
Math H110. Fall’22. HW solutions

HW1

6. Let A,B,C be the centers of the circles, and A′, B′, C ′ the points
moving along the circles. Then the radius-vector of the barycenter M ′ of
the triangle A′B′C ′ is

−−−→
OM ′ =

1

3
(
−→
OA+

−−→
OB +

−−→
OC) +

1

3
(
−−→
AA′ +

−−→
BB′ +

−−→
CC ′),

where the left average represents the radius-vector
−−→
OM of the barycenter

of the (time-independent) triangle ABC, and the right average is a fixed
length R vector rotating with the the same angular velocity as the radii−−→
AA′,

−−→
BB′,

−−→
CC ′ of the circles. Thus, M ′ is moving along the circle of some

radius R centered at M with that same angular velocity.

9. Let u,v,w be the vectors represented by the sides of a given triangle,
u + v + w = 0. Then u + v/2,v + w/2,w + u/2 are represented by the
medians, which form a triangle since their sum is still 0. The medians of the
latter triangle represent: u+ v/2 + (v +w/2)/2 = u+ v +w/4 = −3w/4,
and respectively −3u/4 and −3v/4. Thus, they form a triangle with the
sides parallel to the sides w,u,v of the initial triangle, but down-scaled by
the factor 3/4 (and oppositely directed).

22. Using
−−→
BC =

−−→
XC−−−→

XB, etc., we find the given expression in the form
−−→
XA · −−→XC −−−→

XA · −−→XB +
−−→
XB · −−→XA−−−→

XB · −−→XC +
−−→
XC · −−→XB −−−→

XC · −−→XA = 0.

25. Let O denote the circumcenter of △ABC. Then

XA2 +XB2 +XC2 = (
−−→
OX −−→

OA) · (−−→OX −−→
OA)+

(
−−→
OX −−−→

OB) · (−−→OX −−−→
OB) + (

−−→
OX −−−→

OC) · (−−→OX −−−→
OC) =

6R2 − 2
−−→
OX · (−→OA+

−−→
OB +

−−→
OC) = 6R2,

since in the case of a regular triangle,
−→
OA+

−−→
OB +

−−→
OC = 0.

27. Let us project the polyhedron to a plane (“screen”) along the (“sight”)
direction of a unit vector u. A face of the polyhedron with the pressure vec-
tor f projects to a polygon on the screen of signed area f · u = |f | cos θ
(because the angle between the plane of the face and the plane of the screen
coincides with the angle θ between their normal vectors) and is negative
whenever the line of “sight” enters the polyhedron through this face, and
positive when it exits. Since each ray enters the polyhedron as many times
as it exits it, the total signed area of the shadow of the polyhedron on the
screen equals zero. Thus, for any unit vector u, we have (

∑

fi) · u = 0,
implying

∑

fi = 0.
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HW2

60. The equation 23x2 + 72xy + 2y2 = 25 can be brought to principal
axes by rotating the coordinate system through the angle θ with cot 2θ =
(23− 2)/72 = 7/24, i.e. cos 2θ = 7/25, sin 2θ = 24/25 We have:

23(X cos θ − Y sin θ)2+72(X cos θ − Y sin θ)(X sin θ − Y cos θ)+

2(X sin θ + Y cos θ)2 =X2(23 cos2 θ + 72 sin θ cos θ + 2 sin2 θ)+

Y 2(23 sin2 θ − 72 cos θ sin θ + 2 cos2 θ) =

X2(
25

2
+

21

2
cos 2θ+36 sin 2θ) + Y 2(

25

2
− 21

2
cos 2θ − 36 sin 2θ) =

50X2 − 25Y 2

Thus, the curve is a hyperbola with the standard equation 2X2 − Y 2 = 1,
or X2/α2 − Y 2/β2 = 1 with α = 1/

√
2 and β = 1, in the rotatec coordinate

system.

62. The curve x2 + xy + y2 +
√
2(x − y) = 0, after 45◦ rotation x =

(X−Y )/
√
2, y = (X+Y )/

√
2 becomes 3X2/2+Y 2/2−2Y = 0. Completing

the square in Y , we get 3X2/2+(Y −2)2/2 = 2 or 3X2/4+ Ỹ 2/4 = 1, which
is an ellipse with semiaxes 2/

√
3 and 2.

69. Write ax2 + 2bxy + cy2 = y2(at2 + 2bt + c) where t = x/y. The
quadratic function in t factors as a(t − t1)(t − t2) (assuming a 6= 0) where
t1,2 are the roots, possibly non-real. Thus the quadratic form factors over
C as the product a(x − t1y)(x − t2y) of two lienear functions. It is ± the
square of one linear function whenever the roots t1.2 coincide (and hence
real), i.e. the discrinmnant 4b2 − 4ac = 0. When a = 0, the discriminant
vanishes exactly when b = 0, which is again the condition for y(2bx+ cy) to
be a ± square of a linear form.

83. ±(X2
1+X2

2+X2
3 ) = 0 are “thick” points (the origin); X2

1+X2
2−X2

3 = 0
and X2

1 −X2
2 −X2

3 = 0 are cones (with the axis X3 in the former case and
X1 in the latter); X2

1 + X2
2 = 0 and −X2

1 − X2
2 = 0 are “thick” lines (the

X3-axis); X
2
1 − X2

2 = 0 is a pair of planes intersecting along the X3-axis;
±X2

1 = 0 is the double plane, and Q = 0 is the whole space when Q is
identically zero.

98. 4ac− 4b2 = (a+ c)2− (a− c)2− (2b)2 = 0 becomes the standard cone
X2 + Y 2 = Z2 after the linear change of coordinates X = (a − c), Y = 2b,
Z = (a+ c).
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HW3

147. Any 4 elements in a 3-diemensional space (of polynomials ax2 +
bx + c) are linearly dependent. Here is one way to check independence of
any three of them: Assume that a linear combination (say of the last three)
vanishes, α(x−1)2+β(x−2)2+γ(x−3)2 = 0, then plug x = 1, 2, 3 to conclude
that β+4γ = 0, α+ γ = 0, 4α+β = 0, and derive from these that α = β =
γ = 0. Alternatively, one that the basis 1, x, x2 of the space is expressible
via linear combinations of (in this example) (x − 1)2, (x − 2)2, (x − 3)2.
Namely, (x− 1)2 − (x− 2)2 = 2x− 3, (x− 2)2 − (x− 3)2 = 2x− 5, and the
difference if 2, which already shows that 1 and x are expressible; after that
(x− 1)2 = x2 − 2x+ 1 shows that x2 is expressible too.

150. The subspace can be interpreted as the graph of linear map
(x2, x3) 7→ (x1, x4) given by x1 = −x2−x3, x4 = −x2−x3, and has therefore
dimension 2 (equal to that of the domain of the map), with a basis obtained
by lifting the basis (x2, x3) = (1, 0) and = (0, 1) in the domain to the graph:
(x1, x2, x3, x4) = (−1, 1, 0,−1) and = (−1, 0, 1,−1) respectively.

154. Ev ∈ V∗∗ because Ev(λf+µg) = λf(v)+µg(v) = λEv(f)+µEv(g)
(i.e. Ev is a linear form on V∗ due to the pointwise nature of the operations
with functions f ,g ∈ V∗). E : V 7→ V∗∗ is linear because Eλu+µv(f) =
f(λu+µv) = λf(u)+µf(v) = λEu(f)+µEv(f), (i.e. Eλu+µv = λEu+µEv

due to the lineariry of f : V → K).

157. The subspace is spanned by two (non-proportional, and hence lin-
early independent) functions cosx and sinx, because

cos(x+ θ) = cos θ cosx− sin θ sinx

is their linear combination. The subspace has dimension 2 indeed provided
that there is at least one pair among θi such that θi − θj is not an integer
multiple of π. (Otherwise all the n functions are proportional to each other.)

159. The composition f ◦ π of a linear form f : V/W → K with the
canonical projection π : V → V/W is a linear form on V vanishing on
Kerπ = W (i.e. lying in W⊥). Colversely, g ∈ W⊥ is a linear form V → K

vanishing on Kerπ, hence constant on each affine subspace v + W, and
therefore descending to a linear form f : V/W → K such that g = f ◦ π.
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173. A matrix [aij ] of a linear map A is upper-triangular iff (=”if and
only if”) in each column j, the entries aij = 0 when i > j. In other words,
for each j, Aej is a linear combination of e1, . . . , ej , i.e. lies in the subspace
Span(e1, . . . , ej). This is equivalent to saying that these subspaces are A-
invariant. If two linear maps A and B map a subspace to itself, then so
does their composition AB. Thus, the product of upper-triangular matrices
is upper-triangular.

176. The given matrix represents the counter-clockwise rotation on the
plane through the angle of 19◦. The 19th power of the matrix represents
the 19th consecutive iteration of this rotation, i.e. the rotation through
19 · 19◦ = 361◦ which modulo the full turn is the counter-clockwise rotation

through the angle of 1◦:

[

cos 1◦ − sin 1◦

sin 1◦ cos 1◦

]

.

178. The kth iteration of N maps e1 7→ ek+1, e2 7→ ek+2, etc., up to
en−k 7→ en, while all ej with j > n − k are already mapped to 0. Thus,
N0 = I has 1s on the principal diagonal and all other entries equal to o,
while the matrix of Nk, k = 1, 2, . . . has 1s on the “kth diagonal above the
principal one”, and all other entries equal to 0. In particular, starting from
k = n, Nk = 0.

189. For B = 2x1(y1+y2), S := (B+Bt)/2 = x1(y1+y2)+y1(x1+x2) =
2x1y1 + x1y2 + x2y1, and A := (B − Bt)/2 = x1(y1 + y2) − y1(x1 + x2) =
x1y2 − x2y1.

195. (x1+ · · ·+xn)(y1+ · · ·+yn) is a symmetric bilinear form whose “re-
striction to the diagonal” y = x is (x1+ · · ·+xn)

2 as required.
∑

i<j xixj =
∑

i 6=j xixj/2 (i.e. has the symmetric coefficient matrix all of whose diagonal

entries are zeros and off diagonal entries equal to 1/2). The corresponding
symmetric bilinear form is therefore

∑

i 6=j xiyj/2.
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197. For T = z̄1w2 we have T † = z̄2w1. Consequently

z̄1w2 =
z̄1w2 + z̄2w1

2
+ i

z̄1w2 − z̄2w1

2i
.

The corresponding Hermitian quadratic forms are (z̄1z2+z̄2z1)/2 and (z̄1z2−
z̄2z1)/2i i.e. the real and imaginary parts of z̄1z2.

222. Note that the equation is a polynomial in x of degree not exceeding
n. When x is equal to one of ai, the matrix has two identical rows, and hence
zero determinant. Thus, x = a1, . . . , an are distinct roots of the polynomial.
It remains to show that the polynomial is not identically zero (in which
case no more roots are possible), i.e. that the determinant does not vanish
whenever x differs from all ai. This can be done by induction on n. Namely,
the top coefficient of the polynomial is, up to a sign, the same determinant
of the previous size, and is non-zero by the induction hypothesis as long as
all ai are distinct. The base of induction is also easy to establish.

223. detA = detAt = det(−A) = (−1)n detA = − detA when n is odd.

225. Under a change of variables x = Cx′, the symmetric matrix Q
of a quadratic form is transformed into Q′ = CtQC. Therefore detQ′ =
detQ(detC)2 and has the same sign as detQ (since detC 6= 0).

233. Since (adj(A))A = (detA)In, we have (detA) det(adj(A)) = (detA)n.
Therefore det(adj(A)) = (detA)n−1 provided that detA 6= 0. When detA =
0 this formula also holds, because the adjugate matrix is not invertible (for
otherwise A = 0 and adj(A) = 0 — contradiction).

HW6

273. We have y1 + y2 + y3 = 0, i.e. the rank of A is at most 2. Taking
e1 = (1, 0, 0)t and e2 = (0, 1, 0)t, we find their images to be f1 = (2,−1,−1)t

and f2 = (−1, 2, 1)t, which are clearly non-proportional to each other, and
hence form a basis in the range of A (which therefore has dimension 2
indeed). The kernel of A is spanned by e3 = (1, 1, 1). Picking on the role
of f3 any vector not lying in the plane y1 + y2 + y3 = 0 (e.g. f3 = (0, 0, 1)t),
we now have two bases: {e1, e2, e3} in the source space, and {f1, f2, f3} the
target space, in which A has the matrix E2 (i.e. Ae1 = f1, Ae2 = f2,
Ae3 = 0. The system Ax = b is consistent whenever b lies in the range, i.e.
satisfies b1 + b2 + b3 = 0.

276. Clearly the given 3 × 4-matrix has non-zero 2 × 2-minors (e.g. the
one in the left upper corner is equal to −11). In fact all the four 3×3-minors
vanish (which can be checked by a tedious yet straightforward computation),
implying that the rank of the matrix equals 2.

279. (a) Yes: the solution set A−1b is an affine subspace parallel to KerA,
and consists of one point only if KerA = {0} (indicating that A is injective).
(b) Yes: since A is injective, the dimension of its range is the same as the
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dimension of the source space. (c) Yes: the dimension m of the target space
cannot be less than that of the range. (d) No: when the dimension m of the
target space > 2021, A is not surjective and hence not invertible. (e) Yes:
when AtAx = 0, we have the dot-product 〈Ax, Ax〉 = 〈AtAx,x〉 = 0, and
hence Ax = 0. (This is the only point where we use that the field K = R, in
which case only the zero vector has zero inner square.) Since A is injective,
this implies x = 0, i.e. the 2021 × 2021-matrix AtA has zero kernel, and
is therefore invertible. (f) No: when m > 2021, the m × m-matrix of the

composition R
m At

→ R
2021 A→ R

m is guaranteed to have rank ≤ 2021 < m,
and therefore has zero determinant. (g) No: whenm > 2021, them rows, i.e.
m linear forms on R

2021 must be linearly dependent in R
2021∗. (h) Yes: the

rank of A equals 2021, i.e. its 2021 columns must be linearly independent.

281. Let the planes be u0 + U and v0 + V , where U and V are two
2-dimensional linear subspaces. Then v0 + U and v0 + V have a common
point v0 and lie in the affine subspace v0 + U + V parallel to U + V (whose
dimension ≤ 4). Then u0 +U and v0 + V lie in the affine subspace v0 +W,
where W is spanned by U+V and u0−v0 (and has dimension ≤ 5). Indeed,
since W contains V , clearly v0 +W contains v0 + V . But W also contains
u0 − v0 + U , and hence v0 +W contains u0 + U .

286. Given subspaces V ,W ⊂ K
n of dimensions k and l and such that

dimV|capW = d, the subspace V +W has dimension k + l − d (by the di-
mension counting formula). Consequiently, picking a basis e1, ,̇ed in V ∩W,
comleting it by ed+1, . . . , ek to a basis in V and by ek+1, . . . , ek+l−d to a
basis in W, we obtain a basis in V + W, which then can be completed by
ek+l−d+1, . . . , en to a basis in K

n. Therefore all pairs (V ,W) of subspaces
in KKn of given dimensions k, l ≤ n and given dimension d of their in-
tersection, max(0, k + l − n) ≤ d ≤ min(k, l), are equivalen to each other
(and obviously vice versa: when to pairs of subspaces are equivalent, their
respective dimensions and the dimensions of their intersections coincide).
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288. The answers are found in the Hints, answers, index section. Let’s
hope they are correct.

289.




2 −1 1 1 | 1
1 2 −1 4 | 2
1 7 −4 11 | λ



 7→





1 −.5 .5 .5 | .5
0 2.5 −1.5 3.5 | 1.5
0 7.5 −4.5 10.5 | λ− .5





7→





1 −.5 .5 .5 | .5
0 1 −.6 1.4 | .6
0 0 0 0 | λ− 5



 .

Thus, the system is consistent only when λ = 5.

290 (e).

A =









2 1 3 −1
3 −1 2 0
1 3 4 −2
4 −3 1 1









7→









1 .5 1.5 −1.5
0 −2.5 −2.5 1.5
0 2.5 2.5 −1.5
0 −5 −5 3









7→









1 .5 1.5 −.5
0 1 1 −.6
0 0 0 0
0 0 0 0









7→









1 0 1 −.2
0 1 1 −.6
0 0 0 0
0 0 0 0









= A′.

Therefore, the matrix A has rank 2, the two leftmost columns of A form a
basis in its column space, and the two non-zero rows of the reduced row-
echelon form A′ form a basis in the row space of A. Note that the homo-
geneous system Ax = 0 is equivalent to A′x = 0 which has the general
solution









x1
x2
x3
x4









=









−t1 + .2t2
−t1 + .6t2

t1
t2









= t1









−1
−1
1
0









+ t2









.2

.6
0
1









.

The two columns featured in the answer form a basis in the kernel of A.

291 (a). The answer in the book is incorrect. In fact detA = −7, and

A−1 =
1

7





1 8 3
1 1 3

−1 6 4



 .

237. We apply Laplace’s theorem to the 4×4-matrix formed by two copies
of the given 2 × 4-matrix: one in the top and one in the bottom two rows.
On the one hand, the determinant equals 0 since the matrix has identical
rows. On the other hand, it is equal to P12P34−P13P24+P14P23+P23P14−
P24P13 + P34P12. Thus, 0 = 2(P12P34 − P13P24 + P14P23) as required.
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306. Q is obtained by composing the quadratic form

R
p+q → R : Q′(y) = y21 + · · ·+ y2p − y2p+1 − · · · − y2p+q

with the linear map

R
n A→ R

p+q : y1 = a1(x), . . . , yp = ap(x), yp+1 = b1(x), . . . , yp+q = bq(x).

A subspace Vk ⊂ R
n on which Q is positive definite must map injectively to

R
p+q and have Q′ positive definite on A(V). Thus k = dimV = dimA(V) ≤

p, i.e. the positive inertia index of Q does not exceed p. The argument for
the negative inertia index being ≤ q is similar.

307. (x1 + x3)x2 = ±1 are equivalent to y1y2 = ±1 in R
3, i.e. are both

the cylinders over hyperbolas. x1x2 + x2x3 + x3x1 = x2(x1 + x3) + x3x1 ± 1
is equivalent to y2y3+y3y1−y21 = ±1 (where y1 = x1, y2 = x2, y3 = x1+x3).
By completing squares, we find:

±1 = −(y1 − y3/2)
2 +

y23
4

− y2y3 = −(y1 − y3/2)
2 +

(y3 − 2y2)
2

4
− y23.

Thus, the conics are equivalent to z21 − z22 − z23 = ±1 (where z1 = y2/2,
z2 = y1 − y3/2, and z3 = (y3 − 2y2)/2), i.e. are the hyperboloids of two (+)
and one (−) sheets.

308. The “hyperboloids” in R
4 have normal forms x2 + y2 + z2 + u2 = 1

(the sphere, one sheet), x2 + y2 + z2 + u2 = −1 (the empty set, no sheets),
x2 + y2 + z2 = 1 + u2 (which is a family of spheres in the affine subspaces

u = const of radiuses
√
1 + u2 (non-empty for each u and hence forming a

connected hypersurface — one sheet), x2 + y2 + z2 = u2 − 1 (two families of

spheres of radiuses
√
u2 − 1, one for u ≥ 1, one for u ≤ −1 — two connected

components, and x2 + y2 − z2 = 1+ u2 — which is actually connected (one
sheet), because it is a family of one-sheeted hyperboloids in the hyperplanes
u = const, non-empty for each value of u.

311. From the classification theorem, we have: z21 + z22 = 1 (complex
“circle” = “hyperbola”); z21 = z2 (parabola), or the cylinder over a conic in
C
1, i.e. z21 = 1 (two parallel lines in C

2 or z21 = 0 (two merged lines in C
2).

314. The classification theorem of conics in C
n implies that the numbers

Nn of the equivalence classes satisfy Nn = 3 +Nn−1, where N1 = 2 = 3− 1
(from Exercise 311). By induction, Nn = 3n− 1.

HW9

325. For the symmetric bilinear form Q(x,y) = xtQy, construct induc-
tively the Q-orthogonal basis f1, . . . , fn with fk = ek+

∑

i<k cikei, where the
coefficients cik, i < k, are found so that fk is Q-orthogonal to e1, . . . , ek−1

(i.e. as in the proof of Sylvester’s Rule, but not normalizing the values
Q(f,fi) to ±1 by rescaling the vectors fk). Together with ckk = 1 and
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cik = 0 for i > k, they form a unipotent upper-triangular matrix C such
that CtQC = D, where D is diagonal with Q(fi, fi) on the diagonal. The
leading minors do not change under transformations Q 7→ CtQC defined by
unipotent upper-triangular matrices C. Consequently, Q(fi, fi) = ∆i/∆i−1

where ∆i, i = 0, 1, . . . , n, are the leading minors of Q.

328. After multiplication by 2, the matrix of the quadratic form has 2s on
the principal diagonal, −1s right above and right below it, and 0s everywhere
else. The determinant ∆n of this matrix can be computed inductively from
∆1 = 2, ∆2 = 3, and ∆n = 2∆n−1 − ∆n−2 (cofactor expansion), implying
that ∆n = n+1. Consequently, the leading minors of the quadratic form are
all positive (equal to (1), 2, 3, . . . , n + 1), showing that the form is positive
definite.

329. Note that the determinant of the coefficient matrix of a quadratic
form, under a change of coordinates, is multiplied by the square of the
determinant of the transition matrix. However, when the quadratic form
changes, the determinant increases or decreases regardless of the coordinate
system, since the transition matrix stays the same. So, preparing to apply
the unipotent triangular change of coordinates from exercise 325 — which
expresses the determinant of the coefficient matrix as the product of Q(fi)
— we begin with a coordinate system where the linear form l whose square
is added to Q is taken on the role of the last coordinate. Then all the
basis vectors ei except the last one lie in the hyperplane l(x) = 0 where
Q(x) + l(x)2 coincides with Q(x). Consequently all but the last one of the
vectors fi of the Q-orthogonal basis (obtained as in exercise 325) are the
same for Q and for Q + l2 (and satisfy l(fi) = 0). Therefore for i < n
the (positive) diagonal factors are the same: Q(fi) = Q(fi) + l(fi)

2, while
Q(fn) < Q(fn) + l(fn)

2. Thus, their product increases when Q is replaced
with Q+ l2.

356. For an m × n matrix A = [aij ], the trace of the n × n matrix A†A
is equal to

∑n
i=1

∑n
j=1

|aij |2, which is positive unless all aij = 0. Thus, if
∑

A†
iA = 0, then

∑

trA†
iA = 0, and therefore all Ai = 0.

364. 〈Ax, Ax〉 = 〈A†x, A†x〉 for all x ∈ V is equivalent to 〈x, A†Ax〉 =
〈x, AA†x〉 for all x ∈ V , and is equivalent to 〈x, Sx〉 = 0 for all x ∈ V where
S = i(A†A−AA†). This is equivalent to S = 0, i.e. to A†A = AA†. Indeed, a
function of the form x 7→ 〈x, Sx〉 is an Hermitian quadratic form (Hermitian-
symmetric in our case, though this is curremtly irrelevant) which uniquely
determines the sesquilinear form (x,y) 7→ 〈x, Sy〉, which is therefore zero
in our case, implying S = 0. Conversely, normality of A implies S = 0 and
hence 〈Ax, Ax〉 = 〈A†x, A†x〉 for all x.
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370. Since A is normal, we have (by the Spectral Theorem) the decom-
position V = ⊕λWλ of the space V into a direct orthogonal sum of the
eigenspaces of A. Each Wλ is also the eigenspace of A† with the eigenvalue
λ̄. If AB = BA then B†A†A†B†. Therefore each W|lambda is both B−
and B†-invariant. Therefore B, being normal in V (i.e. commuting with
B†), also acts on Wλ as a normal operator. Thus, by the Spectral Theorem
applied to B|Wλ

, each Wλ decomposes into the direct orthogonal sum of
eigenspaces of B|Wλ

. [If more commuting normal operators are given, this
process can be continued inductively to decompose V into a direct orthogo-
nal sum of common eigenspaces of the operators.] Combining orthonormal
bases — one in each of the common eigenspaces of the operators — yields
an orthonormal basis in V consisting of the operators’ eigenvectors.

374. If P 2 = P , then every x ∈ V can be uniquely written as the sum
x = Px + (I − P )x, where Px lies in the eigenspace V1 of P with the
eigenvalue 1, and (I − P )x in the eigenspace V0 f P with the eigenvalue 0.
The operator is therefore the projector to V1 along V0. But these eigenspaces
are orthogonal to each other if and only if P † = P .

383. According to Exercise 328 (from the previous homework), the qua-
dratic form 〈x,x〉 is positive definite. Inner products of basis vectors ei are:
〈ei, ei〉 = 2 (i.e. |ei| =

√
2), 〈ei, ei+1〉 = −1 (i.e. the cosine of the angle

between these vectors is −1/
√
2
2
= −1/2 and hence the angle is 120◦), and

〈ei, ej〉 = 0 when |i− j| > 1 (i.e. the angle between such vectors is 90◦).

399. The answer is found on page 174 of the text.

401(b). The coefficient matrix S =





2 −2 0
−2 1 −2
0 −2 0



 has the charac-

teristic polynomial λ3 − 3λ2 − 6λ+8 with an obvious root lambda = 1, and
factors as

(λ− 1)(λ2 − 2λ− 8) = (λ− 1)(λ− 4)(λ+ 2).

The eigenvectors corresponding to the eigenvalues λ1,2,3 = 4, 1,−2 are found
by solving the systems Sxi = λixi: x1 = (2,−2, 1)t, x2 = (2, 1,−2)t, and
x3 = (1, 2, 2)t, which all have length 3. Therefore after the orthogonal

change of coordinates x = Uy, where U = 1

3





2 2 1
−2 1 2
1 −2 2



 the coefficient

matrix will become diagonal: U tSU = diag(4, 1,−2), and the quadratic
form 4y21 + y22 − 2y23 as required.
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403. By the real version of the Spectral Theorem, any invertible anti-
symmetric transformation Ω can be described as the superposition of non-

zero anti-symmetric transformations

[

0 ω
−ω 0

]

in the direct orthogonal

sum of Euclidean planes RR2. Therefore, in a suitable (Cartesian) coor-
dinate system the non-degenerate anti-symmetric bilinear form is written
as

xtΩy = ω1(x1y2 − x2y1) + · · ·+ ωn(x2n−1y2n − x2ny2n−1),

The coefficients ω1, . . . , ωn can be assumed positive (because transposing the
coordinates on the ith plane changes the sign of ωi). Rescaling the coordi-
nates on each plane by

√
ωi one obtains a unique normal form

∑

i(x2i−1y2i−
x2iy2i−1) of a non-degenerate anti-symmetric bilinear form in R

2n. In the
odd dimension, anti-symmetric bilinear forms are necessarily degenerate,
which follows from the Spectral Theorem, but is also known from the fact
that an anti-symmetric matrix of an odd size has zero determinant.

405. Let Pu and Pv be the orthogonal projectors from R
4 to the planes

U and V respectively. [BTW, an orthogonal projector P satisfy P satis-
fies P 2 = P , has two perependicular eigenspaces with the eigenvalues 1
and 0, and is cosequently self-adjoint (P t = P ) and positive: 〈x, Px〉 =
〈x, P 2x〉 = 〈Px, Px〉 ≥ 0 for all x.] For x,y ∈ V , since Pv = I on V , we have
〈x, Ty〉 = 〈x, PvPuy〉 = 〈Pvx, Puy〉 = 〈x, P 2

uy〉 = 〈Pux, Puy〉. Consequently
〈x, Ty〉 = 〈y, Tx〉, i.e. T t = T , and 〈x, Tx〉 ≥ 0, i.e. T is positive. By
the Spectral Theorem for real self-adjoint operators, T has an orthonormal
basis of eigenvectors e1, e2 ∈ V with eigenvalues λ1, λ2 ≥ 0: PvPuei = λiei.
Since each orthogonal projection can only decrease the length of a vector,
we conclude that 0 ≤ λi ≤ 1 and thus each λi is the cosine of some angle
between 0 and π/2. Note that 〈Pue2, Pue1〉 = 〈e2, Te1〉 = λ1〈e2, e1〉 = 0,
i.e. the images Puei of the vectors ei in U are orthogonal, and λi = cos2 θi,
where θi is the angle in R

4 between ei ∈ V and Puei ∈ U .
408. An ellipsoid E ⊂ R

3 in a suitable Cartesian coordinate system is
given by the equation x2/a2+y2/b2+z2/c2 = 1, where we may assume that
the semiaxes satisfy a ≤ b ≤ c. If a section of E by a plane passing through
the origin is a circle of radius r, then Cauchy’s interlacing theorem shows
that r ≤ b ≤ r, i.e. r = b (the middle semiaxis of E). A secting plane P
containing the y-axis is symmetric (together with E) under the reflection
(x, y, z) 7→ (x,−y, z). Therefore the ellipse P ∩ E is symmetric about the
line P ∩ {y = 0}, and hence about the line x = z = 0 (the middle axis of
E) perpendicular to it. Thus these two lines are the principal axes of the
ellipse P ∩ E, which is therefore a circle if and only if its semiaxis lying in
the plane y = 0 has length b. To find such P , note that the intersection of E
with the plane y = 0 is the ellipse x2/a2+ z2/c2 = 1, and when a < b < c, it
contains 2 pairs of centrally symmetric points of distance b from the origin.
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The two planes spanned by any of these points and the y-axis intersect the
ellipse in a circle of radius b. In the extreme cases b = c or b = a the section
of E by the plane x = 0 or respectively z = 0 is the required circle as well.

410. It follows by induction on codimension k of the subspace from the
Cauchy interlacing theorem. If (by the induction hypothesis) αi ≤ α′

i ≤ αi+k

for all i = 1, . . . , n−k, then for a hyperplane in the subspace of codimension
k, the smiaxes α′′

i , i = 1, . . . , n − k − 1, of the corresponding ellipsoid we
have: αi ≤ α′

i ≤ α′′
i ≤ α′

i+1 ≤ αi+1+k.

415. Let T denote the cyclic shift operator studied on page 174. The ma-
trix defined by the periodic sequence {Ck} is C := C1T +C2T

2+ · · ·+CnT
n.

Since T t = T−1 and all polynomials in T and T−1 commute with each other,
we conclude that C is normal, that all such operators (corresponding to dif-
ferent periodic sequeneces) commute, and the Fourier basis in C

n described
on page 174 is the common orthonormal basis of eigenvectors of the op-
erators C. The respective eigenvalues are C1ζ + C2ζ

2 + · · · + Cnζ
n where

ζ = e2π
√
−1l/n, l = 1, . . . , n.
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420. The operator x 7→ a(x)v has rank 1. Its range is spanned by
v 6= 0, and the kernel is the hyperplane given by the equation a(x) = 0.
When a(v) 6= 0, the space is the direct sum of the kernel, which is the
eigenspace with the eigenvalue 0, and the range, which is the eigenline with
the eigenvalue a(v). When a(v) = 0, the operator is nilpotent (its square
equals 0) with its kernel being the only eigenspace. (When dimV = 1, the
2nd possibility does not occur.)

423. Any linear combination A = C0N
0 + C1N

1 + · · · + Cn−1N
n−1 of

the non-zero powers of a regular nilpotent N : Kn → K
n commutes with

N . It is not hard to show that any operator A : Kn → K
n commuting with

N is of this form. Namely, if N acts by en 7→ en−1 7→ · · · 7→ e1 7→ 0 and
[aij ] is the matrix of A in the basis {ei}, then the equality AN = NA turns
into the system of linear equations ai,j−1 = ai+1,j for all i, j = 1, . . . , n,
where ai,−1 and an+1,j are understood as zeroes. This implies that A must
have constant entries along the diagonals i+ j = const (parallel to the main
diagonal), and these entries are 0 when const < 0. (The last fact, i.e. that
A is upper-triangular, is also obvious geometrically since A commuting with
N must preserve the complete flag

{0} ⊂ KerN ⊂ KerN2 ⊂ · · · ⊂ KerNn−1 ⊂ K
n

associated with the basis {ei}.)

427(d). The characteristic polynomial of the matrix (call it A) is λ3 +

3λ2 + 3λ+ 1 = (λ+ 1)3. The matrix A+ I =





4 0 8
3 0 −6

−2 0 −4



 is nilpotent

of rank 2, thus has a 1-dimensional kernel, and hence has 1 Jordan cells of

sizes 3. Therefore the Jordan canonical form of A is





−1 1 0
0 −1 1
0 0 −1



.

432. A polynomial expression p(A) of A = CJC−1 coincides with
Cp(J)C−1. Thus, it suffices to check that Jordan canonical forms satisfy the
Cayley-Hamilton equation. This is immediate for a Jordan cell J = λ0I+N
of size m and eigenvalue λ0, since its characteristic polynomial is (λ− λ0)

m

and (J − λ0I)
m = Nm = 0 indeed. For J consisting of r Jordan cells of

sizes m1, . . . ,mr with eigenvalues λ1, . . . , λr, the characteristic polynomial is
∏

i(λ−λi)
mi (as J is block-diagonal), and (J−λiI)

m
i is still block-diagonal,

with the ith block turned into 0. Therefore
∏

i(J − λi)
m
i is the product of

(commuting) block-diagonal matrices, where for each diagonal block, one of
the factors is 0, and hence the whole product is 0 as expected.

434. The characteristic polynomial of the matrix is λ2 − (a2 + bc). The
(a, b, c)-space is partitioned into the level surfaces (sketched on the next
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page)

a2 + bc = a2 +

(

b+ c

2

)

−
(

b− c

2

)2

= const

of the determinant function, which are therefore invariant under similarity
transformations. When const > 0 (i.e. the determinant D := −a2−bc < 0),
the surfaces are one-sheeted hyperboloids. Their points represent diagonal-
izable traceless matrices with real eigenvalues ±

√
−D. When const < 0

(D > 0), the surfaces are two-sheeted hyperboloids. They correspond to

non-real Jordan canonical forms

[

i
√
D 0

0 −i
√
D

]

or, in the real version,

the similarity class of ±
√
D

[

0 −1
1 0

]

. Note that these normal forms de-

fine expansion
√
D times composed with the 90-degree rotation — counter-

clockwise for the sign + and clockwise for the sign −. They correspond to
the two different sheets of the hyperboloid, and are similar under similarity
transformations which reverse the orientation of the plane (i.e. similarity
transformations which preserve the orientation also preserve each sheet of
the hyperboloid). Finally, when const = 0 (D = 0), the surface is a cone.
Its vertex represents the zero matrix, and the two poles (without the vertex)

represent the similarity class of the Jordan cells ±
[

0 1
0 0

]

(which belong

to different sheets of the cone, and are similar to each other, but only under
the transformations reversing the orientation of the plane.)
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438. The characteristic polynomial of the matrix

[

4 3
3 2

]

is λ2−6λ−1.

Its roots are λ± := 3 ±
√
10. The corresponding eigenvectors are v± :=

(c±, 1)t where 3c± + 2 = λ±, i.e. c± = (1 ±
√
10)/3. The initial condition

(13, 13)t is a linear combination C+v+ + C1v− of the eigenvectors (with
non-zero coefficients C±). The sequence (xn, yn)

t is given by the formula
λn
+C+v+ + λn

−C−v−. Since |λ+| > 1 and |λ−| < 1, the slope xn/yn of the
radius-vector, when n tends to ±∞, approaches the slope of the eigenvector
v±, i.e. limn→±∞(xn/yn) = (1±

√
10)/3.

440. The coefficients of the quadratic polynomial with the roots λ± :=
(3±

√
17)/2 are found by Vieta’s formulas as λ2 − 3λ− 2. Therefore an :=

λn
+ + λn

− satisfies the recursion relation an+1 = 3an + 2an−1. The initial
conditions are a0 = 2, a1 = 3. Thus, both are integers, and a1 is odd.
Therefore by induction, if an, an−1 are integers and an is odd, then an+1, an
are integers, and an+1 = 3an + 2an−1 is odd.

441. Let X,Y be two non-commuting 2 × 2-matrices, XY 6= Y X. If
both have a logarithm, X = eA, Y = eB, then either eA+B 6= eAeB or
eA+B 6= eBeA. Following this clue one can find many examples. For instance,

the diagonal matrix X =

[

e 0
0 1

]

= exp

[

1 0
0 0

]

doesn’t commute with

the 90◦ rotation matrix Y =

[

0 −1
1 0

]

= exp

[

0 −π/2
π/2 0

]

.

444. A Jordan cell J of size m with the eigenvalue λ has tr J = mλ. On
the other hand, eJ is upper-triangular with eλ on the diagonal. Therfore
det eJ = (eλ)m = emλ = etr J . The same is true for Jordan canonical
forms, because they are formed by direct sums of (commuting) Jordan cells
Ji and so exp(J1 ⊕ · · · ⊕ JN ) = eJ1 · · · eJN , and because the determiant is
multiplicative, and the trace is additive. Finally, both trace and determiants
are invariant under similarity transformations, and therefore the identity
det eA = etrA follows from the Jordan canon0cal form theorem.

445 (h). The roots of λ4+4λ2+3 = (λ2+3)(λ2+1) are ±i,±
√
3i. There-

fore the general (real) solution has the form A cos t+B sin t+C cos
√
3t+

D sin
√
3t, where A,B,C,D are arbitrary real constants. To satisfy the

initial condition we must have: A + C = 1, B +
√
3D = 0, A + 3C =

0, B + 3
√
3D = 0, from which C = −1/2, A = 3/2, B = D = 0, i.e. the

required solution x(t) = 3

2
cos t− 1

2
cos

√
3t.


