H =
{∑

n∈Z

anz
n : an ∈ H?(X ; Ω̃Ω?

MU), an −→ 0 as n −→ ∞
}

⊂ H?(X ; Ω̃Ω?
MU)[[z, z−1]]

Define

Ω0(f1, f2) =
1

2πi

∮
(f1(−z), f2(z))0 dz

where, as before, the contour of integration winds once anticlockwise about the origin. The

polarization H = H+ ⊕H− by Lagrangian subspaces

H+ =
{∑

n≥0

anz
n : an ∈ H?(X ; Ω̃Ω?

MU), an −→ 0 as n −→ ∞
}

H− =
{∑

n<0

anz
n : an ∈ H?(X ; Ω̃Ω?

MU)
}

gives a symplectic identification of (H,Ω0) with T ?H+. We pick an Ω̃Ω?
MU -basis {φα : α =

1, . . . , N} for H?(X ; Ω̃Ω?
MU) and use Darboux co-ordinates (1.1) on H, constructed exactly

as in Example 1.3.1.1.
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Let the Fock space Fock consist of formal functions of

t0(z) = t0 + t1z + . . . ∈MU?(X ; Ω̃Ω?
MU)[[z]]

which take values in Ω̃Ω?
MU [[~, ~−1]]. As before, we regard this as a space of formal functions

of

q0(z) = q0 + q1z + . . . ∈ H+

(near the point q0(z) = −z) via the dilaton shift

q0(z) = t0(z) − z (2.7)

Quantizations of quadratic Darboux monomials act on Fock as described in section 1.3.3.

The quantum Chern–Dold character qch : U −→ H, defined by

qch
(∑

n∈Z

αnu
n
)

=
√

Tds (TX)
∑

n∈Z

chs(αn)(u(z))
n (2.8)

is a symplectomorphism from U to H. It maps U+ isomorphically to H+, and we regard

DMU as a function on H+ via this isomorphism. This gives a formal family Ds, depending

on s, of formal functions on H+. Despite the fact that Ds is a formal function of q0 near

the point

q0 =
√

Tds (TX)u(−z)
≡ −z mod s1, s2, . . .

and so can be considered as a formal function of t and s taking values in Ω̃Ω?
MU [[~, ~−1]],

we should not regard it as an element of the Fock space Fock for the following reason.

Given a symplectic vector space V , a polarization V = V+ ⊕ V− induces a representation

of the corresponding Heisenberg algebra Heis(V ) on the space of formal functions on V+.

Explicitly, if {pa, qb} is a Darboux co-ordinate system adapted to the polarization (so V+ is

given by p1 = p2 = . . . = 0 and V− is given by q1 = q2 = . . . = 0) and we regard Heis(V )

as consisting of affine-linear functions on V under the Poisson bracket then the affine-linear

function

α+
∑

i

βiq
i +

∑

j

γjp
j

acts as

f 7−→ αf +
1√
~

∑

i

βiq
if +

√
~

∑

j

γj∂jf
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where ∂j is differentiation in the direction of qj. The projective representation of the Lie al-

gebra of infinitesimal symplectomorphisms that we use — our quantization procedure — is

constructed from such a representation of a Heisenberg algebra. By the Stone–von Neumann

theorem, this representation of the Heisenberg algebra is projectively unique. Symplectic

transformations act as automorphisms of the Heisenberg algebra, and the projective rep-

resentation of the Lie algebra of infinitesimal symplectomorphisms that this induces is our

quantization procedure. The quantum Chern–Dold character identifies the family of Heisen-

berg algebras corresponding to the family of symplectic spaces (Us,Ωs) with the Heisenberg

algebra of (H,Ω0). It does not, however, identify the family of polarizations of Us with

H+ ⊕H−. We should therefore regard Ds as living in the Fock space Focks corresponding

to the representation of the Heisenberg algebra of (H,Ω0) given by the polarization

H = H+ ⊕ span{v0(u(z)), v1(u(z)), . . .}

We need to identify Focks with Fock. To do this, it suffices to identify them as representations

of the Heisenberg algebra. We return to our model situation: a symplectic vector space V

equipped with a polarization V = V+ ⊕ V− with Darboux co-ordinates {pa, qb} adapted

to the polarization. Suppose that V = V+ ⊕ —
V−V− is another polarization, and {pa, q̄qb} is a

Darboux co-ordinate system adapted to V+ ⊕ —
V−V− . We have

q̄q b = qb +
∑

a

Abapa

for some symmetric matrix Aba. If Fock is the representation of Heis(V ) corresponding to

the polarization V = V+ ⊕ V− and
—

FockFock is the representation corresponding to V+ ⊕ —
V−V−

then the affine-linear function qi acts on Fock as

f 7−→ 1√
~
qif

and on
—

FockFock as

f 7−→ 1√
~
qif −

√
~

∑

j

Aij∂jf

Thus
—

FockFock −→ Fock

f 7−→ e(~/2)
P

m,nA
mn∂m∂nf

(2.9)
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is a map2 of Heis(V )-modules. In other words,

pa(e(~/2)
P

m,nA
mn∂m∂nf) =

√
~∂ae

(~/2)
P

m,n A
mn∂m∂nf

= e(~/2)
P

m,n A
mn∂m∂n

√
~∂af

= e(~/2)
P

m,n A
mn∂m∂npa(f)

and

qa(e(~/2)
P

m,n A
mn∂m∂nf) =

1√
~
qae(~/2)

P

m,n A
mn∂m∂nf

= e(~/2)
P

m,n A
mn∂m∂n

(
1√
~
qa −

√
~

∑

b

Aab∂b

)
f

= e(~/2)
P

m,n A
mn∂m∂nq̄qa(f)

Put another way, the quantization of the symplectic transformation e
1
2

P

m,n A
mnpmpn which

maps V+ ⊕ —
V−V− to V+ ⊕ V− intertwines the representations

—
FockFock and Fock.

To apply this to our situation, we need to find appropriate Darboux co-ordinate systems

adapted to the polarizations H = H+ ⊕H− and to H = H+ ⊕ span{v0(u(z)), v1(u(z)), . . .}.
For a Darboux co-ordinate system adapted to H+ ⊕ H− we use (1.1). For co-ordinates

adapted to H+ ⊕ span{v0(u(z)), v1(u(z)), . . .}, take

f =
∑

r≥0

q̄qαr (f)φαz
r +

∑

s≥0

p̄pβs (f)g
βεφεws(z) f ∈ H (2.10)

where the Laurent series ws(z) are defined by

1

u(−x− z)
=

∑

s≥0

xsws(z) (|x| < |z|)

An argument parallel to that on pages 89 and 90 shows that {p̄pαr , q̄qβs } is a Darboux co-

ordinate system on U . We have

p̄pαr ( · ) = Ω( · , φαzr)
= pαr ( · )

and

q̄qβs ( · ) = Ω(gβεφεws(z), · )

=
∑

r≥0

Aβ,s;α,rpαr ( · ) +
∑

r≥0

Bβ,s;α,rqαr ( · )

2We assume here that the map (2.9) is well-defined. In the situation which we consider below it will be,
due to the presence of the auxiliary variables s.
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where

Aβ,s;α,r = q̄qβs (g
αεφε(−z)−1−r)

Bβ,s;α,r = q̄qβs (φαz
r)

Equation (2.10) shows that Bβ,s;α,r = δαβδrs, so

p̄pαr = pαr and q̄qβs = qβs +
∑

r≥0

Aβ,s;α,rpαr

as in our model situation. We therefore consider the formal family

Gs = exp

(
~

2

∑

r,s

Aα,r;β,s∂α,r∂β,s

)
Ds

of elements of the Fock space Fock. Proposition A.0.3 shows that Gs is well-defined as a

formal function of t and s which takes values in Ω̃Ω?
MU [[~, ~−1]].

Note that
∑

r,s

Aβ,s;α,rxrys = Ω(gβεφεws(z)y
s, gαε

′

φε′(−z)−1−rxr)

= gβεgαε
′

Ω

(
φε

u(−y − z)
,

φε′

−x− z

)
(|x|, |y| < |z|)

=
gαβ

2πi

∮
1

u(−y + z)

1

−x− z
dz (|x|, |y|< |z|)

= gαβ
(

1

−x − y
− 1

u(−x − y)

)

= −
[

gαβ

u(−x − y)

]

+

(2.11)

2.4 Computing the extraordinary descendent potential

We are now in a position to state the main result of this chapter, which describes the

relationship between Gs and the cohomological descendent potential DX .

Theorem 2.4.1. Let E = TX − 1. Then

exp

(
− 1

24

∑

l>0

sl−1

∫

X
chl(E)cD−1(TX)

)
(sdet

√
Tds (E) )−

1
24 Gs =

exp

(∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
(chl(E)z2m−1)

∧
)

exp
(∑

l>0

sl−1(chl(E)/z)
∧)DX

(2.12)
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Comparing with Theorem 1.6.4 we see that Gs coincides with the descendent potential of

X twisted by the class Tds and the bundle E. This is perhaps surprising — the integrals

involved in (2.1) appear significantly more complicated than those for the twisted theory,

since they contain contributions not only from the bundle TX but also from variations of

complex structure on the domain curve (see the discussion on pages 20 and 21). Remarkably,

this extra complication is entirely absorbed by the modified dilaton shift (2.6, 2.7) and the

change of polarization Ds  Gs.

The graph of the differential of the genus-0 cobordism potential F 0
MU in (U ,Ω) ∼= T ?U+

gives a family Ls of Lagrangian submanifolds of (Us,Ωs). Since the genus-0 part of Ds is

the generating function of qch(Ls) with respect to the polarization

H = H+ ⊕ span{v0(u(z)), v1(u(z)), . . .}

and since Gs differs from Ds by the quantization of the transformation which maps this

polarization to the standard one

H = H+ ⊕H−

the genus-0 part of Gs is the generating function of qch(Ls) with respect to the standard

polarization.

Corollary 2.4.2. qch(Ls) coincides with the Lagrangian cone for (E,Tds)-twisted Gromov–

Witten theory. In other words

qch(Ls) = exp

( ∑

m≥0

∑

0≤l≤D

s2m−1+l
B2m

(2m)!
chl(E)z2m−1

)
LX

In particular, this implies

Corollary 2.4.3. The submanifolds Ls ⊂ (Us,Ωs) satisfy the conclusions of Theorem 1.5.3:

they are ruled Lagrangian cones.

In the case X = pt, LX is invariant under multiplication by

exp

( ∑

m≥0

∑

0≤l≤D

s2m−1+l
B2m

(2m)!
chl(E)z2m−1

)

Corollary 2.4.4. When X = pt, qch(Ls) = LX .
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2.5 The proof of Theorem 2.4.1

2.5.1 Outline of the proof

By Proposition A.0.2 and Proposition A.0.3, both sides of (2.12) are well-defined. Since

G0 = DX , it therefore suffices to prove the infinitesimal version

∂

∂sk
Gs =

( ∑

2m+r=k+1
m≥0

B2m

(2m)!
(chr(E)z2m−1)

∧
)
Gs

+




1

24

∫

X

cD−1(X) ∧ chk+1(E) +
1

48

∫

X

e(X) ∧ chk(E)

− 1

24

∫

X
e(X) ∧ chk+1(E) ∧

(∑

l

sl+1 chl(E)
)


Gs

(2.13)

(see page 65). If we can prove this for the case in which π(Z) is a divisor with normal

crossings in Xg,n,d then the arguments of the latter part of Proposition 1.6.3 (see page 64)

will deal with the general case. Thus we assume that π(Z) is a divisor with normal crossings.

Lacking a more intelligent approach, we will compute the left-hand side of (2.13) and then

observe that it is equal to the right-hand side. As a first step, we calculate ∂Ds/∂sk. The

discussion of section 2.3 shows that Ds depends on t0 as

Ds(t0) = exp

(∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ); Tds (T vir)〉g,n,d

)

where

Ts(z) =
1√

Tds (TX)
(t0(z) − z) − u(−z)

u(z) =
z

Tds (L)

= z exp

(
−

∑

k>0

sk
zk

k!

)

and

Tds ( · ) = exp
(∑

k>0

sk chk( · )
)
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Thus

D−1
s

∂Ds

∂sk
=

∑

g,n,d

Qd~g−1

(n− 1)!

〈
∂Ts(ψ)

∂sk
, Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ); chk(T vir) Tds (T vir)〉g,n,d

(2.14)

Call the first sum in (2.14) the derivative term and the second sum the main term. We will

calculate the derivative term in section 2.5.2 and the main term in section 2.5.4. Along the

way, we will need an expression for the virtual tangent bundle T vir in terms of bundles

pulled back from the target space X (which we handle much as in Chapter 1) and universal

cotangent lines; we compute this in section 2.5.3. We collect the results of our computations

in section 2.5.5, obtaining the rather complicated-looking expression (2.49) for ∂Ds/∂sk.

We want to express ∂Gs/∂sk in terms of quantized infinitesimal symplectomorphisms acting

on Gs, and so in section 2.5.6 we rewrite (2.49) in terms of the action of the Heisenberg

algebra. The results of this (equation (2.50) below) still look rather complicated, largely

because (2.50) is written in the wrong co-ordinates: it is expressed in terms of the action

of pαk and qβl , whereas the Heisenberg algebra acts naturally on Ds via pαk and q̄qβl . Once we

rewrite (2.50) in terms of this latter action, it becomes easy to see that ∂Gs/∂sk has the

desired form.

It is worth noting that all the geometric ingredients in the proof of Theorem 2.4.1 already

occur in the proof of Theorem 1.6.4 — Theorem 2.4.1 is also just a consequence of the

Grothendieck–Riemann–Roch theorem applied to the universal family of stable maps. The

only difference is that the computations in this case are somewhat more involved.

2.5.2 The derivative term

We have

∂Ts

∂sk
= − chk(TX)

2
√

Tds (TX)
(t0 − z) +

(−z)k+1

k!
exp

(
−

∑

k>0

sk
(−z)k
k!

)
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and so the derivative term in (2.14) is

−
∑

g,n,d

Qd~g−1

(n − 1)!

〈
chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

(n − 1)!

〈
(−ψ)k+1

k!
Tds (−L−1), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

(2.15)

2.5.3 Calculating T vir

From the discussion on page 21 we know that

T vir = π? ev?(TX)− Aut(C) + Def(C)

= π? ev?(TX)−H0(Ω∨π (−D)) +H1(Ω∨π (−D))

where D = D1 + . . .+Dn is the divisor given by the marked points. Applying Serre duality,

T vir = π? ev?(TX)− π?(Ω
∨
π (−D))

= π? ev?(TX) + (π?(Ωπ(D) ⊗ ωπ))
∨

= π? ev?(TX) + (π?(Ωπ ⊗ Ln+1))
∨

Using (1.13), we find

T vir = π? ev?(TX) + (π?(ωπ ⊗ Ln+1))
∨ − (π?(i?(OZ) ⊗ Ln+1))

∨

= π? ev?(TX)− π?(L
−1
n+1) − (π?(i?(OZ) ⊗ Ln+1))

∨

by Serre duality again. Since Ln+1 is trivial on Z , this implies that

T vir = π? ev?(TX)− π?(L
−1
n+1) − (π?i?(OZ ))∨

(An immediate consequence of this, which we will not need, is that the logarithmic virtual

tangent bundle of Xg,n,d with respect to the virtual divisor π(Z) is π? ev?(TX)−π?(L−1
n+1).)

Since

E = TX − 1

if we set

T cs = −π?(L−1
n+1 − 1) − (π?i?OZ)∨

then

T vir = π? ev?(E) + T cs (2.16)
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2.5.4 The main term

This is

∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ); (chk(π? ev? E) + chk(T cs))Tds (T vir)〉g,n,d (2.17)

We call the terms involving π? ev?E the target space terms, and those involving T cs the

complex structure terms. This is because, as we saw in section 2.5.3, the terms involving

T cs roughly speaking arise from deformations of the complex structure on the domain of

the stable map.

The complex structure terms

We have

chk(T cs) = − chk(π?(L
−1
n+1 − 1)) + (−)k+1 chk(π?i?OZ)

= −π?[ch(L−1
n+1 − 1︸ ︷︷ ︸
log term

+(−)ki?OZ︸ ︷︷ ︸
nodal term

) ·Td∨ (Ωπ)]k+1
(2.18)

by Grothendieck–Riemann–Roch again, where [ · ]r denotes the degree-2r component of a

cohomology class.

Using (1.18), we see that the log term in (2.18) is

−π?[(e−ψ − 1)(Td∨ (Ln+1) + codim-1 + codim-2 )]k+1

where codim-1 and codim-2 are as in Proposition 1.6.3. The codim-1 terms are sup-

ported on the divisorsDi = σi(Xg,n,d) and the codim-2 terms are supported on the singular

locus Z . But e−ψ − 1 vanishes on Di and on Z , since it is divisible by ψ, so the log term is

−π?
[
(e−ψ − 1)

ψ

eψ − 1

]

k+1
= −π?

[
(−ψ)k+1

k!

]
(2.19)
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We calculate the nodal term in (2.18) using Grothendieck–Riemann–Roch again. It is

(−)k+1π?[ch(i?OZ)(Td∨ (Ln+1)+ codim-1 + codim-2 )]k+1

= (−)k+1π?

[
(i?Td∨ (−L+−L−))

(
Td∨ (Ln+1)+ codim-1 +

(
1

Td∨ (i?OZ)
−1

))]

k+1

= (−)k+1π?i?

[
Td∨ (−L+−L−)

(
1+

1

Td∨ (i?i?OZ)
−1

)]

k−1

(2.20)

where we used the facts that the conormal bundle to Z in Xg,n+1,d is L+ ⊕ L−, that Ln+1

is trivial when restricted to Z and that Z misses the divisors Di. Since

i?i?OZ = (1 − L+)(1 − L−)

the nodal term (2.20) is

(−)k+1π?i?

[
Td∨ (−L+−L−)

(
Td∨ (L+)Td∨ (L−)

Td∨ (L+⊗L−)

)]

k−1
= (−)k+1π?i?

[
eψ++ψ−−1

ψ++ψ−

]

k−1

= π?i?

[
(−ψ+−ψ−)k−1

k!

]

+

(2.21)

where the [ · ]+ ensures that the formula is correct for k = 0. Combining (2.18), (2.19) and

(2.21) we find that

chk(T cs) = π?

[
−(−ψ)k+1

k!
+ i?

(−ψ+ − ψ−)k−1

k!

]

+
(2.22)

Thus the complex structure terms in (2.17) are

∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ), . . . , Ts(ψ);π?

[
−(−ψ)k+1

k!
+i?

(−ψ+−ψ−)k−1

k!

]

+
Tds (T vir)

〉

g,n,d

=
∑

g,n,d

Qd~g−1

n!

〈
π?(Ts(ψ)), . . . , π?(Ts(ψ)),

(
−(−ψ)k+1

k!

)
;Tds (π?T vir)

〉

g,n+1,d

+
∑

g,n,d

Qd~g−1

n!

〈
π?(Ts(ψ)), . . . , π?(Ts(ψ)), i?

[
(−ψ+−ψ−)k−1

k!

]

+
;Tds (π?T vir)

〉

g,n+1,d

(2.23)

The comparison result for universal cotangent lines (see e.g. [67, 54])

π?ψi = ψi − σi?OXg,n,d
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implies that

π?Ts(ψi) = Ts(ψi) − σi?

[
Ts(ψi)

ψi

]

+
(2.24)

Also,

π?T vir = T vir − Ω∨π

= T vir − L−1
n+1 +

n∑

i=1

(σi?OXg,n,d
)∨ + (i?OZ)∨

(2.25)

where we used (1.13) and (1.14), and so

Tds (π?T vir) = Tds (T vir)Tds (−L−1
n+1)Tds

( n∑

i=1

(σi?OXg,n,d
)∨

)
Tds ((i?OZ)∨)

Thus the complex structure terms (2.23) become

∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ)−σ1?

[
Ts(ψ)

ψ

]

+
, . . . ,

(
−(−ψ)k+1

k!

)
;Tds (π?T vir)

〉

g,n+1,d

+
∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ)−σ1?

[
Ts(ψ)

ψ

]

+
, . . . , i?

[
(−ψ+−ψ−)k−1

k!

]

+
;Tds (π?T vir)

〉

g,n+1,d

(2.26)

Since ψ vanishes on the divisors Di and on the singular locus Z , the first sum in (2.26) is

−
∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ), . . . , Ts(ψ),

(−ψ)k+1

k!
; Tds (T vir)Tds (−L−1

n+1)

〉

g,n+1,d

=−
∑

g,n,d

Qd~g−1

(n− 1)!

〈
Ts(ψ), . . . , Ts(ψ),

(−ψ)k+1

k!
Tds (−L−1); Tds (T vir)

〉

g,n,d

+
1

2~

〈
Ts, Ts,

(−ψ)k+1

k!
Tds (−L−1); Tds (T vir)

〉

0,3,0

+

〈
(−ψ)k+1

k!
Tds (−L−1); Tds (T vir)

〉

1,1,0

(2.27)

But ψ2 vanishes on both X0,3,0 and X1,1,0, so the exceptional terms in (2.27) vanish. The

first sum in (2.26) is therefore

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈
Ts(ψ), . . . , Ts(ψ),

(−ψ)k+1

k!
Tds (−L−1); Tds (T vir)

〉

g,n,d
(2.28)
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We compute the second sum in (2.26) by pulling back to the singular locus Z . The divisors

Di miss this locus and Ln+1 is trivial there, so the second sum in (2.26) becomes

∑

g,n,d

Qd~g−1

n!

∫

i?[Z]
Ts(ψ1) ∧ . . .∧

[
(−ψ+ − ψ−)k−1

k!

]

+
∧ Tds (i?T vir)Tds ((i?i?OZ)∨)

(2.29)

where we use the notation of section 1.6.2. The integration takes place over the singular

locus Z in Xg,n+1,d. Since the normal bundle to Z in Xg,n+1,d is L−1
+ ⊕ L−1

− , we have

Tds (i?T vir) Tds ((i?i?OZ )∨) = Tds (T vir
Z ) Tds (L−1

+ + L−1
− )Tds ((1 − L−1

+ )(1 − L−1
− ))

= Tds (T vir
Z ) Tds (L−1

+ ⊗ L−1
− )

Much as we did when processing the codimension-2 contributions in the proof of the quan-

tum Riemann–Roch theorem (see page 66), we compute (2.29) by pulling back along

Z̃Z red

∐
Z̃Z irr −

γred

‘

γirr−−−−−−−−→ Z

We know that

Z̃Z red =
∐

g=g++g−
n=n++n−
d=d++d−

Xg+,n++•,d+ ×X X0,1+•+◦,0 ×X Xg−,n−+◦,d−

and, in the notation of Lemma 1.6.1,

γ?redT vir
Z = p?+T vir

Xg+,n++•,d+
+ p?−T vir

Xg−,n−+◦,d−
− ev?∆ TX

Also,

Z̃Z irr = Xg−1,n+•+◦ ×X×X X0,1+•+◦,0

and

γ?irrT vir
Z = T vir

Xg−1,n+•+◦,d
− ev?∆ TX

Thus we can write (2.29) as

1

2

∑

g1,g2

∑

n1,n2

∑

d1,d2

Qd1+d2~g1+g2−1

n1! n2!

∑

r,s

ar,sg
αβ

〈
Ts, . . . , Ts,

φαψ
r
+√

Tds (TX)
; Tds (T vir)

〉

g1,n1+1,d1

×
〈

φβψ
s
−√

Tds (TX)
, Ts, . . . , Ts; Tds (T vir)

〉

g2,n2+1,d2

+
1

2

∑

g,n,d

Qd~g−1

n!

∑

r,s

ar,sg
αβ

〈
Ts, . . . , Ts,

φαψ
r
+√

Tds (TX)
,

φβψ
s
−√

Tds (TX)
; Tds (T vir)

〉

g−1,n+2,d

(2.30)



104 CHAPTER 2. QUANTUM EXTRAORDINARY COHOMOLOGY

where
∑

r,s

ar,sψ
r
+ψ

s
− =

(−ψ+ − ψ−)k−1

k!
Tds (L−1

+ ⊗ L−1
− ) ∈ Ω̃Ω?

MU [[ψ+, ψ−]]

If we write

Ts(z) =
∑

k

(Ts)
α
kφαz

k

then the affine-linear function pαk acts on Fock as

√
~√

Tds (TX)

∂

∂(Ts)
α
k

and so (2.30) is

−D−1
s

(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds

where
∑

r,s

A
α,r;β,s
k ψr+ψ

s
− = −gαβ (−ψ+ − ψ−)k−1

k!
Tds (L−1

+ ⊗ L−1
− ) (2.31)

The complex structure terms (2.23) are therefore

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈
Ts(ψ), . . . , Ts(ψ),

(−ψ)k+1

k!
Tds (−L−1); Tds (T vir)

〉

g,n,d

− D−1
s

(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds

(2.32)

Note that
∑

r,s

Aα,r;β,sk ψr+ψ
s
− = −gαβ ∂

∂sk

(
Tds (L−1

+ ⊗ L−1
− )− 1

−ψ+ − ψ−

)

= − ∂

∂sk

[
gαβ

u(−ψ+ − ψ−)

]

+

=
∂

∂sk

∑

r,s

Aα,r;β,sψr+ψ
s
−

The target space terms

It remains to calculate the target space terms

∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ); π?([ev

?(ch(E)) · Td∨ (Ωπ)]k+1)Tds (T vir)〉g,n,d (2.33)
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from (2.17). By (1.18), we have

Td∨ (Ωπ) = codim-0 + codim-1 + codim-2

where, as before,

codim-0 = Td∨ Ln+1

codim-1 = −
n∑

i=1

σi?

[
Td∨ (Li)

ψi

]

+

codim-2 = i?

[
1

ψ+ + ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

+

Thus (2.33) splits into codimension-0, codimension-1 and codimension-2 terms.

The codimension-1 terms in (2.33)

These are

−
∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ), . . . , Ts(ψ);π?

[
ev?(ch(E))

n∑

i=1

σi?

[
Td∨ (Li)

ψi

]

+

]

k+1
Tds (T vir)

〉

g,n,d

= −
∑

g,n,d

Qd~g−1

(n−1)!

〈[[
ch(E)

Td∨ (L)

ψ

]

k

]

+
Ts(ψ), Ts(ψ), . . . , Ts(ψ);Tds (T vir)

〉

g,n,d

(2.34)

The codimension-2 terms in (2.33)

These are

∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ);π?[ev

?(ch(E))· codim-2 ]k+1 Tds (T vir)〉g,n,d

=
∑

g,n,d

Qd~g−1

n!
〈π?(Ts(ψ)), . . . , π?(Ts(ψ)), [ev?(ch(E))· codim-2 ]k+1;Tds (π?T vir)〉g,n+1,d

which is

∑

g,n,d

Qd~g−1

n!

∫

i?[Z]

Ts(ψ1)∧. . .∧
[[

ch(E)

ψ++ψ−

(
Td∨ (L+)

ψ+
+

Td∨ (L−)

ψ−

)]

k−1

]

+
∧Tds (i?π?T vir)

(2.35)
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where the integration takes place over the singular locus Z ⊂ Xg,n+1,d. Now

i?π?T vir = T vir
Z + L−1

+ ⊗ L−1
−

so, pulling back to Z̃Z red
∐ Z̃Z irr as before, we find that the codimension-2 terms (2.35) can

be written as

1

2

∑

g1,g2

∑

n1,n2

∑

d1,d2

Qd1+d2~g1+g2−1

n1! n2!

∑

r,s

bαβr,s

〈
Ts, . . . , Ts,

φαψ
r
+√

Tds (TX)
; Tds (T vir)

〉

g1,n1+1,d1

×
〈

φβψ
s
−√

Tds (TX)
, Ts, . . . , Ts; Tds (T vir)

〉

g2,n2+1,d2

+
1

2

∑

g,n,d

Qd~g−1

n!

∑

r,s

bαβr,s

〈
Ts, . . . , Ts,

φαψ
r
+√

Tds (TX)
,

φβψ
s
−√

Tds (TX)
; Tds (T vir)

〉

g−1,n+2,d

(2.36)

where

∑

r,s

bαβr,sψ
r
+ψ

s
− =

([
1

ψ+ + ψ−

[
ch(E)

Td∨ (L+)

ψ+
+ ch(E)

Td∨ (L−)

ψ−

]

k

]

+
Tds (L−1

+ ⊗ L−1
− )

)
αβ

The right-hand side here means that we take the element of End(H?(X))[[ψ+, ψ−]] given by

multiplication by
[

1

ψ+ + ψ−

[
ch(E)

Td∨ (L+)

ψ+
+ ch(E)

Td∨ (L−)

ψ−

]

k

]

+
Tds (L−1

+ ⊗ L−1
− )

write it as a matrix-valued power series, with entries
([

1

ψ+ + ψ−

[
ch(E)

Td∨ (L+)

ψ+
+ ch(E)

Td∨ (L−)

ψ−

]

k

]

+
Tds (L−1

+ ⊗ L−1
− )

)
α

β

with respect to the basis {φα}, and raise the index using the metric. It will turn out to be

convenient to write

bαβr,s = B
α,r;β,s
k + C

α,r;β,s
k

where

∑

r,s

Bα,r;β,sk ψr+ψ
s
− =

([
1

ψ+ + ψ−

[
ch(E)

Td∨ (L+)

ψ+
+ ch(E)

Td∨ (L−)

ψ−

]

k

]

+

)
αβ

∑

r,s

Cα,r;β,sk ψr+ψ
s
− =

([
1

ψ+ + ψ−

[
ch(E)

Td∨ (L+)

ψ+
+ ch(E)

Td∨ (L−)

ψ−

]

k

]

+
(Tds (L−1

+ ⊗ L−1
− ) − 1)

)
αβ

(2.37)
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Thus the codimension-2 terms in (2.33) are

D−1
s

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds + D−1

s

(1

2

∑

r,s

Cα,r;β,sk pαr p
β
s

)
Ds (2.38)

The codimension-0 terms in (2.33)

These are

∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ); π?([ev

?(ch(E)) · Td∨ (Ln+1)]k+1) Tds (T vir)〉g,n,d

=
∑

g,n,d

Qd~g−1

n!
〈π?(Ts(ψ)), . . . , π?(Ts(ψ)), [ch(E)Td∨ (L)]k+1; Tds (π?T vir)〉g,n+1,d

Using (2.24) and the fact that Ln+1 is trivial on the divisors Di = σi(Xg,n,d), we can write

this as

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[
chk+1(E)Ts(ψ)

ψ

]

+
, Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ), [ch(E)Td∨ (L)]k+1; Tds (π?T vir)〉g,n+1,d

(2.39)

We concentrate on the second sum in (2.39). Applying (2.25) we find that

Tds (π?T vir) = Tds (T vir)Tds (−L−1
n+1)Tds

( n∑

i=1

(σi?OXg,n,d
)∨

)
Tds ((i?OZ)∨) (2.40)

Grothendieck–Riemann–Roch calculations parallel to that on pages 62–63 yield

Tds

( n∑

i=1

(σi?OXg,n,d
)∨

)
= 1 −

n∑

i=1

σi?

(
1

ψi

(
1

Tds (L−1
i )

− 1

))

and

Tds ((i?OZ)∨) = 1 + i?

[
1

ψ+ψ−

(
Tds (L−1

+ ⊗ L−1
− )

Tds (L−1
+ )Tds (L−1

− )
− 1

)]
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so

Tds (−L−1
n+1)Tds

( n∑

i=1

(σi?OXg,n,d
)∨q

)
Tds ((i?OZ )∨)

= (1 + Tds (−L−1
n+1) − 1)×

(
1 −

n∑

i=1

σi?

[
1

ψi

(
1

Tds (L−1
i )

− 1

)])

×
(

1 + i?

[
1

ψ+ψ−

(
Tds (L−1

+ ⊗ L−1
− )

Tds (L−1
+ )Tds (L−1

− )
− 1

)])

= Tds (−L−1
n+1) −

n∑

i=1

σi?

[
1

ψi

(
1

Tds (L−1
i )

− 1

)]

+ i?

[
1

ψ+ψ−

(
Tds (L−1

+ ⊗ L−1
− )

Tds (L−1
+ )Tds (L−1

− )
− 1

)]

(2.41)

Here we used the fact that Tds (−L−1
n+1) − 1, which is divisible by ψn+1, vanishes on the

divisors Di and on Z . Combining (2.40) and (2.41) we see that we can divide the second

sum in (2.39) into three parts, which correspond to the three summands in (2.41). We call

the part of (2.39) corresponding to the first summand in (2.41) the smooth contribution, the

part of (2.39) corresponding to the second summand in (2.41) the divisor contribution and

the part of (2.39) corresponding to the third summand in (2.41) the nodal contribution. We

evaluate these parts separately.

The divisor contribution to (2.39) is

−
∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ), . . . , Ts(ψ), [ch(E)Td∨ (L)]k+1;

Tds (T vir)
n∑

i=1

σi?

[
1

ψi

(
1

Tds (L−1
i )

− 1

)]〉

g,n+1,d

(2.42)

We evaluate this by pulling back along the maps σi. Since the normal bundle to the divisor

Di in Xg,n+1,d is L−1
i ,

Tds (σ?i T vir) = Tds (T vir)Tds (L−1
i )
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and since ψi and ψn+1 vanish on Di, (2.42) becomes

−
∑

g,n,d

Qd~g−1

(n−1)!

〈
chk+1(E)

ψ

(
1

Tds (L−1)
−1

)
Ts(0), Ts(ψ), . . . , Ts(ψ);

Tds (T vir)Tds (L−1
1 )

〉

g,n,d

= −
∑

g,n,d

Qd~g−1

(n−1)!

〈
chk+1(E)

ψ
(1−Tds (L−1))Ts(0), Ts(ψ), . . . , Ts(ψ);Tds (T vir)

〉

g,n,d

(2.43)

The nodal contribution to (2.39) is

∑

g,n,d

Qd~g−1

n!

〈
Ts(ψ), . . . , Ts(ψ), [ch(E)Td∨ (L)]k+1;

Tds (T vir)i?

[
1

ψ+ψ−

(
Tds (L−1

+ ⊗ L−1
− )

Tds (L−1
+ )Tds (L−1

− )
− 1

)]〉

g,n+1,d

Since the normal bundle to Z in Xg,n+1,d is L−1
+ ⊕L−1

− , and since Ln+1 is trivial on Z , this

is

∑

g,n,d

Qd~g−1

n!

∫

i?[Z]
Ts(ψ1) ∧ . . .∧ Ts(ψn) ∧

[
chk+1(E)

ψ+ψ−

(
Tds (L−1

+ ⊗ L−1
− )

Tds (L−1
+ )Tds (L−1

− )
− 1

)]

∧ Tds (T vir
Z ) ∧ Tds (L−1

+ + L−1
− )

=
∑

g,n,d

Qd~g−1

n!

∫

i?[Z]
Ts(ψ1)∧ . . .∧ Ts(ψn) ∧ Tds (T vir

Z )

∧
[
chk+1(E)

ψ+ψ−
(Tds (L−1

+ ⊗ L−1
− ) − Tds (L−1

+ )Tds (L−1
− ))

]

Processing this as before, we find that the nodal contribution to (2.39) is

D−1
s

(1

2

∑

r,s

Dα,r;β,s
k pαr p

β
s

)
Ds (2.44)

where

∑

r,s

D
α,r;β,s
k ψr+ψ

s
− =

(
chk+1(E)

ψ+ψ−
(Tds (L−1

+ ⊗ L−1
− ) − Tds (L−1

+ )Tds (L−1
− ))

)
αβ

(2.45)

The smooth contribution to (2.39) is

∑

g,n,d

Qd~g−1

n!
〈Ts(ψ), . . . , Ts(ψ), [ch(E)Td∨ (L)]k+1; Tds (T vir)Tds (−L−1

n+1)〉g,n+1,d
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Renumbering, this is

∑

g,n,d

Qd~g−1

(n − 1)!
〈[ch(E)Td∨ (L)]k+1 Tds (−L−1), Ts(ψ), . . . , Ts(ψ); Tds (T vir)〉g,n,d

− 1

2~
〈[ch(E)Td∨ (L)]k+1 Tds (−L−1), Ts(ψ), Ts(ψ); Tds (T vir)〉0,3,0

− 〈[ch(E)Td∨ (L)]k+1 Tds (−L−1); Tds (T vir)〉1,1,0

(2.46)

Using the facts that

- X0,3,0 = X

- [X0,3,0] is the fundamental class of X

- All universal cotangent lines over X0,3,0 are trivial

- T vir
X0,3,0

= TX

we can evaluate the first exceptional term in (2.46):

− 1

2~
〈[ch(E)Td∨ (L)]k+1 Tds (−L−1), Ts(ψ), Ts(ψ); Tds (T vir)〉0,3,0

= − 1

2~

∫

X
chk+1(E) ∧ (Ts)0 ∧ (Ts)0 ∧ Tds (TX)

= − 1

2~

∫

X
chk+1(E) ∧ q0 ∧ q0

= − 1

2~
(chk+1(E)q0, q0)

(2.47)

To evaluate the second exceptional term in (2.46) we need to compute Tds (T vir
X1,1,0

). This is

exp
(∑

l>0

sl chl(T vir
X1,1,0

)
)

which, using (2.16) and (2.22), is

exp
(∑

l>0

sl chl(E1,1,0)
)

exp

(∑

l>0

slπ?

[
−(−ψ)l+1

l!
+ i?

(−ψ+ − ψ−)l−1

l!

])
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Applying the discussion on page 68 yields

Tds (T vir
X1,1,0

) = exp
(∑

l>0

slψ1 chl−1(E)
)

exp(−s1π?(ψ2)
2 + s1π?i?1)

= 1 + ψ1

∑

l>0

sl chl−1(E)− s1π?(ψ2)
2 + s1π?i?1

Similarly

Tds (−L−1
1 ) = 1 + s1ψ1

and so, applying the discussion on page 68 once again,

−〈[ch(E)Td∨ (L)]k+1 Tds (−L−1); Tds (T vir)〉1,1,0

= −
∫

X×
—
MM1,1

(
chk+1(E)− chk(E)

2
ψ1

)
(1 + s1ψ1)(e(TX) + ψ1cD−1(TX))

×
(
1 + ψ1

∑

l>0

sl chl−1(E)− s1π?(ψ2)
2 + s1π?i?1

)

=
1

48

∫

X

chk(E)e(TX)− s1
24

∫

X

chk+1(E)e(TX)

+
1

24

∫

X
chk+1(E)cD−1(TX)− 1

24

∫

X
chk+1(E)

(∑

l>0

sl chl−1(E)
)
e(TX)

+ s1

∫

X
chk+1(E)e(TX)

∫
—
MM1,1

π?(ψ
2
2) − s1

∫

X
chk+1(E)e(TX)

∫
—
MM1,1

π?i?1

Now
∫

—
MM1,1

π?(ψ
2
2) =

∫
—
MM1,2

ψ2
2

=
1

24
(string equation)

and
∫

—
MM1,1

π?i?1 =

∫

i?[Z]
1

=
1

2

∫

Z̃Z
1

=
1

2
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so

−〈[ch(E)Td∨ (L)]k+1 Tds (−L−1); Tds (T vir)〉1,1,0

=
1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X
chk+1(E)

(∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X
chk+1(E)e(TX)

Combining this with (2.47), (2.46), (2.44), (2.43), (2.39), (2.38), (2.34), and (2.33) we see

that the target space terms in (2.17) are

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[
chk+1(E)Ts(ψ)

ψ

]

+
, Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

(n− 1)!
〈[ch(E)Td∨ (L)]k+1 Tds (−L−1), Ts(ψ), . . . , Ts(ψ); Tds (T vir)〉g,n,d

− 1

2~
(chk+1(E)q0, q0)

+
1

48

∫

X
chk(E)e(TX)− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)

+
1

24

∫

X
chk+1(E)cD−1(TX)− s1

2

∫

X
chk+1(E)e(TX)

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈
chk+1(E)

ψ
(1 − Tds (L−1))Ts(0), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[[
ch(E)

Td∨ (L)

ψ

]

k

]

+
Ts(ψ), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+ D−1
s

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds + D−1

s

(1

2

∑

r,s

Cα,r;β,sk pαr p
β
s

)
Ds

+ D−1
s

(1

2

∑

r,s

Dα,r;β,s
k pαr p

β
s

)
Ds

(2.48)
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2.5.5 Collecting everything

Our expression (2.14) for D−1
s (∂Ds/∂sk) is the sum of (2.15), (2.32) and (2.48). The second

term in (2.15) cancels with the first term in (2.32), so

D−1
s

∂Ds

∂sk
= −

∑

g,n,d

Qd~g−1

(n− 1)!

〈
chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[
chk+1(E)Ts(ψ)

ψ

]

+
, Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

+
∑

g,n,d

Qd~g−1

(n− 1)!
〈[ch(E)Td∨ (L)]k+1 Tds (−L−1), Ts(ψ), . . . , Ts(ψ); Tds (T vir)〉g,n,d

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈[[
ch(E)

Td∨ (L)

ψ

]

k

]

+
Ts(ψ), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

− D−1
s

(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds + D−1

s

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds

+ D−1
s

(1

2

∑

r,s

Cα,r;β,sk pαr p
β
s

)
Ds + D−1

s

(1

2

∑

r,s

Dα,r;β,s
k pαr p

β
s

)
Ds

−
∑

g,n,d

Qd~g−1

(n− 1)!

〈
chk+1(E)

ψ
(1 − Tds (L−1))Ts(0), Ts(ψ), . . . , Ts(ψ); Tds (T vir)

〉

g,n,d

− 1

2~
(chk+1(E)q0, q0) +

1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X
chk+1(E)e(TX)

The first four terms together insert

− chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ)−

[
chk+1(E)Ts(ψ)

ψ

]

+
+ [ch(E)Td∨ (L)]k+1 Tds (−L−1)

−
[[

ch(E)
Td∨ (L)

ψ

]

k

]

+
Ts(ψ)
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at the first marked point. This is

− chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ)−

[[
ch(E)

Td∨ (L)

ψ

]

k
Ts(ψ)

]

+

+

[[
ch(E)

Td∨ (L)

ψ

]

k
ψTds (−L−1)

]

+

= − chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ)−

[[
ch(E)

Td∨ (L)

ψ

]

k
(Ts(ψ) + u(−ψ))

]

+

= − chk(TX)

2
√

Tds (TX)
(t0(ψ)− ψ)−

[[
ch(E)

Td∨ (L)

ψ

]

k

q0(ψ)√
Tds (TX)

]

+

or in other words

−
[
∆k(ψ)

q0(ψ)√
Tds (TX)

]

+

where

∆k(ψ) =

[
ch(E)

Td∨ (L)

ψ

]

k
+

chk(E)

2

Thus

D−1
s

∂Ds

∂sk
=− 1

2~
(chk+1(E)q0, q0)

−
∑

g,n,d

Qd~g−1

(n−1)!

〈[
∆k(ψ)

q0(ψ)√
Tds (TX)

]

+
, Ts(ψ), . . . , Ts(ψ);Tds (T vir)

〉

g,n,d

−
∑

g,n,d

Qd~g−1

(n−1)!

〈
chk+1(E)

ψ
(1−Tds (L−1))Ts(0), Ts(ψ), . . . , Ts(ψ);Tds (T vir)

〉

g,n,d

−D−1
s

(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds+D−1

s

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds

+D−1
s

(1

2

∑

r,s

Cα,r;β,sk pαr p
β
s

)
Ds+D−1

s

(1

2

∑

r,s

Dα,r;β,s
k pαr p

β
s

)
Ds

+
1

48

∫

X
chk(E)e(TX)− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)

+
1

24

∫

X
chk+1(E)cD−1(TX)− s1

2

∫

X
chk+1(E)e(TX)

(2.49)
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2.5.6 Hunting the quantized operators

Using the metric to lower the index on the matrix of multiplication by chk+1(E), we can

write the first term in (2.49) as

−D−1
s

(
1

2~
(chk+1(E))αβq

α
0 q

β
0

)
Ds

since the affine-linear function qα0 acts on Fock as multiplication by

qα0√
~

If we set

∆k(ψ) =
∑

m≥0

∆k,2m−1ψ
2m−1 ∆k,2m−1 ∈ H?(X ; Ω̃Ω?

MU)

and define pε−1 to be zero for all ε then the second term in (2.49) is

−D−1
s

(∑

m,n

(∆k,2m−1)
ε
αq

α
np

ε
n+2m−1

)
Ds

The third term in (2.49) is

−D−1
s

(∑

l

cl(chk+1(E))αβq
β
0 p

α
l

)
Ds

where
∑

l

clψ
l =

1 − Tds (L−1)

ψ

=

[
1

u(−ψ)

]

+

so

∂Ds

∂sk
=−( 1

2
(chk+1(E))αβq

α
0 q

β
0 )Ds −

(∑

l

cl(chk+1(E))αβq
β
0 p

α
l

)
Ds

−
(∑

m,n

(∆k,2m−1)
ε
αq

α
np

ε
n+2m−1

)
Ds

−
(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds +

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds

+
(1

2

∑

r,s

Cα,r;β,sk pαr p
β
s

)
Ds +

(1

2

∑

r,s

Dα,r;β,s
k pαr p

β
s

)
Ds

+




1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X
chk+1(E)e(TX)


Ds

(2.50)
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Making the substitution

qαr = q̄qαr −
∑

s

Aα,r;β,spβs

we find that

− 1

2
(chk+1(E))αβq

α
0 q

β
0 =− 1

2
(chk+1(E))αβ q̄q

α
0 q̄q

β
0 + (chk+1(E))αβ

∑

l

Aα,0;ε,lq̄q
β
0p

ε
l

− 1

2
(chk+1(E))αβ

∑

r,s

Aα,0;µ,rAβ,0;ν,spµr p
ν
s

Equation (2.11) gives
∑

l

Aα,0;ε,lψl =

[
gαε

u(−ψ)

]

+

= gαε
∑

l

clψ
l

so

Aα,0;ε,l = gαεcl

Thus

− 1

2
(chk+1(E))αβq

α
0 q

β
0 =− 1

2
(chk+1(E))αβ q̄q

α
0 q̄q

β
0 +

∑

l

(chk+1(E))εβclq̄q
β
0p
ε
l

− 1

2

∑

r,s

(chk+1(E))µνcrcsp
µ
r p
ν
s

Also,

−
∑

l

cl(chk+1(E))αβq
β
0 p

α
l = −

∑

l

cl(chk+1(E))αβ q̄q
β
0p
α
l +

∑

r,s

cr(chk+1(E))αβA
β,0;ν,spνsp

α
r

= −
∑

l

cl(chk+1(E))αβ q̄q
β
0p
α
l +

∑

r,s

(chk+1(E))µνcrcsp
µ
r p
ν
s

so the first two terms in (2.50) together give

−( 1
2
(chk+1(E))αβ q̄q

α
0 q̄q

β
0 )Ds +

(1

2

∑

r,s

(chk+1(E))µνcrcsp
µ
r p
ν
s

)
Ds (2.51)

The third term in (2.50) is

−
(∑

m,n

(∆k,2m−1)
ε
αq̄q

α
np

ε
n+2m−1

)
Ds +

( ∑

l,m,n

(∆k,2m−1)
ε
αA

α,n;β,lpβl p
ε
n+2m−1

)
Ds (2.52)
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Using the symmetry of Aα,n;β,l and the fact that multiplication by ∆k,2m−1 is self-adjoint,

we can write the second term in (2.52) as

(1

2

∑

l,m,n

(∆k,2m−1)
ε
αA

α,n;β,l(pβl p
ε
n+2m−1 + pβl+2m−1p

ε
n)

)
Ds

But

1

2

∑

l,m,n

(∆k,2m−1)
ε
αA

α,n;β,l(ψl+[ψn+2m−1
− ]+ + [ψl+2m−1

+ ]+ψ
n
−)

=
1

2

(∑

m

(∆k,2m−1)
ε
α(ψ

2m−1
+ + ψ2m−1

− )
)( ∑

l,n≥0

Aα,n;β,lψl+ψ
n
−

)

− 1

2

∑

l

(∆k,−1)
ε
αA

α,0;β,l(ψl+ψ
−1
− + ψ−1

+ ψl−)

=
1

2
(∆k(ψ+) + ∆k(ψ−))εβ

[
1

u(−ψ+ − ψ−)

]

+

− (chk+1(E))εβ

2

(
1

ψ−

[
1

u(−ψ+)

]

+
+

1

ψ+

[
1

u(−ψ−)

]

+

)

(2.53)

Comparing this with (2.37), we see that we can write it in terms of the Cε,r;β,sk . The right-

hand side of equation (2.53) is

− 1

2
(∆k(ψ+)+∆k(ψ−))εβ

Tds (L−1
+ ⊗L−1

− )−1

ψ++ψ−
+

(chk+1(E))εβ

2ψ+ψ−
(Tds (L−1

+ )−1+Tds (L−1
− )−1)

= − 1

2

[
1

ψ++ψ−
(∆k(ψ+)+∆k(ψ−))

]
εβ

+
(Tds (L−1

+ ⊗L−1
− )−1)

− 1

2

1

ψ++ψ−

(
chk+1(E)

ψ+
+

chk+1(E)

ψ−

)
εβ

(Tds (L−1
+ ⊗L−1

− )−1)

+
(chk+1(E))εβ

2ψ+ψ−
(Tds (L−1

+ )+Tds (L−1
− )−2)

= − 1

2

∑

r,s

Cε,r;β,sk ψr+ψ
s
−−

(chk+1(E))εβ

2ψ+ψ−
(Tds (L−1

+ ⊗L−1
− )−Tds (L−1

+ )−Tds (L−1
− )+1)

= − 1

2

∑

r,s

Cε,r;β,sk ψr+ψ
s
−−

(chk+1(E))εβ

2ψ+ψ−
(Tds (L−1

+ ⊗L−1
− )−Tds (L−1

+ )Tds (L−1
− ))

− (chk+1(E))εβ

2ψ+ψ−
(Tds (L−1

+ )−1)(Tds (L−1
− )−1)
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Using (2.45), we can write this as

− 1

2

∑

r,s

Cε,r;β,sk ψr+ψ
s
− − 1

2

∑

r,s

Dε,r;β,s
k ψr+ψ

s
− − 1

2
(chk+1(E))εβ

[
1

u(−ψ+)

]

+

[
1

u(−ψ−)

]

+

or in other words as

− 1

2

∑

r,s

Cε,r;β,sk ψr+ψ
s
− − 1

2

∑

r,s

Dε,r;β,s
k ψr+ψ

s
− − 1

2

∑

r,s

(chk+1(E))εβcrcsψ
r
+ψ

s
−

Thus the second term in (2.52) is

−
(1

2

∑

r,s

Cε,r;β,sk pεrp
β
s

)
Ds −

(1

2

∑

r,s

Dε,r;β,s
k pεrp

β
s

)
Ds −

(1

2

∑

r,s

(chk+1(E))εβcrcsp
ε
rp
β
s

)
Ds

Combining this with (2.52),(2.51), and (2.50), we find that

∂Ds

∂sk
=−( 1

2
(chk+1(E))αβ q̄q

α
0 q̄q

β
0 )Ds −

(∑

m,n

(∆k,2m−1)
ε
αq̄q

α
np

ε
n+2m−1

)
Ds

−
(1

2

∑

r,s

Aα,r;β,sk pαr p
β
s

)
Ds +

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds

+




1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X
chk+1(E)e(TX)


Ds

(2.54)

But

Gs = exp

(
~

2

∑

r,s

Aα,r;β,s∂α,r∂β,s

)
Ds

and

A
α,r;β,s
k =

∂

∂sk
Aα,r;β,s

so (2.54) gives

∂Gs

∂sk
=− exp

(
~

2

∑

r,s

Aµ,r;ν,s∂µ,r∂ν,s

)
( 1
2
(chk+1(E))αβ q̄q

α
0 q̄q

β
0 )Ds

− exp

(
~

2

∑

r,s

Aµ,r;ν,s∂µ,r∂ν,s

)(∑

m,n

(∆k,2m−1)
ε
αq̄q

α
np

ε
n+2m−1

)
Ds

+ exp

(
~

2

∑

r,s

Aµ,r;ν,s∂µ,r∂ν,s

)(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Ds

+




1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X
chk+1(E)e(TX)


Gs
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We know from the discussion on pages 92–94 that, roughly speaking, commuting q̄qαr past

the exponential term turns it into qαr . In our situation there is also a cocycle contribution

which comes from commuting the qα0 q
β
0 terms past the exponential term.

∂Gs

∂sk
= −( 1

2
(chk+1(E))αβq

α
0 q

β
0 )Gs − C

(1

2

∑

r,s

Aµ,r;ν,spµr p
ν
s ,

1

2
(chk+1(E))αβq

α
0 q

β
0

)
Gs

−
(∑

m,n

(∆k,2m−1)
ε
αq

α
np

ε
n+2m−1

)
Gs +

(1

2

∑

r,s

Bα,r;β,sk pαr p
β
s

)
Gs

+




1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)− s1

2

∫

X

chk+1(E)e(TX)


Gs

(2.55)

Since

Aα,0;β,0 = −s1gαβ

we have

−C
(1

2

∑

r,s

Aµ,r;ν,spµr p
ν
s ,

1

2
(chk+1(E))αβq

α
0 q

β
0

)
Gs =

s1
2

str(chk+1(E))Gs

=

(
s1
2

∫

X
chk+1(E)e(TX)

)
Gs

This cancels with the fourth exceptional term in (2.55). Rewriting (2.55) in the notation of

Example 1.3.3.1 gives

∂Gs

∂sk
=

(
1

2~
Ω0((∆kq)(−z), q(z))− ∂∆k

Gs +
~

2
(∂ ⊗∆k

∂)

)
Gs

+




1

48

∫

X
chk(E)e(TX) +

1

24

∫

X
chk+1(E)cD−1(TX)

− 1

24

∫

X

(
chk+1(E)

∑

l>0

sl chl−1(E)
)
e(TX)


Gs

But Example 1.3.3.1 shows that

1

2~
Ωs((∆kq)(−z), q(z)) − ∂∆k

Ds +
~

2
(∂ ⊗∆k

∂) = ∆̂k∆k

and we know that

∆k(ψ) =

[
ch(E)

Td∨ (L)

ψ

]

k
+

chk(E)

2

=
∑

2m+r=k
r,m≥0

B2m

(2m)!
chr(E)ψ2m−1
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Thus we have established (2.13). The proof is complete. 2
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Appendix A

Many things are well-defined

Proposition A.0.1.

eF
1(τ )ŜS−1

τ Aτ

is well-defined as a formal function of t and τ near t = 0, τ = 0. (Theorem 1.5.1 in fact

implies that it does not depend on τ .)

Proof. We work over the ground ring

Λ = C[[Q]]

equipped with the Q-adic topology, and with the symplectic vector space

H =
{∑

k∈Z

hkz
k : hk ∈ H?(X ; Λ), hk −→ 0 in the topology of Λ as k −→ ∞

}

Sτ (z) certainly gives a well-defined linear transformation from H to itself. Corollary 1.4.2

shows that this is an element of the loop group, so the quantization ŜS τ makes sense.

Define the (~, t̄t, τ, Q)-degree of a monomial

Qd~g−1(t̄tα1
i1

)j1 . . . (t̄tαn

im
)jm(τβ1)k1 . . . (τβn)kn

to be (g−1, j1+. . .+jm, k1+. . .+kn, d). For the reasons discussed on page 38, this quantity

has invariant meaning. The moduli spaces X0,0,0 and X1,0,0 are empty, so if logAτ contains
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a monomial of (~, t̄t, τ, Q)-degree (a, b, c, 0) then at least one of a, b, and c is strictly positive.

From Proposition 1.3.2 we have that

(ŜS−1
τ Aτ )(q) = exp

(
WSτ

(q)

2~

)
Aτ ([Sτq]+)

The substitution

q̄q = [Sτq]+

sets

t̄t = [Sτt]+ − [Sτz]+ + z

For any v

([Sτz]+, v) = [z(Sτ1, v)]+

=

[
z(1, v) + z

〈〈
1

z − ψ
, v

〉〉

0,2
(τ)

]

+

= (z, v) +
∑

n,d

Qd

n!
〈1, v, τ, . . . , τ〉0,n+2,d

= (z, v) + 〈1, v, τ〉0,3,0 (by the string equation)

= (z + τ, v)

and so

[Sτz]+ = z + τ

This gives

t̄t = [Sτ t]+ − τ

and therefore Aτ ([Sτq]+) is well-defined as a formal function of t and τ near t = 0, τ = 0.

From above, we see that if logAτ ([Sτq]+) — regarded as a formal function of t and τ —

contains a monomial of (~, t, τ, Q)-degree (a, b, c, 0) then at least one of a, b, and c is strictly

positive.

It is clear from Proposition 1.4.1 that

WSτ
(q) ≡ 0 modQ, τ

Thus

(ŜS−1
τ Aτ )(q) = exp

(
WSτ

(q)

2~
+ logAτ ([Sτq]+)

)
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is the exponential of a power series containing only monomials of (~, t, τ, Q)-degree (a, b, c, d)

such that either at least one of a, b and c is strictly positive or d 6= 0. This implies that

eF
1(τ )ŜS−1

τ Aτ

is well-defined as a formal function of t and τ near t = 0, τ = 0. �

Proposition A.0.2.

exp

(∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
(chl(E)z2m−1)

∧
)

exp
(∑

l>0

sl−1(chl(E)/z)
∧)DX

is well-defined as a formal function of t which takes values in Λ = C[[Q]][[s0, s1, . . .]][[~, ~−1]].

Proof. We work over the ground ring

Λ = C[[Q]][[s0, s1, . . .]]

equipped with the topology coming from the norm

‖Qdsj1i1 . . . s
jn
in
‖ = 2−

R

d
ω−i1j1−...−injn

where ω is the symplectic form on X . The symplectic vector space H in this context is

H =
{∑

k∈Z

hkz
k : hk ∈ H?(X ; Λ), hk −→ 0 in the topology of Λ as k −→ ∞

}

It is clear that multiplication by

S = exp

(∑

l>0

sl−1
chl(E)

z

)

defines a linear transformation from H to itself, and that the same is true for multiplication

by

R = exp

(∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
chl(E)z2m−1

)

Multiplication by a cohomology class gives a linear transformation of H?(X) which is self-

adjoint with respect to the Poincaré pairing, so multiplication by chl(E)z2m−1 gives an

infinitesimal symplectomorphism of H. S and R are therefore elements of the loop group,

and so the quantizations ŜS and R̂R make sense.
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We write

S = TU

where

T = exp

(∑

l>1

sl−1
chl(E)

z

)

U = exp

(
s0

ch1(E)

z

)

(We will need to treat s0 differently from s1, s2, . . . since ‖s0‖ = 1, whereas high powers of

s1, s2, . . . have small norm.) Example 1.3.3.3 shows that the effect of the divisor flow ÛU on

DX is to replace Qd by Qd exp(s0〈ch1(E), ρ〉) and then to multiply DX by a function of s0

(cf Corollary 1.8.2). Thus ÛUDX is well-defined as a formal function of t taking values in

Λ[[~, ~−1]].

Recall that

(T̂TF )(q) = exp

(
WT (q)

2~

)
F ([T−1q]+) (A.1)

(see Proposition 1.3.2). Making the change-of-variables

q [T−1q]+

takes

t [T−1t]+ +
∑

l≥1

sl chl+1(E)

Since ÛUDX is well-defined as a formal function of t taking values in Λ[[~, ~−1]], and since

the shift
∑

l≥1 sl chl+1(E) is “small”,

(ÛUDX)([T−1q]+)

is well-defined as a formal function of t taking values in Λ[[~, ~−1]]. It remains to deal with

the exp(WT (q)/2~) term in (A.1). Since

T (−w)T ?(−z) − I

z + w
≡ 0 mod s1, s2 . . .

we have

WT (q) ≡ 0 mod s1, s2 . . .
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Thus

(ŜSDX)(q) = (T̂T ÛUDX)(q)

= exp

(
WT (q)

2~

)
(ÛUDX)([T−1q]+)

is well-defined as a formal function of t taking values in Λ[[~, ~−1]].

Recall further that

(R̂RG)(q) =

[
exp

(
~VR(∂q)

2

)
G
]
(R−1q)

(see Proposition 1.3.3). Since

∑

k,l

(−)k+lVklw
kzl =

R?(w)R(z) − I

z +w

we see that

‖Vkl‖ ≤ 2−k−l−1

Thus if G is a formal function of t taking values in Λ[[~, ~−1]] then

exp

(
~VR(∂q)

2

)
G

is well-defined as a formal function of t taking values in Λ[[~, ~−1]]. The change-of-variables

q R−1q

takes

t R−1t− R−1z + z

But

−R−1z + z ≡ 0 mod s1, s2, . . .

(so in particular it is small) and therefore

(R̂RG)(q) =

[
exp

(
~VR(∂q)

2

)
G
]
(R−1q)

is well-defined as a formal function of t taking values in Λ[[~, ~−1]]. Taking G = ŜSDX , we

are done. �
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Proposition A.0.3. Gs is well-defined as a formal function of t which takes values in

Ω̃Ω?
MU [[~, ~−1]].

Proof. Recall that we work over the ground ring

Ω̃Ω?
MU = C[[Q]] ⊗ C[[s1, s2, . . .]]

equipped with the topology coming from the norm

‖Qdsj1i1 . . . s
jn
in
‖ = 2−

R

d
ω−i1j1−...−injn

where ω is the symplectic form on X . Since

∑

r,s

Aα,r;β,sxrys = −
[

gαβ

u(−x− y)

]

+

= gαβ


exp

(∑

k>0

sk(−x− y)k
)

x+ y




+

we see that

‖Aα,r;β,s‖ ≤ 2−r−s−1

The discussion on page 91 shows that Ds is well-defined as a formal function of t which

takes values in Ω̃Ω?
MU [[~, ~−1]]. Since ‖Aα,r;β,s‖ < 1, this implies that

Gs = exp

(
~

2

∑

r,s

Aα,r;β,s∂α,r∂β,s

)
Ds

is also well-defined. �
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Appendix B

Almost-Kähler manifolds

Suppose now that X is a compact symplectic manifold equipped with an almost-complex

structure J which is tamed by the symplectic form. The foundations of Gromov–Witten

theory in this setting have been laid down by several groups of authors [18, 45, 59, 56].

In this Appendix we extend many of the results proved in earlier chapters to this almost-

Kähler situation; to do this we follow the approach of Siebert [59, 62]. The equivalence of

the various symplectic approaches is sketched in [62]. The fact that the algebro-geometric

and symplectic constructions agree in their common domain of applicability is proved in

[46, 61].

B.1 An outline of Siebert’s construction

As in the algebro-geometric situation, the moduli space Xg,n,d of J-holomorphic degree-

d stable maps from n-pointed genus-g complex curves to X is in general singular and of

the “wrong” dimension. Siebert embeds Xg,n,d in a finite-dimensional orbifold Zg,n,d and

constructs a finite-rank orbibundle Fg,n,d over Zg,n,d with a section sg,n,d such that the zero

locus of sg,n,d is Xg,n,d. This allows him to define the virtual fundamental class of Xg,n,d as

a localized Euler class of Fg,n,d. In this section we summarize his construction [59, 62]. The

first step is to realize Xg,n,d inside a Banach orbifold of Lp stable maps.

Suppose that p > 2. There is a Banach orbifold C(X ; p) consisting of equivalence classes
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of stable maps of Sobolev class Lp1 from complex curves to X . A point in C(X ; p) can be

represented by a triple (C, x, ϕ) where C is a prestable curve, x is an n-tuple of distinct

smooth points on C and ϕ : C −→ X is an Lp1 stable map. A chart on C(X ; p) centered at

(C, x, ϕ) takes the form

S × –
VV

where S is the base of an analytically semi-universal deformation C −→ S of (C, x) as a

marked prestable curve, and
–
VV is a finite-codimension subspace of a space V = ĽLp1(C, ϕ

?TX)

of certain1 Lp1 sections of ϕ?TX . If (C, x) is stable as a marked curve then
–
VV = V . Otherwise,

S× –
VV is a slice to the germ of the action of the identity component of Aut(C, x) on S× V .

Transition functions between these charts are smooth if we fix the complex structure on

the domain curve, but are not smooth in general — in other words, they are differentiable

relative to S. C(X ; p) is therefore only a topological Banach orbifold, but it fibers in smooth

Banach orbifolds over the (analytic) Artin stack M of marked prestable curves. There is a

Banach orbibundle E over C(X ; p) with fiber at (C, x, ϕ) equal to a space ĽLp1(C, ϕ
?TX⊗Ω0,1

C )

of certain Lp1 sections of ϕ?TX ⊗ Ω0,1
C . E is smooth relative to M. There is an orbibundle

section s∂̄∂ ,J of E, smooth relative to M, which sends (C, x, ϕ) to ∂̄∂ Jϕ. The zero locus of

s∂̄∂ ,J is the space Chol(X, J) of J-holomorphic stable maps to X .

Consider a chart S× –
VV centered at (C, x, ϕ) ∈ Chol(X, J). The differential of s∂̄∂ ,J relative to

S is Fredholm and uniformly continuous at (0, 0) ∈ S × –
VV . If s∂̄∂ ,J is transverse at (C, x, ϕ),

so that the relative differential σ0 of s∂̄∂ ,J at (0, 0) is surjective, then the implicit function

theorem (applied relative to S, see [59, section 1.3]) shows that near (C, x, ϕ), the zero locus

Chol(X, J) of s∂̄∂ ,J is a finite-dimensional topological orbifold which is smooth relative to S.

A key notion from [59], which allows us to globalize this construction and simultaneously

deals with problems of transversality, is that of a Kuranishi structure. This is a finite-rank

orbibundle F defined over a neighbourhood N of Chol(X, J) in C(X ; p), together with a map

of orbibundles

τ : F −→ E

such that τ is continuously differentiable relative to S and, for any chart S× –
VV centered in

Chol(X, J) as above, im τ(0,0) spans the cokernel of σ0. The existence of a Kuranishi structure

is established in section 6 of [59]. Let q : F −→ N be the bundle projection. The section

1See [59, section 5] for details.
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q?s + τ of q?E over F is transverse along Chol(X, J), which we regard as lying in the zero

section of F . A neighbourhood of Chol(X, J) in F is therefore a topological orbifold Z which

is smooth relative to M. Chol(X, J) is cut out of Z by the canonical section of the orbibundle

q?F over F (restricted to Z). Concentrating our attention on degree-d stable maps from

n-pointed genus-g curves, this gives a finite-dimensional orbifold Zg,n,d and a finite-rank

orbibundle Fg,n,d over Zg,n,d together with a section sg,n,d such that s−1
g,n,d(0) = Xg,n,d. The

topological orbifold Zg,n,d is smooth relative to the Artin stack Mg,n of prestable n-pointed,

genus-g curves. A chart on Zg,n,d centered at (C, x, ϕ) ∈ Xg,n,d takes the form

S ×W (B.1)

where S, as before, is the base of a semi-universal deformation C −→ S of (C, x), and W is

a finite-dimensional vector space. Without loss of generality, we can insist that Zg,n,d be

covered by the unit balls in finitely many such charts. We may also take Zg,n,d to consist of

C∞ stable maps.

By making appropriate choices in the construction of the Kuranishi structure, we may take

the neighbourhood Zg,n+1,d of Xg,n+1,d to be such that

Zg,n+1,d
evn+1- X

Zg,n,d

π

?

(B.2)

is a family of C∞ stable maps which restricts to give the universal family

Xg,n+1,d
evn+1- X

Xg,n,d

π

?

of J-holomorphic stable maps over Xg,n,d. We may also take the “obstruction bundle”

Fg,n+1,d to be π?Fg,n,d.
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B.2 K-theory and push-forwards

In order to extend our results to the almost-Kähler situation, we will need to make sense

of the K-theoretic push-forward π? : K?(Zg,n+1,d) −→ K?(Zg,n,d). Recall that if f : X −→ Y

is a proper complex-oriented map between smooth manifolds then the push-forward f? :

K?(X) −→ K?(Y ) is defined as follows (see e.g. [55]). Take N � 0. Consider an embedding

g : X −→ Y × RN

which projects to f . There is a neighbourhood of g(X) in Y × RN which is homeomorphic

to the normal bundle νg , and the pushforward f? is defined to be the composition

K?(X) −Thom−−−−→ K?(Thom(νg)) −collapse?

−−−−−−→ K?(Thom(Y × RN)) −Thom−1−−−−−−→ K?(Y )

For sufficiently large N , any two choices of the embedding g are isotopic through embed-

dings, so the push-forward is well-defined.

We are not, however, in this happy situation: the spaces Zg,n,d are orbifolds, and they are

only smooth relative to Mg,n. We deal with the orbifold problem first.

Claim. Zg,n,d is the orbifold quotient of a topological manifold Z̃Z g,n,d by a proper action of

a Lie group G = GLN . The topological manifold Z̃Z g,n,d is smooth relative to Mg,n.

Proof. By [59, section 6.4] there is a line bundle L over X such that if

Γ
ev - X

Zg,n,d

π

?

is the universal family over Zg,n,d then ev? L carries the structure of a continuous family

of holomorphic line bundles (see [59, section 2.4]) on the fibers of π and such that for all

(C, x, ϕ) ∈ Zg,n,d,

L′C,x,ϕ = ϕ?(L) ⊗ ωC(x1 + . . .+ xn)

is ample on each component of C. FixM sufficiently large such that for all (C, x, ϕ) ∈ Zg,n,d

we have:
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(1) (L′C,x,ϕ)⊗M is very ample

(2) H1(C, (L′C,x,ϕ)⊗M ) = 0

Let N = dimH0(C, (L′C,x,ϕ)⊗M ). This is independent of (C, x, ϕ) by (2).

Consider the moduli problem for quadruples (C, x, ϕ, {f1, . . . , fN}) where (C, x, ϕ) is an

Lp stable map and {f1, . . . , fN} is a basis for H0(C, (L′C,x,ϕ)⊗M ). The action of the group

Aut(C, x) on the set of such bases is free. Repeating the construction of Zg,n,d for this new

moduli problem therefore gives a topological manifold Z̃Z g,n,d which is smooth relative to

Mg,n. The quotient of Z̃Z g,n,d by the natural action of GLN is Zg,n,d. �

We define the K-groups of Zg,n,d using finite-dimensional approximations to the classifying

space BG, much as we did on page 59. Let

{EG(r) −→ BG(r) : r = 1, 2, . . .}

be approximations to the universal principal G-bundle EG −→ BG by finite-dimensional

manifolds such that

EG(r−1) ⊂ - EG(r)

BG(r−1)
?

⊂ - BG(r)
?

and such that EG(r) −→ BG(r) is universal for principalG-bundles on cell spaces of dimension

up to r. Set

Z
(r)
g,n,d = (Z̃Z g,n,d ×EG(r))/G

where we divide by the (free) diagonal action of G, and define

K?(Zg,n,d) = lim
←−

K?(Z
(r)
g,n,d

)

This is in fact independent of choices — it computes the K-theory of the classifying space

of the orbispace Zg,n,d [50]. In particular, if we have constructed Z
(r)
g,n,d by considering

quadruples (C, x, ϕ, {f1, . . . , fN}) where {f1, . . . , fN} is a basis for H0(C, (L′C,x,ϕ)⊗M) as

above, then we may construct Z
(r)
g,n+1,d by considering quadruples (C, x′, ϕ, {f1, . . . , fN})
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where x′ = x ∪ {xn+1} and {f1, . . . , fN} is a basis for the same space H0(C, (L′C,x,ϕ)⊗M ).

We will exploit this below.

Before we discuss the push-forward π? : K?(Zg,n+1,d) −→ K?(Zg,n,d) note that, since the

charts (B.1) on Zg,n,d are based on charts S on Mg,n, the argument on pages 60–61 shows

that (1.13) and (1.14) give exact sequences of complex orbibundles on Zg,n+1,d. Thus the

relative cotangent orbibundle Ωπ to the map π is

Ωπ = Ln+1 −
n∑

i=1

σi?OZg,n,d
− i?OZ (B.3)

where σj : Zg,n,d −→ Zg,n+1,d is the section of (B.2) given by the jth marked point and

i : Z −→ Zg,n+1,d is inclusion of the singular locus in the family (B.2). The equality (B.3) is as

elements of the Grothendieck group of complex orbibundles on Zg,n+1,d. It gives compatible

complex orientations of the maps π(r) which are induced from π:

. . . - Z
(r−1)
g,n+1,d

- Z
(r)
g,n+1,d

- . . .

. . . - Z
(r−1)
g,n,d

π(r−1)

?
- Z

(r)
g,n,d

π(r)

?
- . . .

Here we use the construction of Z
(r)
g,n+1,d outlined above. Now

π(r) : Z
(r)
g,n+1,d −→ Z

(r)
g,n,d

is a complex-oriented map between topological manifolds, each of which are smooth relative

to Mg,n, which covers the identity map on Mg,n:

Z
(r)
g,n+1,d

π(r)
- Z

(r)
g,n,d

Mg,n

?
====== Mg,n

?

We define the push-forward π
(r)
? : K?(Z

(r)
g,n+1,d) −→ K?(Z

(r)
g,n,d) as on page 129, but using an

embedding

g : Z
(r)
g,n+1,d −→ Z

(r)
g,n,d × RN ′
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which projects to π(r) and which is smooth2 relative to Mg,n. For N ′ � 0, any two choices

for the embedding g are isotopic through such embeddings, so π
(r)
? is well-defined.

Finally, we define the push-forward

π? : K?(Zg,n+1,d) −→ K?(Zg,n,d)

to be the map

π? : lim
←−

K?(Z
(r)
g,n+1,d

) −→ lim
←−

K?(Z
(r)
g,n,d

)

induced by {π(r)
? : r = 1, 2, . . .}. The relative cotangent orbibundle Ωπ gives rise to an

element of K?(Zg,n,d), which we also denote by Ωπ, and the usual Riemann–Roch theorem

applied to the finite-dimensional approximations π(r) gives

ch(π?α) = π?(ch(α) ·Td∨Ωπ) (RR)

for all α ∈ K?(Zg,n,d). Here we used the fact that

lim
←−

H?(Z
(r)
g,n,d; Q) = H?

G(Z̃Z g,n,d; Q)

= H?(Zg,n,d; Q)

B.3 Quantum Riemann–Roch

Examining the proof of Theorem 1.6.5 we see that it extends to the almost-Kähler situation

provided that we can establish:

• an analog of (GRR) on page 59. This is (RR) above.

• an analog of Proposition 1.6.3. This follows from (B.3).

• expressions for the normal bundles to σi(Zg,n,d) and Z in terms of universal cotangent

lines. These are obvious: the charts (B.1) on Zg,n,d are based on charts S on Mg,n and

the corresponding expressions hold on Mg,n.

• various properties of the virtual fundamental class with regard to pull-back and re-

striction to the singular locus. These are verified in [62].

2To see that such g exist one can, for example, construct appropriately smooth embeddings of Z
(r)
g,n+1,d

into RN ′

using the standard proof of the Whitney Embedding Theorem (see e.g. Theorem 3.4 in [33]) and
the bump functions constructed in section 6.5 of [59].
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• analogs of Lemma 1.6.1 and Lemma 1.6.2, describing the behaviour of Eg,n,d under

pull-back and restriction to the singular locus. These are Lemmas B.3.1 and B.3.2

below.

Thus Theorem 1.6.5 holds for almost-Kähler manifolds. As a consequence, all of the results

on pages 1–17 of Chapter 0 and all of the results of Chapter 1, except the mirror theorems

in section 1.7.1, hold in the almost-Kähler setting. The mirror theorems on pages 18–20 and

in section 1.7.1 rely on a comparison result [36] for algebraic virtual fundamental classes,

the almost-Kähler analog of which does not seem to be known.

Lemma B.3.1. Let p : Zg,n+1,d −→ Zg,n,d be the map that forgets the last marked point and

then stabilizes. We have

p? ch(Eg,n,d) = ch(Eg,n+1,d)

Proof. Consider the diagram

Cg,n+1,d
Π - Zg,n+1,d

q
R

g

�

F

	
f

Cg,n,d

P

? π - Zg,n,d

p

?

where Π : Cg,n+1,d −→ Zg,n+1,d and π : Cg,n,d −→ Zg,n,d are the universal families, F is the

fiber product and the map P : Cg,n+1,d −→ Cg,n,d forgets the (n+1)st marked point and then

stabilizes. A point of the fiber of F over (C, x, ϕ) ∈ Zg,n,d is a choice of two points in C —

call them • and ◦, where • is the point corresponding to Cg,n,d. We need to show that

p?π?(ev
?
•(ch(E))Td∨Ωπ) = Π?(ev

?
•(ch(E))Td∨ΩΠ)

But

p?π?(ev
?
•(ch(E)) Td∨Ωπ) = g?f

?(ev?•(ch(E)) Td∨Ωπ)

= g?(ev
?
•(ch(E))Td∨Ωg)
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and

Π?(ev
?
•(ch(E))Td∨ΩΠ) = g?q?(ev

?
•(ch(E))Td∨ ΩΠ)

= g?(ev
?
•(ch(E))Td∨ Ωg q?(Td∨Ωq))

so it suffices to show that

q?(Td∨Ωq) = 1

Now q : Cg,n+1,d −→ F is an isomorphism outside

- the codimension-2 locus Y in F where • and ◦ coincide with the same marked point,

and

- the codimension-3 locus Y ′ in F where • and ◦ coincide with the same node.

These loci are disjoint. Since q is birational, the fundamental class of Cg,n+1,d pushes forward

to the fundamental class of F , so we need to show that

q?(TdTq − 1) = 0 (B.4)

The relative tangent bundle Tq vanishes away from Y and Y ′, so TdTq − 1 is supported

near Y and Y ′. In proving (B.4) we may therefore replace F by neighbourhoods U and U ′

of Y and Y ′ respectively, and replace Cg,n+1,d by ŨU = q−1(U) and ŨU ′ = q−1(U ′).

The component Yi of Y on which • and ◦ coincide with the ith marked point is a copy of

Zg,n,d. There is a neighbourhood Ui of Yi which is homeomorphic to a neighbourhood of the

zero section in L?i ⊕ L?i and is such that q : q−1(Ui) −→ Ui is the blow-up of Ui along Yi.

Claim. On Ui,

q?(TdTq − 1) = 0

Since TdTq−1 is supported on q−1(Yi) we may take Ui to be the total space of N = L?i ⊕L?i
and ŨU i = q−1(Ui) to be the total space of the tautological bundle O(−1) over P(N ).

P ( N ) ⊂ - O ( −1 )

Y
?

⊂
j - N

q

?
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Denote the first and second copies of L?i in N by E1 and E2 respectively. Equip E1 and E2

with S1-actions of distinct weight. This gives an action of the 2-torus T on N = E1 ⊕ E2.

Let the T -equivariant Euler classes of E1 and E2 be λ1 and λ2 respectively. We need to

show that

∫

O(−1)

(TdTq − 1)q?α = 0 for all α ∈ H?(N ) of compact support

This will follow from the corresponding T -equivariant statement, which we prove using

fixed-point localization. There are two T -fixed loci in O(−1), each of which is also a copy

of Y :

• A1, coming from the zero locus of N together with the line E1 through the zero locus,

with normal bundle NA1 = E1 ⊕ (E?
1 ⊗E2).

• A2, coming from the zero locus of N together with the line E1 through the zero locus,

with normal bundle NA2 = E2 ⊕ (E?
2 ⊗E1).

We have

Tq|A1 = E?
1 ⊗E2 −E2

Tq|A2 = E?
2 ⊗E1 −E1

Thus

∫

O(−1)

(TdTq − 1)q?α = contribution from A1 + contribution from A2

=

∫

Y

j?(α)

λ1(λ2 − λ1)

(
λ2 − λ1

1 − eλ1−λ2

1− e−λ2

λ2
− 1

)

+

∫

Y

j?(α)

λ2(λ1 − λ2)

(
λ1 − λ2

1 − eλ2−λ1

1− e−λ1

λ1
− 1

)

=

∫

Y

j?(α)

λ1λ2

(
1− e−λ2

1− eλ1−λ2
+

1 − e−λ1

1 − eλ2−λ1

)
− j?(α)

λ1 − λ2

(
1

λ2
− 1

λ1

)

=

∫

Y

j?(α)

λ1λ2

(
1− e−λ2

1− eλ1−λ2
+
eλ1−λ2 − e−λ2

eλ1−λ2 − 1
− 1

)

=

∫

Y

j?(α)

λ1λ2

(
1− eλ1−λ2

1− eλ1−λ2
− 1

)

= 0
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This proves the Claim. Consequently, on the neighbourhood U of Y in F we have

q?(TdTq − 1) = 0

It remains to deal with the codimension-3 locus Y ′ where • and ◦ coincide with the same

node. A component V ′ of Y ′ projects to a stratum V in Zg,n,d which consists of nodal

curves, and a neighbourhood W of V in Zg,n,d is homeomorphic to a neighbourhood of the

zero section in the bundle L?+ ⊗L?− over V . Here L+ and L− are the cotangent lines at the

relevant node. A neighbourhood of g(V ′) in Zg,n+1,d is homeomorphic to a neighbourhood of

the zero section in the bundle L?+⊕L?− over V , and we may assume that p : Zg,n+1,d −→ Zg,n,d

maps this neighbourhood to W via

L?+ ⊕ L?− −→ L?+ ⊗ L?−

(x, y) 7−→ xy

A similar statement is true for the map π : Cg,n,d −→ Zg,n,d, and so a neighbourhood of V ′

in Y ′ consists of the intersection of the family of quadratic cones

Q = {(x, y, u, v) ∈ L?+ ⊕ L?− ⊕ L?+ ⊕ L?− : xy = uv}

with a neighbourhood of the zero section of L?+ ⊕ L?− ⊕ L?+ ⊕ L?−

The preimage of V ′ in Cg,n+1,d is

V × —MM0,4
∼= V × P1

where we choose a co-ordinate z on P1 such that

(0, 1,∞) = (node carrying L−, ◦, node carrying L+)

A neighbourhood of V × P1 in Cg,n+1,d is homeomorphic to a neighbourhood of the zero

section in the bundle O(−1) ⊗ (L?+ ⊕ L?−) over V × P1, and a local model for the map

q : Cg,n+1,d −→ F is

(O(−1) ⊗ L?+)⊕ (O(−1) ⊗ L?−) −→ L?+ ⊕ L?− ⊕ L?+ ⊕ L?− (B.5)

(v ⊗ a, w ⊗ b) 7−→ (ξ(v)a, zξ(w)b, zξ(v)a, ξ(w)b)

Here ξ is the section of O(1) which vanishes at z = ∞, so zξ is the section of O(1) which

vanishes at z = 0. The image of the map (B.5) is the family of cones Q; the map is an

isomorphism away from the zero locus of O(−1) ⊗ (L?+ ⊕ L?−).
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We want to show that

q? TdTq = 1

in a neighbourhood of Y ′. Since Tq vanishes outside q−1(Y ′) it suffices to prove this for the

local model

O(−1) ⊗ (L?+ ⊕ L?−) −q→ Q ⊂ L?+ ⊕ L?− ⊕ L?+ ⊕ L?−

given by (B.5). In other words, we need to show that
∫

O(−1)⊗(L?
+⊕L

?
−

)

(TdTq)q
?α =

∫

Q
α for all α ∈ H?(Q) of compact support (B.6)

Assume that L+ and L− carry T -actions of distinct non-zero weight, and denote the T -

equivariant Euler classes of L?+ and L?− by λ+ and λ− respectively. We will deduce (B.6) from

the corresponding T -equivariant statement, which we prove using fixed-point localization.

The T -fixed locus in O(−1)⊗ (L?+ ⊕ L?−) is a copy of V × P1, with normal bundle

O(−1) ⊗ (L?+ ⊕ L?−)

Since Q is cut out of L?+ ⊕ L?− ⊕ L?+ ⊕ L?− by a section of L?+ ⊗ L?−, the relative tangent

bundle Tq is

Tq = TP1 + O(−1) ⊗ L?+ + O(−1)⊗ L?− − 2L?+ − 2L?− + L?+ ⊗ L?−

Thus, for α ∈ H?
T (Q), ∫

O(−1)⊗(L?
+⊕L

?
−

)

(TdTq)q
?α

equals

∫

V ×P1

2P

1− e−2P

1

1 − eP−λ+

1

1− eP−λ−

(
1 − e−λ+

λ+

)
2
(

1 − e−λ−

λ−

)
2 λ+ + λ−

1 − e−λ+−λ−
j?α

where j : V −→ Q is the inclusion of the zero section and P is the hyperplane generator for

H?(P1). But this is

∫

V

∮
dP

P 2

2P

1 − e−2P

1

1 − eP−λ+

1

1 − eP−λ−

(
1 − e−λ+

λ+

)
2
(

1 − e−λ−

λ−

)
2 λ+ + λ−

1− e−λ+−λ−
j?α

and since
∮
dP

P 2

2P

1 − e−2P

1

1 − eP−λ+

1

1 − eP−λ−
=

d

dP

(
2P

1 − e−2P

1

1 − eP−λ+

1

1 − eP−λ−

)∣∣∣∣
P=0

=
1 − e−λ+−λ−

(1− e−λ+)2(1− e−λ−)2
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we see that ∫

O(−1)⊗(L?
+⊕L

?
−

)

(TdTq)q
?α =

∫

V

λ+ + λ−

λ2
+λ

2
−

j?α

=

∫

Q
α

Thus q?(TdTq − 1) = 0 in a neighbourhood of Y ′. The Lemma is proved. �

An argument of a similar character proves:

Lemma B.3.2. Let

Z̃Z red

∐
Z̃Z irr −

γred

‘

γirr−−−−−−−−→ Z −i→ Zg,n+1,d

where

Z̃Z red =
∐

g=g++g−
n=n++n−
d=d++d−

Zg+,n++N,d+ ×X Z0,1+N+M,0 ×X Zg−,n−+M,d−

and

Z̃Z irr = Zg−1,n+N+M ×X×X Z0,1+N+M,0

Denote by p+ and p− be the projections onto the first and third factors of Z̃Z irr. We have

γ?redi
? ch(Eg,n+1,d) = p?+ ch(Eg+,n++N,d+) + p?− ch(Eg−,n−+M,d−) − ev?∆ ch(E)

and

γ?irri
? ch(Eg,n+1,d) = ch(Eg−1,n+N+M,d) − ev?∆ ch(E)

where ev∆ is the evaluation map at the point of gluing.

B.4 Quantum cobordism

We now extend the proof of Theorem 2.4.1, and consequently of all the results in Chapter

2 and on pages 26–28 of Chapter 0, to the almost-Kähler setting. To do this, we need to

establish:

• the existence of a well-defined virtual tangent bundle T vir
g,n,d ∈ K?(Zg,n,d)

• the equality

T vir
g,n+1,d = π?T vir

g,n,d + Ω?
π (B.7)
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• the results of section 2.5.3

The linearization of the ∂̄∂ -operator ∂̄∂ J (with respect to the trivializations defined in section

6 of [59]) gives a two-term complex of Fredholm orbibundles on Zg,n,d:

σJ : ĽLp1(C, ϕ
?TX) −→ ĽLp1(C, ϕ

?TX ⊗ Ω0,1
C

) (B.8)

(this is like the linearization of the section s∂̄∂ ,J except that we do not restrict the domain to
–
VV ⊂ ĽLp1(C, ϕ

?TX)). We will use this complex to define the virtual tangent bundle of Zg,n,d

relative to Mg,n. Choose a chart S ×W on Zg,n,d. Section 6.3 of [59] shows that σJ can be

written, up to a zero-order operator, as

σJ |(C,x,ϕ) = ∂̄∂ϕ?TX,J +R

where R is J-antilinear. Following McDuff [48, section 4], we consider a path of Fredholm

operators

σt : ĽLp1(C, ϕ
?TX) −→ ĽLp1(C, ϕ

?TX ⊗ Ω0,1
C ) 0 ≤ t ≤ 1

defined by

σt = σJ − tR

Since σ1 = ∂̄∂ϕ?TX,J is J-linear, the complex

σ1 : ĽL
p
1(C, ϕ

?TX) −→ ĽL
p
1(C, ϕ

?TX ⊗ Ω
0,1
C )

defines3 an element of K?(Zg,n,d), T vir
rel , which we regard as the virtual tangent bundle of

Zg,n,d relative to Mg,n. Since it is the index bundle of ∂̄∂ϕ?TX,J, the family Index Theorem

gives

ch(T vir
rel ) = ch((TX)g,n,d)

Recall that there is a map ρ : Zg,n,d −→ Mg,n. We set

T vir
g,n,d = T vir

rel + ρ?TMg,n

3See [57]. The key step is the construction of a finite-rank (orbi)bundle F ′ over Zg,n,d and a map

τ
′ : F

′ −→ ĽL
p
1
(C, ϕ

?
TX ⊗ Ω0,1

C
)

which spans the cokernel of σ1. This can be achieved as in section 6 of [59].
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In the notation of page 21,

ch(T vir
g,n,d) = ch((TX)g,n,d) + ch(Def(C) 	 Aut(C))

and so the conclusions of section 2.5.3 hold here too. Working in charts of the form (B.2,

B.1), the equality (B.7) is clear. Thus Theorem 2.4.1 holds for almost-Kähler manifolds.


