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3 Determinants

Definition
Let A be a square matrix of size n:

a1 ... QAin

A =

a/nl ces ann

Its determinant is a scalar det A defined by the formula

det A= Z 5(0>a10(1)a20(2) ...am(n) .

Here o is a permutation of the indices 1,2,....n. A permuta-
tion o can be considered as an invertible function i — o(i) from
the set of n elements {1,...,n} to itself. We use the functional
notation o (i) in order to specify the i-th term in the permutation

o= ( 0(11) Uzln) ) Thus, each elementary product in the

determinant formula contains exactly one matrix entry from each
row, and these entries are chosen from n different columns. The sum
is taken over all n! ways of making such choices. The coefficient €(o)
in front of the elementary product equals 1 or —1 and is called the
sign of the permutation o.

We will explain the general rule of the signs after a few examples.
In these examples, we begin using one more conventional notation for
determinants. According to it, a square array of matrix entries placed

between two vertical bars denotes the determinant of the matrix.

Thus, CCL Z denotes a matriz, but OCL Z denotes a number

equal to the determinant of that matrix.

Examples. (1) For n =1, the determinant |a11| = a1;.
ap; a2
ar a2
(3) For n = 3, we have 3! = 6 summands

(2) For n = 2, we have: = a11a992 — A190921.

ail a2 a3
a1 Qa2 23 | =
asr asz2 ass
11022033 — 112021033 + 412023031 — 413022031 + A13G21032 — 411023032

corresponding to permutations (133), (515), (a1): (321) (s12)+ (152):
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The rule of signs for n = 3 is schematically shown on Figure 27.

Figure 28

EXERCISES
201. Prove that the following determinant is equal to 0:
0 0 0 a b
0 0 0 ¢ d
0 0 0 e f]. 4
p q 7 s t
vow x Yy 2

202. Compute determinants:

cosr —sinzx coshzr sinhx cosr siny v
sinx cosz |’ | sinhx coshx |’ | sinz cosy
203. Compute determinants:
0O 1 1 0 1 1 1 1 1+
10 1|, |1 2 3/, —i 1 0 /
1 1 0 1 3 6 1—2 0 1
Parity of Permutations
The general rule of signs relies on properties of permutations.
Let A,, denote the following polynomial in n variables x1, ..., z,:
An(xl,...,xn) = H (xi—xj).
1<i<j<n

Examples: Ay =1 — x9, Az = (1 — x2)(x1 — x3)(22 — x3). By
definition, Ay = 1. In general, A,, is the product of all “n-choose-2”
linear factors x; — x; written in such a way that ¢ < j.
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Let o be a permutation of {1,...,n}. It acts on polynomi-
als P in the variables xi,...,x, by permutation of the variables:

(O'P)(.’,Ul, ce ,.fn) = P(CE‘U(l)7 ce ,ZCU(H)).

Example. Let 0 = (513 % g) Then

O'Ag, = ($3—$1)($3—ZC2)($1—$2) = (—1)2($1—$3)(x2—$3)($1—xg).

One says that o inverses a pair of indices i < j if o(i) > o(j).
The total number [(o) of pairs ¢ < j that o inverses is called the
length of the permutation o. Thus, in the previous example, o
inverses the pairs (1,2) and (1,3), and has length [(c) = 2.

Lemma. oA, = £(0)A,, where c(o) = (—1)17),

Proof. Indeed, a permutation of {1,...,n} also permutes all
pairs ¢ # j, and hence permutes all the linear factors in A,,. However,
a factor x; — z; is transformed into x,(;) — Z4(;), which occurs in the
product A,, with the same sign whenever (i) < o(j), and with the
opposite sign whenever o(i) > o(j). Thus, cA, differs from A,, by

the sign (—1)). O

A permutation o is called even or odd depending on the sign
g(o), i.e. when the length is even or odd respectively.

Examples. (1) The identity permutation id (defined by id(i) =
i for all 7) is even since [(id) = 0.

(2) Consider a transposition 7, i.e. a permutation that swaps
two indices, say ¢ < j, leaving all other indices in their respective
places. Then 7(j) < 7(i), i.e. 7 inverses the pair of indices i < j.
Besides, for every index k such that i < k < j we have: 7(j) < 7(k) <
7(%), i.e. both pairs i < k and k < j are inverted. Note that all other
pairs of indices are not inverted by 7, and hence (1) = 2(j — i) + 1.
In particular, every transposition is odd: (1) = —1.

Proposition. Composition of two even or two odd per-
mutations is even, and composition of one even and one
odd permutation 1s odd:

e(oo’) = e(o)e(d’).
Proof. We have:

e(oa" Ay = (00" ) Ay = (0’ Ay) = (0" )o A, = e(0)e(o)A,.

Corollary 1. Inwverse permutations have the same parity.
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Corollary 2. Whenever a permutation is written as the
product of transpositions, the parity of the number of the
transpositions in the product remains the same and coin-
cides with the parity of the permutation: If c = 11...7N,
then (o) = (—1)V.

Here are some illustrations of the above properties in connection
with the definition of determinants.

Examples. (3) The transposition (21) is odd. That is why the
term aqoa9; occurs in 2 x 2-determinants with the negative sign.

: 123\ (123 (123\ 123\ 123\ (123
(4) The permutations (y53), (213)7 (231)7 (321): (319)> (135) have
lengths [ = 0,1,2,3,2,1 and respectively signs e =1,—1,1,—1,1,—1
(thus explaining Figure 27). Notice that each next permutation here

is obtained from the previous one by an extra flip.
1234

(5) The permutation (,3,;) inverses all the 6 pairs of indices and
has therefore length [ = 6. Thus the elementary product aj4a23a32a41
occurs with the sign ¢ = (—1)% = 41 in the definition of 4 x 4-
determinants.

(6) Since inverse permutations have the same parity, the defini-
tion of determinants can be rewritten “by columns:”

det A = Z 8(0)&0(1)1 Qg (n)n-

Indeed, each summand in this formula is equal to the summand in
the original definition corresponding to the permutation ¢~ and
vice versa. Namely, reordering the factors aq(q)1...G5(n)n, S0 that

o(1),...,0(n) increase monotonically, yields aj,-1(1---Gpe—1(n)-

EXFERCISES

204. List all the 24 permutations of {1, 2, 3,4}, find the length and the sign
of each of them. %
205. Find the length of the following permutation:

1 2 ... k k+1 k+2 ... 2k ¥
1 3 ... 2t-—1 2 4 .. 2k )7
206. Find the maximal possible length of permutations of {1,...,n}. %
207. Find the length of a permutation ( 111 Zn ) given the length [
. 1 ... n
of the permutation < ; 0" ) v

208. Prove that inverse permutations have the same length. %
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209. Compare parities of permutations of the letters a,g,h,i,l,m,o0,r,t in the
words logarithm and algorithm. %

210. Prove that the identity permutations are the only ones of length 0.
211. Find all permutations of length 1. v/

212.* Show that every permutation o can be written as the product of [(o)
transpositions of nearby indices. %

(G130 V]

1 3 4 5 "
1 1 3 o | ascomposition of a
minimal number of transpositions. v/

213.” Represent the permutation (

214 Do pI‘OdU.CtS 13024053041 035 and 21A13A34055042 OCCUTr in the defin-
ing formula for determinants of size 57 v/

215. Find the signs of the elementary products assasiaqzassaisags and
(32043014051 066025 1N the definition of determinants of size 6 by computing
the numbers of inverted pairs of indices. v/

Properties of determinants

(i) Transposed matrices have equal determinants:
det A* = det A.

This follows from the last Example. Below, we will think of an
n X n matrix as an array A = [ay,...,a,] of its n columns of size n
(vectors from C™ if you wish) and formulate all further properties of
determinants in terms of columns. The same properties hold true for
rows, since the transposition of A changes columns into rows without
changing the determinant.

(ii) Interchanging any two columns changes the sign of
the determinant:

det[...,a;,...,a;,..] = —det[...,a;,...,a;,...].

Indeed, the operation replaces each permutation in the definition
of determinants by its composition with the transposition of the in-
dices 7 and j. Thus changes the parity of the permutation, and thus
reverses the sign of each summand.

Rephrasing this property, one says that the determinant, consid-
ered as a function of n vectors aq, ..., a, is totally anti-symmetric,
i.e. changes the sign under every odd permutation of the vectors, and
stays invariant under even. It implies that a matrixz with two equal
columns has zero determinant. 1t also allows one to formulate further
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column properties of determinants referring to the 1st column only,
since the properties of all columns are alike.

(iii) Multiplication of a column by a number multiplies
the determinant by this number:

det[A\aj, ag, ...,a,] = Adet|aj,ag, ..., a,].

Indeed, this operation simply multiplies each of the n! elementary
products by the factor of .

This property shows that a matriz with a zero column has zero
determinant.

(iv) The determinant function is additive with respect to
each column:

detla] + af, as, ...,a,] = det[a), as, ...,a,] + det[a], as, ..., a,].

Indeed, each elementary product contains exactly one factor
picked from the 1-st column and thus splits into the sum of two ele-
mentary products a;(1)1a0(2)2'“a0(n)n and ag(l)laa(z)z---%(n)n- Sum-
ming up over all permutations yields the sum of two determinants
on the right hand side of the formula.

The properties (iv) and (i7i) together mean that the determinant
function is linear with respect to each column separately. Together
with the property (i7), they show that adding a multiple of one
column to another one does not change the determinant of
the matriz. Indeed,

\al + )\&2,&2,...‘ = |a1,a2, | + A ‘ag,ag, ‘ = |a1,a2, |,

since the second summand has two equal columns.

The determinant function shares all the above properties with the
identically zero function. The following property shows that these
functions do not coincide.

(v) det I = 1.

Indeed, since all off-diagonal entries of the identity matrix are
zeroes, the only elementary product in the definition of det A that
survives 1s aii...any = 1.

The same argument shows that the determinant of any diagonal
matrix equals the product of the diagonal entries. It is not hard to
generalize the argument in order to see that the determinant of any
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upper or lower triangular matrix is equal to the product of the diago-
nal entries. One can also deduce this from the following factorization
property valid for block triangular matrices.

Consider an n X n-matrix [ é, g ] subdivided into four blocks

A, B,C, D of sizes m x m, m x 1, | xm and [ X [ respectively (where
of course m + [ = n). We will call such a matrix block triangular
if C' or B is the zero matrix 0. We claim that

A B

det[o D

} =det A det D.

Indeed, consider a permutation o of {1, ...,n} which sends at least
one of the indices {1,..,m} to the other part of the set,
{m+1,...,m+1}. Then o must send at least one of {m+1,...,m+1}
back to {1,...,m}. This means that every elementary product in our
n X n-determinant which contains a factor from B must also contain
a factor from C', and hence vanish, if C' = 0. Thus only the permu-
tations o which permute {1, ..., m} separately from {m+1,...,m+1}
contribute to the determinant in question. Elementary products
corresponding to such permutations factor into elementary prod-
ucts from det A and det D and eventually add up to the product
det Adet D.

Of course, the same holds true if B = 0 instead of C = 0.

We will use the factorization formula in the 1st proof of the fol-
lowing fundamental property of determinants.

EXERCISES
216. Compute the determinants
13247 13347 246 427 327
08469 28569 | | 1014 943 443 1. V4
—342 721 621

217. The numbers 195, 247, and 403 are divisible by 13. Prove that the

1 9 5
following determinant is also divisible by 13: | 2 4 7 |. %
4 0 3

218. Professor Dumbel writes his office and home phone numbers as a 7 x 1-
matrix O and 1 x 7-matrix H respectively. Help him compute det(OH). v/

219. How does a determinant change if all its n columns are rewritten in
the opposite order?
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1 = 2% ... z"
1 a a2 .. af
220.* Solve the equation | 1 as a3 .. a% | =0, where all ay,...,a,
2 n
1 an, a; a,,

are given distinct numbers. v/

221. Prove that an anti-symmetric matrix of size n has zero determinant

if n is odd. %

Multiplicativity

Theorem. The determinant is multiplicative with respect to
matrix products: for arbitrary n x n-matrices A and B,

det(AB) = (det A)(det B).

We give two proofs: one ad hoc, the other more conceptual.

Proof I. Consider the auxiliary 2n x 2n matrix :4] lg with

the determinant equal to the product (det A)(det B) according to the
factorization formula. We begin to change the matrix by adding to
the last n columns linear combinations of the first n columns with
such coefficients that the submatrix B is eventually replaced by zero
submatrix. Thus, in order to kill the entry b;; we must add the
by;j-multiple of the k-th column to the n + j-th column. Accord-
ing to the properties of determinants (see (iv)) these operations do
not change the determinant but transform the matrix to the form

A C

-1 0
submatrix C' in the upper right corner equals a;1b1; + ... + a;nby; sO
that C = AB is the matrix product! Now, interchanging the i-th
and n + i-th columns, ¢ = 1, ...,n, we change the determinant by the

A

factor of (—1)™ and transform the matrix to the form 0 —1 |

We ask the reader to check that the entry c;; of the

The factorization formula applies again and yields det C' det(—1). We
conclude that det C' = det Adet B since det(—I) = (—1)" compen-
sates for the previous factor (—1)".0J

Proof II. We will first show that the properties (i — v) com-

pletely characterize det[vy,...,v,] as a function of n columns v; of
size n.
Indeed, consider a function f, which to n columns vq,...,v,,

associates a number f(vi,...,vy). Suppose that f is linear with
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respect to each column. Let e; denote the ith column of the identity
matrix. Since vi =) " ; v;1€;, we have:

n
fvi,vo,...,vp) = Zvilf(ei,vz, ey Vi)
i=1

Using linearity with respect to the 2nd column vo = 2?21 vjo€j, We
similarly obtain:

n mn
v, va, o ovn) =) ) wavjaf(ei,e;,va,. .., Vi),

i=1 j=1
Proceeding the same way with all columns, we get:
f(Vl, e ,Vn) = Z Vi1 vinnf(eil, e ,ein).
i1yeenin

Thus, f is determined by its values f(e;,...,€; ) on strings of n
basis vectors.

Let us assume now that f is totally anti-symmetric. Then, if any

two of the indices i1,...,7, coincide, we have: f(e;,...,e;, ) = 0.
All other coefficients correspond to permutations o = < 211 Z.n )
of the indices (1,...,n), and hence satisfy:

flei,...,e;) =c(o)f(el,...,ep).

Therefore, we find:
f(vl7 s 7Vn) - Zva(l)l Tt Ua(n)ng(o—)f(ela s 7en)7

= f(el7 ce ,en) det[V1, R 7V71]'

Thus, we have established:

Proposition 1. FEwery totally anti-symmetric function of
n coordinate vectors of size n which is linear in each of them
1s proportional to the determinant function.

Next, given an n X n matrix C, put
f(vi, ..., vy) i=det[Cvy,...,Cvy].

Obviously, the function f is totally anti-symmetric in all v; (since
det is). Multiplication by C' is linear:

C(Au+ pv) = ACu+ uCv  for all u,v and A, p.
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Therefore, f is linear with respect to each v; (as composition of
two linear operations). By the previous result, f is proportional to
det. Since Ce; are columns of C', we conclude that the coefficient
of proportionality f(ei,...,e,) = det C. Thus, we have found the
following interpretation of det C.

Proposition 2. detC s the factor by which the determi-
nant function of n vectors v; is multiplied when the vectors
are replaced with Cv;.

Now our theorem follows from the fact that when C' = AB, the
substitution v — C'v is the composition v — Av +— ABv of consec-
utive substitutions defined by A and B. Under the action of A, the
function det is multiplied by the factor det A, then under the action
of B by another factor det B. But the resulting factor (det A)(det B)
must be equal to det C'. [

Corollary. If A is invertible, then det A is invertible.

Indeed, (det A)(det A™!) = det I = 1, and hence det A™! is recip-
rocal to det A. The converse statement: that matrices with invertible
determinants are invertible, is also true due to the explicit formula
for the inverse matrix, described in the next section.

Remark. Of course, a real or complex number det A is invertible
whenever det A # 0. Yet over the integers Z this is not the case:
the only invertible integers are 1. The above formulation, and
several similar formulations that follow, which refer to invertibility
of determinants, are preferable as they are more general.

EXERCISES

222. How do similarity transformations of a given matrix affect its deter-
minant? v/

223. Prove that the sign of the determinant of the coefficient marix of a
real quadratic form does not depend on the coordinate system. %

The Cofactor Theorem

In the determinant formula for an n x n-matrix A each elementary
product £ay,(q)... begins with one of the entries aiy, ..., a1, of the
first row. The sum of all terms containing aq; in the 1-st place is
the product of aj; with the determinant of the (n — 1) x (n — 1)-
matrix obtained from A by crossing out the 1-st row and the 1-st
column. Similarly, the sum of all terms containing a2 in the 1-st
place looks like the product of a;5 with the determinant obtained by
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crossing out the 1-st row and the 2-nd column of A. In fact it differs
by the factor of —1 from this product, since switching the columns
1 and 2 changes signs of all terms in the determinant formula and
interchanges the roles of ay; and aj2. Proceeding in this way with
ais, ..., a1, we arrive at the cofactor expansion formula for det A
which can be stated as follows.

\ 11 2 3 45
Cl” I aln !

! I+ —+ — +
""" alii____ 2| — + — + —

| 34+ —+ — +

! 41—+ — + —
an, 1 ann 5+_+_—|—
Figure 29 Figure 30

The determinant of the (n — 1) x (n — 1)-matrix obtained from A
by crossing out the row ¢ and column j is called the (ij)-minor of A
(Figure 28). Denote it by M;;. The (ij)-cofactor A;; of the matrix
A is the number that differs from the minor M;; by a factor +1:

Ayy = (=1 My

The chess-board of the signs (—1)**7 is shown on Figure 29. With
these notations, the cofactor expansion formula reads:

det A = a11A11 + a12Ai12 + ... + a1pA1y.

Example.
ai1 G122 a13
_ G222 G23 az1 G23 az1 Q22
ag1 G2 Aa23 | = aii —ai2 +ais
a32 a33 asy ass asy a3z
asip a32 ass

Using the properties (i) and (ii) of determinants we can adjust
the cofactor expansion to the ¢-th row or j-th column:

det A =aj 1A + ... +aindin = alelj + ...+ anjAnj, 1,7 =1,....n.
These formulas reduce evaluation of n x n-determinants to that of

(n — 1) x (n — 1)-determinants and can be useful in recursive com-
putations.
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Furthermore, we claim that applying the cofactor formula to the
entries of the ¢-th row but picking the cofactors of another row we
get the zero sum:

az-lAjl + ...+ CLmAjn =0if 7 # j.

Indeed, construct a new matrix A replacing the j-th row by a copy of
the i-th row. This forgery does not change the cofactors Aji,..., Ajy
(since the j-th row is crossed out anyway) and yields the cofactor
expansion a;1A;1 + ... + a;nAjp for det A. But A has two identical
rows and hence det A = 0. The same arguments applied to the
columns yield the dual statement:

aliAlj + ...+ (Lm'Anj =0if 7 # j.

All the above formulas can be summarized in a single matrix identity.
Introduce the n x n-matrix adj(A), called adjugate to A, by placing
the cofactor A;; on the intersection of j-th row and i-th column. In
other words, each a;; is replaced with the corresponding cofactor A;;,
and then the resulting matrix is transposed:

air ... QA1n A11 NN Anl
adJ cee Qg = Ajz'
anl ... Qnn Ay .. A,

Theorem. A adj(A) = (det A) I = adj(A) A.

Corollary. If det A is invertible then A is invertible, and

1

Al =
det A

adj(A).

1
a b d —b
Example.Ifad—bc;éO,then[C d] :ﬁ[—c a}

EXERCISES

22/. Prove that the adjugate matrix of an upper (lower) triangular matrix
is upper (lower) triangular.

225. Which triangular matrices are invertible?

226. Compute the determinants: (x is a wild card):

x ok ok ay x x a b
x % ... 0 x *x ¢ d

(@ | v & 0 O e o0 0 /
a; 0 0 g h 0 0
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22%7. Compute determinants using cofactor expansions:

5 —1 0 0
1 2 -1 0
() B N S
0 0 -1 2

(a)

NN O
N O =N
SR ON
i

228. Compute inverses of matrices using the Cofactor Theorem:

1 2 3 11 1
(@[312], (b)[Oll]. V.
2 3 1 00 1

229. Solve the systems of linear equations Ax = b where A is one of the
matrices of the previous exercise, and b = [1,0, 1]*. v/
230. Compute

1 -1 0o 07!
[0 1 -1 0]
0 0 1 -1
[0 0 0 1J

231. Express det(adj(A)) of the adjugate matrix via det A. v/
232. Which integer matrices have integer inverses? v/

Cramer’s Rule

This is an application of the Cofactor Theorem to systems of linear
equations. Consider a system

a1+ -+ a1y = by

Ap1T1+ -+ appy = by

of n linear equations with n unknowns (z1,...,z,). It can be written
in the matrix form

Ax = b,
where A is the n x n-matrix of the coefficients a;;, b = [b1,...,b,|" is

the column of the right hand sides, and x is the column of unknowns.
In the following Corollary, a; denote columns of A.

Corollary. If det A is invertible then the system of lin-
ear equations Ax = b has a unique solution given by the



86 Chapter 2. DRAMATIS PERSONAE

formulas:

det[b, as, ..., a,] detlay,...,a,_1,b]
Ir1 = gy eee s Lp = .
detlay, ..., a,]

det[ay, ..., a,]

Indeed, when det A # 0, the matrix A is invertible. Multi-
plying the matrix equation Ax = b by A~! on the left, we find:
x = A~'b. Thus the solution is unique, and z; = (det A)~1(A;b1 +
... + Apiby) according to the cofactor formula for the inverse ma-
trix. But the sum b1A1; + ... + b, Ay; is the cofactor expansion for
detlay,...,a;_1,b,a;41,...,a,] with respect to the i-th column.

Example. Suppose that ajjags # ajsa21. Then the system

aj1xy + ajpre = by
a21T2 + a2 = by

has a unique solution

‘ b1 a2 | ai; by |
by a2 az  bo
T = y X2 =
air ai2 air ai2
‘ a1 a2 a1 a2 ‘
EXFERCISES
233. Solve systems of equations using Cramer’s rule:
201 — 9 — X3 = 4 r1 + 220 + 423 = 31
(a) 3x1+4xe —223 = 11, (b) bry+z2+223 = 29 . v4
3r1 — 2x9 + 423 = 11 3x1 —xr2o+2x3 = 10

Three Cool Formulas

We collect here some useful generalizations of previous results.

A. We don’t know of any reasonable generalization of determi-
nants to the situation when matrix entries do not commute. However

the following generalization of the formula det CCL Z = ad — bc is

instrumental in some non-commutative applications.lo

"Notably in the definition of Berezinian in super-mathematics [7].
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In the block matrix { é ZB; ], assume that D' exists.

A B
C D

progs: | A B I 0] [A-BD'C B
root ¢ D D¢ 1|~ 0 D

B. Laplace’s formula!! below generalizes cofactor expansions.

Then det [ ] = det(A — BD71C) det D.

By a multi-index [ of length |I| = k we mean an increasing
sequence i1 < --- < ij of k indices from the set {1,...,n}. Given
and n x n-matrix A and two multi-indices I,.J of the same length
k, we define the (/.J)-minor of A as the determinant of the k x k-
matrix formed by the entries a;,;, of A located at the intersections
of the rows iy,...,7; with columns ji,...,jr (see Figure 30). Also,
denote by I the multi-index complementary to I, i.e. formed by
those n — k indices from {1,...,n} which are not contained in I.

For each multi-index I = (iy,...,ix), the following cofac-
tor expansion with respect to rows ii,...,7; holds true:

det A = Z (—1)i1+"'+i’“+jl+"'+j’“MIJij,
J:|J|=k

where the sum is taken over all multi-indices J = (ji,...,ji)
of length k.

Similarly, one can similarly write Laplace’s cofactor expansion
formula with respect to given k£ columns.

Example. Let a;,as, a3, a4 and by, by, bs, by be 8 vectors on the

plane. Then | B1 22 88 B¢ | —Jay /by bi| - far 2/l b

+ a1 a4l[b2 bs| + [ag as||b1 bs| — |az as|[b1 bs| + |az as|[by bal.

1 After Pierre-Simon Laplace (1749-1827).
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In the proof of Laplace’s formula, it suffices to assume that it is
written with respect to the first k rows, i.e. that I = (1,...,k). In-
deed, interchanging them with the rows ¢; < --- < 45 takes
(i1 — 1) + (i — 2) + - - - + (ix, — k) transpositions, which is accounted
for by the sign (—1)+ % in the formula.

Next, multiplying out M;;M7z, we find kl(n — k)! elementary
products of the form:

:taldal...akJak ak+1551"'an55n_k7

Wherea:( Lok )andﬁ:<ﬁ11 n_k>arepermu-

(e 5] e (673 671—]@
tations, and j,, € J, jﬁy € J. It is clear that the total sum over
multi-indices I contains each elementary product from det A, and
does it exactly once. Thus, to finish the proof, we need to compare
the signs.

I PP

Voo
e [ S
= e
b e

Figure 31

The sign + in the above formula is equal to e(«)e(8), the prod-
uct of the signs of the permutations o and (. The sign of this

elementary product in the definition of det A is equal to the sign

of the permutation < ok b+l ) on the set
Joq e ]ak 181 e jBn—k

JUJ =1{1,...,n}. Reordering separately the first k& and last n — k

indices in the increasing order changes the sign of the permutation

by e(a)e(5). Therefore the signs of all summands of det A which

occur in My M7y are coherent. It remains to find the total sign with

which M7 ;M7; occurs in det A, by computing the sign of the permu-

) 1 ... k kE+1 ... n
tation o = ‘ . ~ =
\Jr e Tk J1 R

J1 <+ < Jn—k-

Starting with the identity permutation (1,2...,71,...,j2,...,n),
it takes j; — 1 transpositions of nearby indices to move j; to the 1st
place. Then it takes jo — 2 such transpositions to move j to the 2nd

), where j; < ---j; and
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place. Continuing this way, we find that

(o) = (=1) = DFF0R=k) — ()t Fhtiitti

This agrees with Laplace’s formula, since I = {1,...,k}. 0.

C. Let A and B be k x n and n X k matrices (think of k < n).
For each multi-index I = (i1,...,1), denote by Ay and By the k x k-
matrices formed by respectively: columns of A and rows of B with
the indices i1, ..., L.

The determinant of the k x k-matrix AB is given by the
following Binet—Cauchy formula:!?

det AB =) (det Ar)(det By).
1

Note that when k = n, this turns into the multiplicative property
of determinants: det(AB) = (det A)(det B). Our second proof of it
can be generalized to establish the formula of Binet—Cauchy. Namely,
let ai,...,a, denote columns of A. Then the jth column of C' = AB
is the linear combination: ¢; = aiby; + --- + a,b,;. Using linearity
in each c;, we find:

det[cl,...,ck] = Z det[az-l,...,aik]bill---bikk.
1<it, .. ig<n
If any two of the indices i, coincide, det[a;,,...,a;] = 0. Thus
the sum is effectively taken over all permutations ( le Z ) on
the set'® {i1,...,i;}. Reordering the columns a;,,...,a; in the in-

creasing order of the indices (and paying the “fees” +1 according to
parities of permutations) we obtain the sum over all multi-indices of

length k:
Z det[az-zl, e ,ai;c] ZE(U)bill by
i <<l -
The sum on the right is taken over permutations o = ( 2 z: ) :

It is equal to det By, where I = (¢7,...,4;). O
Corollary 1. Ifk >n, det AB = 0.

12 After Jacques Binet (1786-1856) and Augustin Louis Cauchy (1789-1857).
3Remember that in a set, elements are unordered!
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This is because no multi-indices of length & > n can be formed
from {1,...,n}. In the oppositely extreme case k = 1, Binet—
Cauchy’s formula turns into the expression u'v = > w;v; for the
dot product of coordinate vectors. A “Pythagorean” interpretation
of the following identity will come to light in the next chapter, in
connection with volumes of parallelepipeds.

Corollary 2. det AA! =" (det Af)>.

EXFERCISES
234.* Compute determinants:
0 =z . a 0 0 0 0 b
e L0 o 0Oa 00 b O
0O 0 a b 0 O
(@) | z2 0 1 0 |, (b 00 ¢ do 0O 4.
' i 0O ¢c 0 0 d O
o 0 0 1 c 000 0 d

235.% Let P;;, 1 < i < j < 4, denote the 2 x 2-minor of a 2 x 4-matrix
formed by the columns i and j. Prove the following Pliicker identity!'*

PioP3y — P13 Poy + P14 Pos = 0. v

236. The cross product of two vectors x,y € R3 is defined by

Xxy::(m L3 : I3 I : 1 T2 )
Y2 Y3 Ys U1 Yy Y2
Prove that the length |x x y| = \/\x|2|y]2 — (x,y)?. 4
1 A,
237.* Prove that a,, + = :
1 An—l
ap—1+ 1
a1 + —
ao
ap 1 0 0
-1 a 1 - 0
where A,, = | . ) . . . 4
0 ce —1 Ap—1 1
0o ... 0 -1 ay,
A —1 0 0
0 A -1 ... 0
238.* Compute: | . : : : : : v
0 - 0 A —1
(07 Ap—1 Cee as )\ —+ aq

4 After Julius Pliicker (1801-1868).
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239.* Compute:

1

(

&
é)

n+1)

n—1

1
) o ()
) ("2

(r2)

240.* Prove Vandermonde’s identity!®

1 2z 27
1 zo a3
1 x, 22
1
1

241.* Compute:

i 221”;—1 327;—1

n—1

n—1

H (x; — x4).

1<i<j<n

3 n

33 n3
n2n—1

15 After Alexandre-Theéphile Vandermonde (1735-1796).
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