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The objective of this paper is to describe some construction and applications of the
equivariant counterpart to the Gromov-Witten (GW) theory, i.e. intersection theory on
spaces of (pseudo-) holomorphic curves in (almost-) Kahler manifolds.

Given a Killing action of a compact Lie group G on a compact Kahler manifold X, the
equivariant GW-theory provides, as we will show in Section 3, the equivariant cohomology
space Hf(X) with a Frobenius structure (see [2]). We discuss applications of the equivariant
theory to the computation ([7],[11]) of quantum cohomology algebras of flag manifolds (Sec-
tion 5), to the simultaneous diagonalization of the quantum cup-product operators (Sections
7,8), to the Sl-equivariant Floer homology theory on the loop space LX (see Section 6 and
[10],[9]) and to a “quantum” version of the Serre duality theorem (Section 12).

In Sections 9 — 11 we combine the general theory developed in Sections 1 — 6 with the
fixed point localization technique [3] in order to prove the mirror conjecture (in the form
suggested in [10]) for projective complete intersections.

By the mirror conjecture one usually means some intriguing relations (discovered by
physicists) between symplectic and complex geometry on a compact Kahler Calabi—Yau n-
fold and respectively complex and symplectic geometry on another Calabi-Yau n-fold called
the mirror partner of the former one. The remakable application [16] of the mirror conjecture
to enumeration of rational curves on Calabi—Yau 3-folds (1991, see the theorem below) raised
a number of new mathematical problems — challenging maturity tests for modern methods

of symplectic topology.
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On the other hand, in 1993 I suggested that the relation between symplectic and complex
geometry predicted by the mirror conjecture can be extended from the class of Calabi—Yau
manifolds to more general compact symplectic manifolds if one admits non-constant holo-
morphic functions on suitable non-compact Calabi—Yau manifolds in the role of the mirror
partners. According to this generalized form of the mirror conjecture Gromov—Witten in-
variants of a symplectic manifold can be reinterpreted in terms of oscillating integrals over
the mirror partner and saddle-point asymptotics of these integrals near critical points of the
holomorphic function.

We refer to [10, 9] for a detailed discussion of the generalized mirror conjecture supported
there by the examples of complex projective spaces and general toric symplectic manifolds.
In this paper we prove the conjecture (see Corollary 11.10, Corollary 10.8, Corollary 9.2 and
the remark following it) for complete intersections in CP™ given by r equations of degrees
(l1,..., 1) with Iy + ... + 1, < n+ 1, that is for Fano (<) and Calaby—Yau (=) projective
complete intersections.

In particular we explain in Section 11 how to pass the following maturity test:

Theorem. Consider the Picard-Fuchs differential equation
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of the non-vanishing holomorphic 3-forms on the Calabi-Yau 3-folds Y; with Hodge numbers
h?t =1, hb =101 given by the affine equations Yy : ug + ... +uy = 1, ug...us = €t.

Pick the basis Iy, ..., I5 of solutions to this differential equation determined by

Introduce the new variable T'(t) = 1,(t)/Io(t).
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where the components of the RHS form the basis of solutions to the differential equation
d., 1 d o . - s 4
— —)*J =0 with K(q) =5 d

and ng s the virtual number of degree d rational curves in CP* situated on a generic degree
5 hypersurface X, a Calabi-Yau 3-fold with Hodge numbers h*>' = 101, hb! =1.
An analogous result holds for any non-singular Calabi-Yau 3-dimensional projective com-

plete intersection X .

The virtual numbers of rational curves on a Calabi-Yau 3-fold X are defined in several
equivalent ways in the quantum cohomology theory ! and are equal to the algebraic numbers
of such curves on X provided with a generic almost Kahler structure. It is known that for
generic quintic hypersurfaces X C CP? the virtual number ng coincides with the number of
the degree d rational curves in CP* situated in X at least for d < 9. The number n; = 2875 of
straight lines on a generic quintic 3-fold has been known since the last century, no = 609250
and n3 = 317206375 were found (see [16]) several years ago, while ny = 242467530000 was
predicted in [16] and confirmed in [3] (as an illustration of a method that allows in principle
to find each ng). The simultaneous description of all the numbers n, given in the theorem
was conjectured in [16] on the basis of physical ideas of mirror symmetry between the Calabi-
Yau manifolds X and Y whose Hodge diamonds happened to be mirror-symmetric to one
another.

As far as we know, our Theorem and its generalization to Calabi-Yau projective complete
intersections given in Section 11 provide the first examples of Calabi-Yau manifolds for which
predictions of the mirror symmetry are verified for rational curves of all degrees.

The results of Sections 9 — 11 can be immediately carried over to complete intersections
in products of projective spaces. The method can be also applied to complete intersections in
general toric varieties where however some generalization of our algebraic formalism and some

refinement in foundations of the equivariant Gromov — Witten theory would be necessary.

I am thankful to S. Barannikov, I. Grojnowski, B. Kim, D. Morrison, R. Plesser, N.

Reshetikhin, A. Schwartz, A. Varchenko for numerous stimulating discussions and especially

Lsee for instance [20, 19] and also [15, 14] where the problem of counting multiple covers is resolved.



to M. Kontsevich who taught me his approach to Gromov — Witten theory. The proof of the
theorem formulated above has grown out of our joint attempt in Spring 95 to prove it using
the method [3] of summation over trees. The influence of our discussions on other results of

this paper is also significant.

1 Moduli spaces of stable maps

It was M. Gromov [8] who first suggested to construct (and constructed some) topological
invariants of a symplectic manifold X as bordism classes of spaces of pseudo-holomorphic
curves in X. Recently M. Kontsevich [3] suggested the concept of stable maps which gives
rise to an adequate compactification of these spaces. We recall here some basic facts from
[3] about these compactifications.

Let (C,p) be a compact connected complex curve with only double singular points and
with n ordered non-singular marked points (p1,...,p,). Two holomorphic maps (C,p) —
X, (C'",p') — X to an almost-Kahler manifold X are called equivalent if they can be identified
by a holomorphic isomorphism (C,p) — (C’,p’). A holomorphic map (C,p) — X is called
stable if it does not have infinitesimal automorphisms (or, equivalently, if its automorphism
group is finite). In other words, a map is unstable if either it is constant on a genus 0
irreducible component of C' with < 3 special (= marked or singular) points or if C' is a torus,
carries no marked points and the map is constant.

According to Gromov’s compactness theorem [8], any sequence of holomorphic maps
C — X of a nonsingular compact curve C' has a subsequence Hausdorff-convergent to a
holomorphic map C — X of (may be reducible) curve C of the same genus ¢ and representing
the same total homology class d € Hy(X,Z). A refinement of this theorem from [3] says
that equivalence classes of stable maps C — X with given g,n,d form a single compact
Hausdorft space — the moduli space of stable maps — which we denote X, , 4. Here g =
dim HY(C,0) = 1 — x(C\C518) /2.

In the case X = pt the moduli spaces coincide with Deligne-Mumford compactifications
My, of moduli spaces of genus g Riemannian surfaces with n marked points. They are
compact nonsingular orbifolds (i.e. local quotients of nonsingular manifolds by finite groups)
and thus bear the rational fundamental cycle which allows one to build up an intersection

theory. In general, the moduli spaces X, 4 are singular and may have “wrong” dimension,



and the idea of the program started in [4, 3] is to provide X, , 4 with virtual fundamental
cycles insensitive to perturbations of the almost-Kahler structure on X. In some nice cases
however the spaces Xy, 4 are already nonsingular orbifolds of the “right” dimension.
Beginning with this point we will use only genus zero stable maps and use the notation
X4 for the moduli spaces X, 4.
A compact complex manifold is called conver if it is a homogeneous space of its Lie

algebra of holomorphic vector fields.

Theorem 1.1 ([3, 6]) If X is convex then all non-empty moduli spaces X, 4 of genus 0
stable maps are compact nonsingular complex orbifolds of “right” dimension {(c1(T),d) +
dimec X +n — 3.

Additionally, there are canonical morphisms X, g — X, 1.4, Xna — Mon, Xna — X"
between the moduli spaces X, 4 called forgetful, contraction and evaluation (and defined by
forgetting one of the marked points, forgetting the map and evaluating the map at marked
points respectively). We refer to [3, 6] for details of their construction.

In the rest of this paper we will stick to convex manifolds; we comment however on
which results are expected to hold in greater generality. A number of recent preprints by B.
Behrend — B. Fantechi, J.Li — G. Tian, T. Fukaya — K. Ono shows that Kontsevich’s “virtual
fundamental cycle” program is being realized successfully and leaves no doubts that these
generalizations are correct. Still some verifications are necessary in order make them precise

theorems.

2 Equivariant correlators

The Gromov-Witten theory borrows from the quantum field theory the name (quantum)
correlators for numerical topological characteristics of the moduli spaces X, 4 (characteris-
tic numbers) and borrows from the bordism theory the construction of such correlators as
integrals of suitable wedge-products of various universal cohomology classes (characteristic
classes of the GW theory) over the fundamental cycle.

We list here some such characteristic classes.

1. Pull-backs of cohomology classes from X" by the evaluation maps e; x---xep, : X, 4 —
X™ at the marked points.



2. Any polynomial of the first Chern classes ¢, ..., c™ of the line bundles over X, 4
consisting of tangent lines to the mapped curves at the marked points. One defines
these line bundles (by identifying the Cartesian product of the forgetful and evaluation
maps X,i11.4 — Xpa X X with the universal stable map over X, 4) as normal line
bundles to the n embeddings X, 4 — X414 defined by the n marked points of the
universal stable map. We will call these line bundles the universal tangent lines at the

marked points.

3. Pull-backs of cohomology classes of the Deligne - Mumford spaces by contraction maps
T Xpa — Mo,n- We will make use of the classes Ay := A;, . ;, Poincare-dual to

fundamental cycles of fibers of forgetful maps Mg, — M.
We define the G W-invariant

Ar(d1, s Pn)na ;:/ T A Nejor N ... N e, dn.

Xn,d

It has the following meaning in enumerative geometry: it counts the number of pairs
“a degree-d holomorphic map CP! — X with given k points mapped to given k cycles, a

configuration of n — k marked points mapped to the n — k given cycles”.

Suppose now that the convex manifold X is provided with a hamiltonian Killing action
of a compact Lie group GG. Then G act also on the moduli spaces of stable maps. The
evaluation, forgetful and contraction maps are G-equivariant, and one can define correlators
A(¢1, ... On)na of equivariant cohomology classes of X.

The equivariant cohomology H (M) of a G-space M is defined as the ordinary cohomol-
ogy H*(Mg) of the homotopic quotient Mg = EG xc M — the total space of the M-bundle
p : Mg — BG associated with the universal principal G-bundle FG — BG. The algebra
H*(BG) = H{(pt) of characteristic classes of principal G-bundles plays the role of the coeffi-
cient ring of the equivariant theory (so that Hf (M) is a Hf:(pt)-module). If M is a compact
manifold with smooth G-action, the push-forward p, : H: (M) — H(pt) (“fiberwise inte-
gration”) provides the equivariant cohomology of M with intersection theory with values in
H{(pt). In the case of hamiltonian actions the corresponding intersection pairing (-, -) is

non-degenerate over Hf (pt).



We introduce the equivariant GW-invariants, A;({¢1, ..., dn)nd, With values in H*(BG),
where ¢1,...,¢, € H5(X). Values of such invariants on fundamental cycles of maps B —
BG are accountable for enumeration of rational holomorphic curves in families of complex

manifolds with the fiber X associated with the principal G-bundles over a finite-dimensional
manifold B.

3 The WDVYV equation

One of the main structural results about Gromov-Witten invariants — the composition rule
[20],[19] — expresses all genus-0 correlators via the 3-given-marked-point ones, (we denote
them (@1, ..., on)na since the corresponding A; = 1) satisfying additionally the so-called
Witten-Digkgraaf-Verlinde- Verlinde equation. We will see here that the same result holds
true for equivariant Gromov-Witten invariants (at least in the convex case).

Following [21], introduce the potential

F=>" " >ttt - (1)

n=0 ’

It is a formal function on the vector (super -) space H(X) with values in the coefficient ring
A = HE(pt,Cl[g]]). Here C[[g]] stands for some completion of the group algebra C[Hy(X, Z)]
so that the symbol ¢¢ = qfl .. .qg’“ represents the class (di,...,dy) in the lattice Z* =
Hy(X,Z) of 2-cycles. Fundamental classes of holomorphic curves in X have non-negative
coordinates with respect to a basis of Kahler forms so that the formal power series algebra
C[[g]] can be taken on the role of the completion. Strictly speaking, the formula 1 defines F
up to a quadratic polynomial of ¢ since the spaces X,, o are defined only for n > 3.

Denote V the gradient operator with respect to the equivariant intersection pairing ( , )
on Hj(X). The WDVYV equation is an identity between third directional derivatives of F.
It says that

(VFap, V) (2)

is totally symmetric (up to usual signs) with respect to permutations of the four directions
a,B,v,6 € HL(X).



Theorem 3.1 The WDVV equation holds for conver X.

Notice that
(V/a/\t,V/b/\t>:(a,b> (3)
X X

has geometrical meaning of integration [ Acxxx @ ® b over the diagonal in X x X.

In order to prove the non-equivariant version of the WDVV equation one interprets the 4-
point correlators Ajaz4{av, 3,7, 0)4.q which are totally symmetric in a, 3,7, ¢ as integrals over
the fibers I'y of the contraction map 7 : Xy 4 — M, = CP?" and specializes the cross-ratio A
to 0,1 or co. Stable maps corresponding to generic points of, say, I'y are glued from a pair
of maps f1 : (CPY, p1,p2,a1) — X, fo: (CPY, p3,ps,az) — X of degrees dy + dy = d with
three marked points each, satisfying the diagonal condition fi(a1) = f2(ag). One can treat
such a pair as a point in X34, X X34, situated on the inverse image I'y, 4, of the diagonal
A C X x X under the evaluation map es x es. The glueing map U4, yd,=al'a, a, — I is an
isomorphism at generic points and therefore it identifies the analytic fundamental cycles.

This means that

A1234<Oé, ﬁa e 5>4,d - Z <V<Oé, ﬁa t>3,d1> V(’% 57 t>37d2> .

di+do=d
The above argument applies to the correlators Ajssa{a, 3,7,0,t,...,t)ntaq with additional
marked points and gives rise to
= 1
<VFa7ﬁ, VF%5> = Z E Z qu1234<Oé, ﬁ, Y, 5, t... t>4+k,d (4)
n=0 d

which is totally symmetric in «, 3,7, 9.

Convexity of X is used here only in order to make sure that the moduli spaces have
fundamental cycles and that the diagonal in X x X consists of regular values of the evaluation
map es X e3.

In order to justify the above argument in the equivariant situation, it is convenient to
reduce the problem to the case of tori actions (using maximal torus of GG) and use the De
Rham version of equivariant cohomology theory.

For a torus G = (S')" acting on a manifold M the equivariant De Rham complex [1]

consists of G-invariant differential forms on M with coefficients in Clus, ..., u,] = H(pt),
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provided with the coboundary operator dg = d + >._, usis where i, are the operators of
contraction by the vector fields generating the action. Applying the ordinary Stokes formula
to G-invariant forms and G-invariant chains we obtain well-defined functionals HE (M) —
Clu] of integration over invariant cycles. The identity 4 follows now from the obvious G-
invariance of the analytic varieties I'y, I', I'g, 4,-

A similar argument proves a composition rule that reduces computation of all equivariant
correlators A;(...) to that of (...).

4 Convex vector bundles

The following construction was designed by M. Kontsevich in order to extend the domain of
applications of WDVV theory to complete intersections in convex Kahler manifolds.

Let V — X be a conver bundle, that is, a holomorphic vector bundle spanned by its
holomorphic sections. For stable f : (C,p) — X (of degree d, genus 0, with n marked points),
the spaces H°(C, f*V') form a holomorphic vector bundle V,, 4 over the moduli space X, 4.
If f is glued from f; and fo as in the proof of (4), then H(C, f*V) = ker(H°(CY, f{V) @
HO(Cy, f3V) ©=% exV = e3V) where ¢; : H(C;, V) — €}V is defined by evaluation of
sections at the marked point a;.

This allows one to construct a solution F' to the WDVV equation starting with a convex
G-equivariant bundle V' and any invertible G-equivariant multiplicative characteristic class
E (the total Chern class would be a good example).

Redefine

(a,b) = /Xa/\b/\E(V),

..., thha = / eitn...et NE(V,q),
Xn,d

F(t) = Z%qu<t>"'at>n,d-
n=0 " d

Then (VF, 3, VF,s) is totally symmetric in o, 3,7, 6.
This construction bears a limit procedure from the total Chern class to the (equivariant)
Euler class, and the limit of F' corresponds to the GW-theory on the submanifold X’ € X

defined by an (equivariant) holomorphic section s of the bundle V. Namely, the section s



induces a holomorphic section s, 4 of V,, 4, and the (equivariant) Euler class Euler (V,,q)
becomes represented by some cycle [X], ;] situated in the zero locus X}, ; := s, 3(0) of the
induced section. The variety X , consists of stable maps to X', the Euler cycle [X] ;] plays

the role of the virtual fundamental cycle in X, ;, and the correlators

(t,...,t>n7d::/ et N...Net Euler (Vy,q) :/ ejtN . Nert
Xn,d [X

ndl
are correlators of GW-theory on X’ between the classes ¢ which come from the ambient space
X.
According to [28] one can consider the GW-theory with these correlators as the GW-

theory on the super-manifold with the structural sheaf to be the sheaf of exterior forms on
the dual bundle V*.

Another solution of the WDVV-equation can be obtained from the bundles V;, :=
HY(C, f*V*): one should put (a,b) := [, a AODAET'(V*), (t, ..., t)na = an’d eXtA-- - NeXt N\
E(V, ) for d#0and (t,... t)n0 = an’O eStA---Net NETLH(VF).

In Section 12 we will prove some duality theorem for the two solutions of the WDV'V-
equations in the case when X = CP" and V is the sum of positive line bundles. Choosing
the (equivariant) Euler class on the role of E(V*) one comes to the GW-theory on the non-
compact total space of the bundle V*. Using slight modifications of the above correlators
and the constructions of the next Section one can also define quantum versions of both
the ordinary and compactly supported cohomology algebras of this manifold. We leave the

details of this construction to the reader.

5 Quantum cohomology

One interprets the WDV'V equation as the associativity identity for the quantum cup-product
on Hf(X) defined by

<Oé * ﬁ,’}/> = Faﬂﬁ .

It is a deformation of the ordinary cup-product (with ¢ and ¢ in the role of parameters) in

the category of (skew)-commutative algebras with unity:
(ax1,7) =(a7) . (5)
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Indeed, the push-forward by the forgetful map © : X, 4 — X,-14 (with n > 3) sends
1€ H: (X, q) to 0 unless d = 0 and k = 3 in which case X,, 4 = X and X,,_1 4 is not defined.

The structure usually referred in the literature as the quantum cohomology algebra cor-
responds to the restriction of the deformation %,, to ¢t = 0. As it is shown in [4], in many
cases the function F' can be recovered on the basis of WDV V-equation from the structural
constants Fy g|i=0(q) of the quantum cohomology algebra due to the following symmetry of
the potential F. Let u € HZ(X) and (uy, ..., ux) be its coordinates with respect to the basis
of the lattice (Z*)* = H*(X) = HZ(X)/HZ(pt) (so that u; € HE(pt)). Then

k
8u Fa,ﬁ,w == ZuiqiaFa,ﬁ,“{/aqi \V/Oé, 67 7 € HE(X) . (6)

i=1
The identity (6) follows from the obvious push-forward formula m.u =" d;u;.

The symmetry (6) can be interpreted in the way that the quantum deformation of the
cup-product restricted to ¢t = 0 is equivalent to the deformation with ¢ = 1 and t restricted
to the 2-nd cohomology of X (in the equivariant setting it is better however to keep both

parameters in place — see Sections 7, 8).

In this paper, we will use the term quantum cup-product for the entire (g, t)-deformation
and reserve the name quantum cohomology algebra for the restriction of the quantum cup-
product to t = 0.

I have heard some complaints about such terminology because it allows many authors
to compute quantum cohomology algebras without even mentioning the deformation in t¢-
directions. There are some indications however that (despite the equivalence (6)) the g-
deformation has a somewhat different nature than the t-deformation. The loop space ap-

proach [9] and our computations in Sections 9 — 11 seem to emphasize this distinction.

Quantum cohomology algebras of the classical flag manifolds have been computed in [7],
[11] on the basis of several conjectures about properties of U,-equivariant quantum coho-

mology (see also [5] where a slightly different formalism was applied). The answer (in terms

2

of generators and relations ? ) for complete flag manifolds U, /T™ is strikingly related to

2Several weeks after the first version of this paper had been completed some new results arrived: S.
Fomin, S. Gelfand, A. Postnikov [25] found structural constants of the quantum cohomology algebra of
the flag manifold with respect to the basis of Schubert polynomials, and B. Kim [13] proved the relation of
quantum cohomology algebras of generalized flag manifolds G/T with the Toda lattice (of the Langlands-dual
group G*).
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conservation laws of Toda lattices. The conjectures named in [7] the product, induction and
restriction properties and describing behavior of equivariant quantum cohomology under
some natural constructions, were motivated by interpretation of the quantum cohomology
in terms of Floer theory on the loop space LX. Although a construction of the equivari-
ant counterpart of the Floer - Morse theory on LX remains an open problem, the three
conjectured axioms can be justified within the Gromov-Witten theory. This was done by
B.Kim [12]. The induction and restriction properties follow directly from definitions given
in this paper and hold for the entire quantum deformation (not only at ¢ = 0), while the
“product” axiom (that the G x Gy-equivariant quantum cohomology algebra of X; x X
is the tensor product of the G;-equivariant quantum cohomology algebras of the factors X;)
has been verified in [12] for convex manifolds.

Behavior of the quantum cup-product at ¢ # 0 under the Cartesian product operation

on the target manifolds is much more complicated than the operation of the tensor product.

We complete this section with a discussion of some remarkable relation between quantum
cohomology algebras of manifolds F'(ny, ..., ng) of partial flags C" C Cmot™ .. C Crot—+m =
C™ (equivariant with respect to the action of U, on C") and the action-angle coordinates of
the Toda lattice — an integrable system with the Hamilton function p? /2+...+p2 /2—exp(t1—
to) — ... —exp(t,—1 —t,) (with respect to the symplectic structure dp; Adty + ... + dp, A dt,).
The equivariant quantum cohomology algebras of these manifolds were computed in [11, 12].
The answer can be formulated as follows.

Consider the chain fraction

P(z)
Qz)

q1
P1 (ZL’) + W

9k _
ot Py (0)

where Py, ..., P, are monic polynomials of some positive degrees (which we denote no, ..., ng)
and ¢, ..., qx are some non-zero constants. Given Py, ..., P, and qi, ..., qx, the chain fraction
uniquely determines the two monic polynomials P, Q) of degrees n, n —ng. Let the coefficient

Jgmi=l 4 4 c£f3 denote the Chern classes of the tautological

of the polynomial P, = 2™ + cgi
n;~dimensional vector bundle over F'(ny,...,n%), (qi,...,qx) denote the parameters of the
quantum deformation in the quantum cohomology algebra of F'(ng, ...,nx) (see [11]). Then
the relation P = 2™ + c12™ ! 4 ... + ¢, expresses a basis of relations between the generators

(cg»i)) of the quantum cohomology algebra of the partial flag manifold and the Chern classes

12



(c1, ..., cn) of the tautological vector bundle over BU, (so that C|cy, ..., ¢, plays the role of
the coefficient ring of the U,-equivariant cohomology theory).

Notice that in the “classical” equivariant cohomology algebra the same relation holds with
P = P,...P,. This indicates that a quantum generalization of the multiplicative property of
the total Chern class should involve chain fractions.

Consider now the reduced rational function )/P with monic ). For a generic P it can
be written as the sum of simple fractions

aq (07%
—I——l— 5 E aizl.
r — I r — Ty

Introduce the following n commuting flows with time variables 74, ..., 7,

a;e®im
a1€%171 4 .. 4 qpetnT™

Z; — J%’ a; —

This dynamics preserves the hyperplane a;+...4+a, = 1 corresponding to monic polynomials

Q. For generic ) the transformation of the sum @)/ P of simple fractions to the chain fraction

41
l’—pz—l-m_l_qizm

Idn—1
=

P/Q=x—p +

defines n commuting flows on the space with coordinates (pi, ..., pn, q1, ., ¢n—1) (this chain
fraction corresponds to the complete flag manifold F'(1,...,1)). We put ¢; = exp(t; — ti11)-
It is easy to check that the dynamics of the Toda system (in the (p, t)-space) coincides with
the diagonal flow with y =... =7, = 7.

I am thankful to N. Reshetikhin who pointed to me the references [27, 26] where these
facts about Toda lattices are described.

Despite of several recent papers (see for instance [24]), the actual relation of quantum
cohomology with Toda dynamics as well as the interrelations between quantum cohomology
algebras of partial flag manifolds (whose spectra fit nicely as various strata in the space of

polynomials @) yet to be understood.

6 Floer theory and D-modules

Structural constants (a * [3,7) of the quantum cup-product are derivatives 0gF,  of the

same function. This allows to interpret the WDV V-equation as integrability condition of

13



some connections Vy on the tangent bundle Ty of the space H = H*(X,C). Namely, put
t =) tapa where py = 1,pa,...,py is a basis in H and define

Vi=hd =Y (pax)dta : Q(Ty) — Q' (Ty)

where p,* are operators of quantum multiplication by p,. Then Vj; o Vy = 0 for each
value of the parameter h. Notice that the integrability condition that reads “the system of
differential equations hd,I = p, * I has solutions I € Q°(TH)” is actually obtained as a
somewhat combinatorial statement (the WDV V-equation) about coefficients of the series F.

In [9], [10] we attempted to improve this unsatisfactory explanation of the integrabil-
ity property by describing a direct geometrical meaning of the solutions I in terms of S*-

equivariant Floer theory on the loop space LX. Briefly, the universal covering LX carries

the action of the covering transformation lattice mo(X) with generators ¢y, ..., q; and the
Sl-action by rotation of loops which preserves natural symplectic forms wy,...,w; on LX
and thus defines corresponding Hamiltonians Hi, ..., Hy on LX (the action functionals).

The Duistermaat-Heckman forms w; + AH; (here A is the generator of H,(pt)) are equiv-
ariantly closed, and operators p; of exterior multiplication by these forms have the following

Heisenberg commutation relations with the covering transformations:
piq; — ¢;pi = hq;di;.

Conjecturally, this provides S!'-equivariant Floer cohomology of LX with a D-module struc-
ture which is equivalent to the above system of differential equations (restricted to ¢ = 0,
g # 0) and reduces to the quantum cohomology algebra in the quasi-classical limit A = 0
(see [9, 7]).

In this section we describe solutions to VI = 0 by imitating the S!-equivariant Floer
theory (which is still to be constructed) within the framework of Gromov-Witten theory.
This construction turns out to be crucial in our proof in Section 11 of the mirror conjecture

for Calabi-Yau projective complete intersections.

One may think of the graph of an algebraic loop CP'\{0,00} — X of degree d as of a
stable map CP! — X x CP! of bidegree (d, 1). Denote Ly(X) a moduli space of genus zero
stable maps to X x CP! of bidegree (d, 1) (we do not specify the number of marked points in

this notation). Our starting point consists in interpretation of Ly(X) of such as a degree-d
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approximation to LX and application of equivariant Gromov—Witten theory to the action
of S on the second factor CP! with the fixed points {0, 0o}

In the theorem below we assume X to be convex. It is natural to expect however that
the theorem holds true whenever the non-equivariant Gromov-Witten theory works for X
since the S!'-action is non-trivial only on the factor CP! which is convex on its own.

Let (, ) be the Poincare pairing on H = H*(X,C). The equivariant cohomology algebra
HZ% (X x CP') is isomorphic to H ®@¢ Clp, h]/(p(p — h)) with the S'-equivariant pairing

(%w__gfw%w@

2mi

p(p—h)’
Localization in % allows to introduce coordinates ¢ = tp/h+ 7(h —p)/h, 7,t € H, diagonal-

izing the equivariant pairing:

t t/ _ /
(700, (1) = L RT)
h
The potential F(t, 7, ki, q, qo) satisfying the equivariant WDV V-equation for X x CP! expands
as
F=FO 4 qFY +@Fr? ...

according to contributions of stable maps of degree 0,1,2,... with respect to the second
factor. Denote F' = F'(t,q) the potential (1) of the GW-theory for X.

Theorem 6.1 (a) FO = (F(t,q) — F(7,q))/h.
(b) The matriz (Pop) := (0*°FWV /07,0t5) is a fundamental solution of Vipl = 0:

d .
—ha—ﬁcb =py ()P,

0
—é* — ~ @*

where py, = (p°),, v = 1,..., N, are matrices of quantum multiplication by p,, and ®* is

transposed to P.

Proof. Moduli spaces of bidegree-(d,0) stable maps to X x CP! coincide with X,, 4 x CP.
This implies (a) and shows that the WDV V-equation for F modulo gy follows from the
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WDV V-equation for F. Part (b) follows now directly from the WDVV-equation for F

modulo & and from
0 0
h—®,5 = Pog = —h—
ot, 7T T ar
due to (5) and (6). Here 0/0t;,0/0m are derivatives in the direction 1 € H*(X) of the

identity components of ¢ and 7 respectively.

Do

The following corollary is obtained by expressing equivariant correlators ®,z via local-
ization of equivariant cohomology classes of moduli spaces Lq(X) to fixed points of the S*
action.

Define the matrix ¢ = (¢as5(t, ¢, b)) by

= 1 Ps
waﬁ - Zazqd<h—+07t>"‘7t7pa>"+27d (7)
n=0 d

where ¢ := ¢ is the first Chern class of the line bundle over X},q introduced in Section 2

as “the universal tangent line at the first marked point”, and (%, Pa)2.0 := (Da, Dg)-

Corollary 6.2 hoy/0t, = p,(t)y, i.e., the matriz ¢ is (another) fundamental solution of
Vil =0.

Proof. A fixed point in Ly(X) is represented by a stable map Co UCP'UC,, — X x CP!
where ¢; : C; — X x {i} are stable maps of degrees dy + do, = d connected by a “constant
loop” CP' = {z} x CP" (notice that d; = 0 corresponds to empty C;.) Thus components of
Ld(X)S1 can be identified with submanifolds in Xy, x,+1 X Xa_ k.. +1 defined by the diagonal
constraint e1(¢g) = e1(¢s), with A%(A+ ¢(0))(h — c¢(o0)) to be the equivariant Euler class of

the normal bundle. This gives rise to

hz(baﬁ = Z Vae (T, —h) 7755/%5 (t,h) (8)

where > 7°'p. ® pos is the coordinate expression of the diagonal cohomology class of X C
X x X. Now the differential equations of Theorem 6.1 for ® imply the differential equation
for .

We give here several reformulations which will be convenient for computation of quantum

cohomology algebras in Sections 9 — 11.
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Consider the specialization of the connection Vj to the parameter subspace correspond-
ing to the deformation of the quantum cup-product along the 2-nd cohomology (this is
accomplished by putting first ¢ = 0 and then replacing ¢¢ by exp >_ d;t; where (¢4, ..., ;) are
coordinates on H?(X) with respect to the basis pi),...,p*) € H?(X) . In this new setting

put
6pt/h

Sa,p = Z 6dt<p5 B+ C>pa>2,d
d

where pt := > p¥t; and dt = dyt;.
Corollary 6.3. The matriz (s, 5(t)) is a fundamental solution to
0 o _ 50

Vips=0: ha—tis:p

S.

Proof. One should combine Corollary 6.2 with iterative applications of the following

symmetries generalizing (5), (6):

()0 = dil ), S+ (p LTy

Here f is a function of one variable with values in H*(X).

The symmetries are easily verified on the basis of the following geometrical properties of
universal tangent lines:

(i) Consider the push-forward along the map 7 : X414 — Xna (forgetting the last
marked point). It is easy to see that the difference 7*(c) — ¢ between the Chern class of the
universal tangent line at the 1-st marked point and the pull-back of its counterpart from
X4 s represented by the fundamental cycle of the section ¢ : X,, 4 — X414 defined by the
first marked point.

(ii) i*(c) = c.

In particular 7.(1/(h +¢)) = 1/[h(h + ¢)].

Corollary 6.4. Consider the functions

6pt/h

dt
= E e , 1 .
Sp : <pﬁ Bt c >27d
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Let P(h0/0t,expt, h) be a differential operator annihilating simultaneously all the functions
sg. Then the relation P(p™M, ...,p™ qi, ..., qr, 0) = 0 holds in the quantum cohomology algebra
of X (we assume here that P depends only on non-negative powers of h).

Proof. The functions sg form the first row in the fundamental solution matrix S = (s4,3).
Application of the differential operator P to the matrix S is equal to the matrix product
(Py + APy + ... + M Py)S where Py is the matrix of the quantum multiplication by the
symbol P(p,expt,0). Our hypotheses mean that the first row in this product vanishes.
Since the fundamental solution matrix S is non-degenerate, this implies that the first row in
Py vanishes too. In other words, (P(p,q,0),pg) = 0 for all 5 and thus P(p,q,0) = 0 in the

quantum cohomology algebra.

All results of this section extend literally to the equivariant setting and/or to the general-
ization to convex vector bundles described in Section 4. We will apply them in this extended

form in Sections 9-11.

Remarks. 1) The universal formula (7) for solutions of VI = 0 was perhaps discovered
independently by several authors. I first learned this formula from R. Dijkgraaf. It can also
be found in [2] in the aziomatic context of conformal topological field theory. One can prove it
directly from a recursion relation (in the spirit of WDV V-equation) for so-called gravitational
descendents — correlators involving the first Chern classes of the universal tangent lines (or,
in a slightly different manner, by describing explicitly the divisor in X, 4 representing ¢). Our
approach provides an interpretation of (7) in terms of fixed point localization in equivariant
cohomology.

2) Onme can generalize our theorem to bundles over CP! with the fiber X. This seems
to indicate that a straightforward “open-string” approach to S!'-equivariant Floer theory on
LX would be more powerful and flexible than the approximation by Gromov—Witten theory
on X x CP! described above.

3) Although the theorem provides a geometrical interpretation of solutions to Vil = 0,
it does not eliminate the combinatorial nature of the integrability condition. Indeed, the
theorem is deduced from an equivariant WDV V-equation which in its turn can be interpreted
as an integrability condition. Of course one can explain it using the S' x S'-equivariant
WDV V-equation on (X x CP!) x CP!, etc. It would be interesting to find out whether this

process converges.
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7 Frobenius structures

In [2], B. Dubrovin studied geometrical structures defined by solutions of WDV V-equations
on the parameter space and reduced classification of generic solutions to the classification
of trajectories of some Euler-like non-autonomous Hamiltonian systems on soy. We show
here how this approach to equivariant Gromov-Witten theory yields analogous Hamiltonian
systems on the affine Lie coalgebras 50y .

The quantum cup-product on H = H,(X) considered as an N-dimensional vector space
over the field of fractions K of the algebra Hf(pt) defines a formal Frobenius structure on

H. The structure consists of the following ingredients.

1. A symmetric K-bilinear inner product ( , ),

2. a (formal) function F' : H — K whose third directional derivatives (a * b,c) := F, .
provide tangent spaces T;H with the Frobenius algebra structure (i.e. associative

commutative multiplication x satisfying (a * b, c) = (a, b * c)).

3. The constant vector field 1 of unities of the algebras (13 H, *) whose flow preserves the

multiplication * (i.e. Ly () =0).

4. Grading: In the non-equivariant case axiomatically studied by B. Dubrovin it can be
described by the Euler vector field E, such that the tensor fields 1, * and ( , ) are
homogeneous (i.e. are eigen-vectors of the Lie derivative Lg) of degrees —1,1 and
D respectively (where D = dim¢ X in the models arising from the GW-theory). In
the equivariant GW-theory this grading axiom should be slightly modified since the
grading of the structural ring H(pt) is non-trivial and thus the natural Euler operator

Lg is C-linear but not K-linear 3

The fact that the multiplication * is defined on tangent vectors to H means that the
algebra (Q°(T4), *) can be naturally considered as the algebra K[L] of regular functions on

some subvariety L C T*H in the cotangent bundle. A point ¢t € H is called semi-simple if

30ne may also think of the H (pt)-module H(X) as of the module of sections of a vector bundle over
the spectrum of H¢(pt). The fibers of the bundle then carry Frobenius structures satisfying the axioms 1 —
3 while the Euler vector field is not tangent to the fibers.
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the algebra (T3H, ) is semi-simple, that is if L N T} H consists of NV linearly independent
points.

Flatness of the connection (defined on T )
Vi="hd =) paxdt, (9)

implies [7] that L is a Lagrangian submanifold in 7*H near a semisimple ¢t. Following
2], introduce local canonical coordinates (uy,...,uy) such that the sections (duy,...,duy)
of T*H are the N branches of L near t, and transform the connections Vj to these local
coordinates and to a (suitably normalized) basis fi, ..., fy of vector field on H diagonalizing
the x-product.

The result of this transformation can be described as follows.

(a) The basis {f;} can be normalized in a way that in the transformed form
Vi =hd —hA* A —D"' A (10)

of the connection V; with D' = diag(duy, ..., duy), and A;; = Vij(u)d(u; — uj)/(u; — u;) for
all i # j, we will have additionally A; = 0 Vi.
(b) The vector field 1 in the canonical coordinates assumes the form ), 9 where 0y, :=

0/0uy, are the canonical idempotents of the x-product:
8, % 0; = 6;;0;. (11)
(c) The (remaining part of the) integrability condition V% = 0 reads d(A') = A* A A! or
i, = o Vi (ui — uj), i # J, (12)

where (¢?) is the transition matrix, 9/9t, = Y, ¢, fi; it can be reformulated as compatibility
of the PDE system (12) for (¢7,) completed by

Z@kﬁ% =0. (13)
k

(d) The Frobenius property (a * b, c) = (a,b * c¢) of the x-product shows that the diago-
nalizing basis {f;} is orthogonal, that its normalization by (f;, f;) = d;; obeys A;; = 0 and,

additionally, implies anti-symmetricity A;; = —Aj;, or

Vij = =Viji. (14)
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The presence of the grading axiom (4) of Frobenius structures over K = C allows
B.Dubrovin to describe anti-symmetric matrices V' = (V;;) € so} satisfying the integra-
bility conditions (12) and (13) in quasi-homogeneous canonical coordinates (i.e. Lgpu; = u;
so that F = Y u0) as trajectories of N commuting non-autonomous Hamiltonian systems
(see [2]):

o,V ={H;,V}

where the Poisson-commuting non-autonomous quadratic Hamiltonians H; on soj; are given
by

Hi:lzm.
2,,ui—uj
JF#i

Consider now the following model modification of the grading axiom: K = C[[M\*!]],
deg A = 1. In quasi-homogeneous canonical coordinates (u1, ..., uy, A) the Euler vector field

takes then on

Lg = Zu,ﬁk + A\0y. (15)
k

Introduce the connection operator
V=2X\—V € soy
and the qudratic Hamiltonians on the Poisson manifold Soy
Hi (V) = %HZ(V)% (16)

Proposition 7.1 The Hamiltonians Hi,..., Hy are in tnvolution. The operator V of a

Frobenius manifold over K satisfies the non-autonomous system of Hamiltonian equations
oV ={H;,V}, i=1...,N. (17)

The columns ¢ = (¢,) of the transition matriz are eigen-functions of the connection operator
V:

Voo := Ay — V)b = (g —degt, + 1) e (18)
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Proof. It can be obtained by a straightforward calculation quite analogous to that in [2].

In our real life the model equations (15-18) describe the structure of Frobenius manifolds
over each semi-simple orbit of the grading Fuler field in the ground parameter space. This
parameter space is the spectrum of the coefficient algebra H(pt, C) ®Clgf, . . ., q,fl] (its field
of fractions can be taken on the role of the ground field K). An orbit of the Euler vector
field in this parameter space is semi-simple if the corresponding C-Frobenius algebras are
semi-simple.

The equations (15-18) over semi-simple Euler orbits should be complemented by the
additional symmetries (6).

In the next section we will show how the canonical coordinates of the axiomatic theory
of Frobenius structures emerge from localization formulas in equivariant Gromov-Witten

theory.

8 Fixed point localization

We consider here the case of a circle T' acting by Killing transformations on a compact
Kahler manifold X with isolated fixed points only. The case of tori actions with isolated
fixed points requires only slight modification of notations which we leave to the reader. Our
results are rigorous for convex X (which includes homogeneous Kahher spaces of compact
Lie group and their maximal tori) while applications to general toric manifolds (which are
typically not convex) yet to be justified.

It is the Borel localization theorem that reduces computations in torus-equivariant co-
homology to computations near fixed points. Let {p,},a = 1,..., N, be the fixed points of
the action. We will denote with the same symbols p, the equivariant cohomology class of X
which restricts to 1 € H7(pa) at p, and to 0 at all the other fixed points. These classes are
well-defined over the field of fractions C(A) of the coefficient ring Hy(pt) = C[\] and form
the basis of canonical idempotents in the semi-simple algebra H7.(X, C(\). The equivariant
Poincare pairing reduces to (pa, pg) = da.5/€3 where e, € C[A] is the equivariant Euler class
of the normal “bundle” T, X — p, to the fixed point.

The results described below apply to the setting of Section 4 of a manifold X provided

with a convex vector bundle in which case e,’s should be modified accordingly.
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The same localization theorem reduces computation of GW-invariants to that near the
fixed point set (orbifold) in the moduli spaces X, 4. A fixed point in the moduli space is
represented by a stable map to X of a (typically reducible) curve C such that each component
of C'is mapped to (the closure of) an orbit of the complexified action T¢ : X. Any such an
orbit is either one of the fixed points p,, or isomorphic to (C—0) connecting two distinct fixed
points p, and pg corresponding to 0 and co. Respectively, there are two types of components
of C-

(i) Each component of C' which carries 3 or more special points must be mapped to one of
the fixed points p,.

(ii) All other components are multiple covers z — 2% of the non-constant orbits, and their
special points may correspond only to z = 0 or oo.

The combinatorial structure of such a stable map can be described by a tree whose edges
correspond to chains of components of type (ii) and should be labeled by the total degree
of this chain as a curve in X, and vertices correspond to the ends of the chains. The ends
may carry 0 or 1 marked point, or correspond to a (tree of) type-(i) components with 1 or
more marked points and should be labeled by the indices of these marked points and by the
target point p,.

The fixed stable maps with different combinatorial structure belong to different connected
components of the fived point orbifold in X, 4.

The results below are based on the observation that a stable map with the first £ > 3
marked points in a given generic configuration (i.e. with the given generic value of the
contraction map X, 4 — /\;IM) must have in an irreducible component Cj in the underlying
curve C which contains this given configuration of k special points, (so that the corresponding
first & marked points are located on the branches outgoing these special points of (). The
cause is hidden in the definition of the contraction map (see [3, 6]).

We will call the component Cy special.

The observation applied to a fixed stable map of the circle action allows to subdivide all
fixed point components in X34, 4 into NV types p; according to the fixed points p; where the
special component is mapped to. We introduce the superscript notation (...)* for the con-

tribution (via Borel’s localization formulas) of type-p; components into various equivariant
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correlators. For example,

; 1 i
afy — Z E qu<pa>pﬁ>p“/>t’ --->t>3+n,d
n d

where t = SN t,pa is the general class in Hi (X, C(\)), so that Fag, = 3, Flg.

We introduce also the notations

e V!, — for contributions to e;Fs, of those fixed points which have the third marked
point situated directly on the special component Cj (it is convenient here to introduce
the normalizing factor e; € Hj.(pt), the Euler class of the normal “bundle” to the fixed
point p; in X);

o Ul =V, = Zg l:[jizﬁ;

e D! — for contributions to e; Fl;; of those fixed points which have the second and third

marked points situated directly on the special component;

e A’ for contributions to e; Fj; of those fixed points which have the first three marked

points situated directly on the special component;

e u; = t;+ contributions to e;F}; of all those fixed point components in X4, 4 for which
the first two marked points belong to the same vertex of the tree describing the com-

binatorial structure.

The correlators u; can be also interpreted as contributions to the genus-1 equivariant

> % > 't tna
n " d

with given complex structure of the elliptic curve of those T-invariant classes which map the

correlators

(only) genus-1 component of the curve C' to the fixed point p;.

Theorem 8.1. (a) The functions uy(t),...,un(t) are the canonical coordinates of the
Frobenius structure on Hj(X,C())).

(b) The functions D! [(t) are eigen-values of the quantum multiplication by ps: du; =
S, Didty.
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(¢c) The transition matriz (¥!) provides simultaneous diagonalization of the quantum cup

product: Flg = W, DyW! and obeys the following orthogonality relations:
> WL, = dagfes, > ULV =6 .

(d) The Euclidean structure on the cotangent bundle of the Frobenius manifold (defined
by the equivariant intersection pairing in H3(X)) in the canonical coordinates u; takes on
(du;, duj) = (A")?5;5e; and additionally

. . . Dt . Di D¢
AN = Upl = e gl = T
( ) ; a a Al ) af Ai

Proof. We first apply the localization formula
A1234(.- - )na = Z A1234<--->Z,d

to the 4-point equivariant correlators with the fixed cross-ratio z of the 4 marked points and
only after this specialize the cross-ratio to 0,1 or co. This gives rise to the local WDVV-
identities

\Ifflﬁ\lff{é 1s totally symmetric in o, 3,7,0

which is independent of the global WDV V-equation. When combined with the global iden-
tities
A1234<]]~7 Pa Ps; p~/>n,d = <p047 Ps; p~/>n,d

they yield the orthogonality relation ) . \Iffl\lflﬁ = dqap/€p and localization formulas
Fapy = _ WizUi

for the structural constants of the quantum cup-product.

A similar argument with > 4-point correlators Aj345. (...)" proves the diagonalization

<pa *pﬁ>p“/> = Z\DéDlﬁqji{/ez >
(Do %D * Py ps) = Y WL, DEDI WS /e
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and the identities
Lo = VLD, (AYT =)W

Finally, the identity du; = Y D! dt, follows directly from the definition of u; and implies

that uy,...,uy are the canonical coordinates of the Frobenius structure.

9 Projective complete intersections

We are going to describe explicitly solutions of the differential equations arising from quan-
tum cohomology of projective complete intersections. Lex X be such a non-singular complete
intersection in Y := CP™ given by r equations of the degrees (I1,...,1.). If i1 +...+ 1. =n+1
then X is a Calabi-Yau manifold and its quantum cohomology is described by the mirror
conjecture. In this and the next sections we study respectively the cases l; 4+ ...+, < n and
l1+ ...+ 1, = n when the 1-st Chern class of X is still positive. In the case l;+...+[, >n+1
(which from the point of view of enumerative geometry can be considered as “less interesting”
for rational curves generically occur only in finitely many degrees) the “mirror symmetry”
problem of hypergeometric interpretation of quantum cohomology differential equations re-
mains open.

Let E4 be the Euler class of the vector bundle over the moduli space Y2, of genus
0 degree d stable maps ¢ : (C,zg,z1) — CP" with two marked points, with the fiber
H(C,¢*H" @ ... ® ¢*H'") where H' is the I-th tensor power of the hyperplane line bundle
over CP™.

Consider the class

Sd(h): E; € H*(B,d)

Ch+ c§°)
where c§°) is the 1-st Chern class of the “universal tangent line at the marked point o ”, and
o, €1 are the evaluation maps. Due to the factor Ej; this class represents the push forward
along X5 4 — Ya,4 of the class 1/(h + c§°)) € H*(X2.4) (by the very construction of X5 4 in
Section 4).
In the cohomology algebra C[P]/(P""!) of CP", consider the class

S(t,h) = e""y " e™(eq)(Sa(h))

d=0
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where (eg). represents the push-forward along the evaluation map (and for d = 0, when Y5 4
is not defined, we take Fuler (&,;H®%) on the role of (eg).So).

Considered as a function of ¢, S is a curve in H*(CP™) whose components are solutions of
the differential equation we are concerned about. Indeed, according to Section 6 a similar sum
represents the solutions of the quantum cohomology differential equation for X, and S is just
the push-forward of that sum from H*(X) to H*(Y'). (Strictly speaking S carries information
only about correlators between those classes which come from the ambient projective space;
also if X is a surface rk Hy(X) can be greater than 1 and S mixes information about the

curves of different degrees in X when they have the same degree in Y".)

Theorem 9.1. Suppose that Iy + ... + 1, < n. Then

Pt/hz at o l1P+mh) 1 (1P + mbh)
1 (P+ mhy+1 |

The formula coincides with those in [9, 10] (found by analysis of toric compactifications
of spaces of maps CP' — CPm") for solutions of differential equations in S'-equivariant

cohomology of the loop space.

Corollary 9.2. (see [9, 10]) The components s := (P, S),i = 0,....,n—7r, of S form a

basis of solutions to the linear differential equation

d n+l—r r lj—1 d
(ha) g = e'I_, 1; 1L h(lj% +m)s.
This implies (combine [10] with [18]) that the solutions have an integral representation
of the form
/ 6(U0+~~~+Un)/h dU(] VANPIRVAN dun
where
Fo=wug..up, F1 =ur+ ..y, Fo=uy1+ ... +Uyqiy, e Fr =y g, i1+ o Uy,

and the “mirror manifolds” X| are described by the equations
X = {(to, ..., un) | Fo(u) = €', Fi(u) =1,..., F.(u) = 1}.
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This proves for X the mirror conjecture in the form suggested in [10].

Corollary 9.3. If dim¢ X # 2 the cohomology class p of hyperplane section satisfies in

the quantum cohomology of X the relation

n+1—r

p — llll...lqupll—l—m—i—lr_r.

When X is a surface the same relation holds true in the quotient of the quantum coho-
mology algebra which takes in account only degrees of curves in the ambient CP" (we leave
to figure out a precise description of this quotient to the reader; quadrics CP! x CP! in CP3
provide a good example: (p1 + p2)® = 4q(p1 +p2) mod p} = q = p3.)

This corollary is consistent with the result of A. Beauville [22] describing quantum co-
homology of complete intersections with > 1; < n+1— > (l; — 1) and with results of M.

Jinzenji [23] on quantum cohomology of projective hypersurfaces (r = 1) with [; < n.

Corollary 9.4. The number of degree d holomorphic maps CP' — X"~ C CP"™, which
send 0 and oo to two given cycles and send n+ 1 —1r given points in CP' to n+1 —1r given
generic hyperplane sections, is equal to llf...lﬁ times the number of degree d — 1 maps which
send 0 and oo to the same cycles and ly + ...+, — r given points — to ly + ...+ 1, — r given
hyperplane sections.

This is the enumerative meaning of Corollary 9.3; of course in this formulation numerous
general position reservations are assumed.

Control examples. 1. l; = ... =1, = 1: The above formulas for quantum cohomology and
for solutions of the differential equations in the case of a hyperplane section give rise to the
same formulas with n :=n — 1.

2. n=>5,r =1,l = 2: X is the Plucker embedding of the grassmanian G74. Its quantum
cohomology algebra is described by the relations ¢ = 2¢ico, 3 — cac? + ¢ = 0 between the
Chern classes of the tautological plane bundle. For the 1-st Chern class p = —c¢; of the
determinant line bundle we deduce the relation p° = 4pq prescribed by Corollary 9.3.

We will deduce Theorem 9.1 from its equivariant generalization. Consider the space C**!
provided with the standard action of the (n + 1)-dimensional torus 7. The equivariant co-
homology algebra of C"*! coincides with the algebra of characteristic classes H*(BT"™!) =

C[Ao, ---, An). The equivariant cohomology algebra of the projective space (C**! — ()/C*
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in these notations is identified with C[p, \|/((p — Xo)...(p — A,)) and the push-forward
H;(CP™) — Hj(pt) is given by the residue formula

1 f(p, A)dp
271 (P —Ao)-(p— M)

Here —p can be considered as the equivariant 1-st Chern class of the Hopf line bundle

f(p,A) —

provided with the natural lifting of the torus action. We will use ¢; := Il (p — Aj), @ =
0,...,n, as a basis in H;(CP").

Consider the T-equivariant vector bundle &7_; H ®li and provide it with the fiberwise
action of the additional r-dimensional torus 7’. The equivariant Euler class of this bundle
is equal to (I1p — A})...(I,p — X.) where C[X'| = H*(BT").

Introduce the equivariant counterpart S’ of the class S in the T x T"-equivariant coho-
mology of CP". This means that we use the equivariant class p instead of P and replace the

Euler classes E; and c§°) by their equivariant partners.

Theorem 9.5. Let I; + ... +{, < n. Then

pt/hz all llp A+ mh).. Hglr(lrp — A, +mh)
Hd (p — Ao +mh)..II{(p — X\, + mh)

Theorem 9.1 follows from Theorem 9.5 by putting A = 0, \' = 0 which corresponds to
passing from equivariant to non-equivariant cohomology.

The vector-function S’ satisfies the differential equation

r d / 1 d / r
Hizo(ha —\N) S = etngnzl(zlha — N, +mh).. I _ (I.h

% — X +mh) S".

We intend to prove Theorem 9.5 by means of localization of S’ to the fixed point set
of the torus T action on the moduli spaces Y5 4. As it is shown in [3], all correlators of
the equivariant theory on CP" are computable at least in principle, and in practice the
computation reduces to a recursive procedure which can be understood as a summation over
trees and can be also formulated as a non-linear fixed point (or critical point) problem. We
will see below that in the case of correlators (¢;, S’) certain reasons of a somewhat geometrical
character cause numerous cancellations between trees so that the recursive procedure reduces
to a “summation over chains” and respectively to a linear recurrence equation. The formula

of Theorem 9.5 is simply the solution to this equation.
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In the proof of Theorem 9.5 below we write down all formulas for » = 1 (it serves the
case when X is a hypersurface in CP" of degree [ < n). The proof for r > 1 differs only by

longer product formulas.
Let us abbreviate c§°) as ¢, denote £ the equivariant Euler class of the vector bundle over
Y54 whose fiber over the point ¢ : (C, zg, 1) — Y = CP" consists of holomorphic sections

of the bundle ¥*(H') vanishing at zo, and introduce the following equivariant correlator:

Z; ::iqd/

1
eo(pi) ——Ey.
d=0 Y2,4 hte

We have
(05, 5') = AN = N)(Zi g=er)
Proposition 9.6.

zi= 1+ Yt | S Bt
=14 (e e Ejei(¢n) -
d>0 frti Y24 1+C/h ’

Proof. We have just dropped first several terms in the geometrical series 1/(h + ¢) since
their degree added with the degrees of other factors in the integral over Y3 4 is still less than
the dimension of Y5 4. It is important here that all the equivariant classes involved including

¢; are defined in the equivariant cohomology over C[\, '] without any localization.

It is a half of the geometrical argument mentioned above. The other half comes from the
description of the fixed point set in Y, 4 given in [11].

Consider a fixed point of the torus 1" action on Y3 4. It is represented by a holomorphic
map of a possibly reducible curve with complicated combinatorial structure and with two
marked points on some components. Each component carrying 3 or more special points is
mapped to one of the n+ 1 fixed points of T on CP™, and the other components are mapped
(with some multiplicity) onto the lines joining the fixed points and connect the point-mapped
components in a tree-like manner.

In the Borel localization formula for [ ef(¢;)... the fixed point will have zero contribution
unless the marked point xy is mapped to the i-th fixed point in CP"™ (since ¢; has zero

localizations at all other fixed points.
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Consider a fixed point curve C' whose marked point xg is indeed mapped to the i-th fixed
point in CP™. There are two options

(i) the marked point z is situated on an irreducible component of C' mapped with some
degree d' onto the line joining the i-th fixed point with the j-th fixed point in CP"™ with
L7

(ii) the marked point x is situated on a component of C' mapped to the i-th fixed point
and carrying two or more other special points.

Consider first the option (ii) and the contribution of such a connected component of the
fixed point set in Ya4 to the Borel localization formula for [c+1=D4=1 = The connected
component itself is the (product of the) Deligne-Mumford configuration space of, say, s + 1
special points: the marked point zy, may be the marked point x1, and respectively s — 1 or
s endpoints of other components of C' mapped onto the lines outgoing the i-th fixed point
in CP™.

Lemma 9.7. The type (ii) fized point component in Y4 has zero contribution to the
Borel localization formula for fYQ,d clrti=bd=1

Proof. Restriction of the class ¢ from Y34 to the type (ii) fixed point component coin-
cides with the 1-st Chern class of the line bundle on the Deligne-Mumford factor Mg 41 of
the component defined as “the universal tangent line as the marked point x,” and is thus
nilpotent in the cohomology of the component. Since the number of straight lines in a curve
of degree d does not exceed d we find that the dimension s — 2 of the factor /\;lo7s+1 is less
than d which in its turn does not exceed (n+1—1)d—1 for d > 0 (because we assumed that
n+1—-1012>2).

Consider now the option (i). The irreducible component C” of the curve C = C' U C”
carrying the marked point xy is mapped with the multiplicity d’ < d onto the line joining
i-th fixed point in CP™ with the j-th one while the remaining part C” — CP™ of the map
represents a fized point in Ys 4_q. Moreover, the normal space to the fixed point component at
the type (i) point (the equivariant Euler class of the normal bundle occurs in the denominator
of the Borel localization formula) is the sum of (a) such a space N” for C” — CP", (b) the
space N’ of holomorphic vector fields along the map C’ — CP" vanishing at the fixed point j
factorized by infinitesimal reparametrizations of C’, (c) the tensor product L of the tangent
lines to C” and C" at their intersection point. Since the space V' of holomorphic sections of

H'! restricted to C' (and vanishing at o) admits a similar decomposition V' @& V", we arrive
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to the following linear recursion relation for Z;.
Proposition 9.8. Put z(Q,h) := Z;(R"T'=YQ, h). Then

Z(Q.h) =14 > Q"Coeff I(d) 2(Q, (N — X)/d)

j#i d'>0

where /
(A — )\i)/d’]("“‘l)d ~ BEuler (V')
14+ (N —Aj)/d'h  Euler (N')

Proof. Here (A\; — \;)/d is the localization of ¢, and the key point is that the equivariant

Coef f i(d) =

¢i |;D=>\i :

Chern class of the line bundle L over Y3 4_4 is what we would denote A + ¢ for the moduli
space Y 4_¢ but with A = (A\; — \;)/d’. This is how the recursion for the correlators z;
becomes possible. The rest is straightforward.

Remark. Our reduction to the linear recursion relation can be interpreted in the following
more geometrical way: contributions of all non-isolated fixed points cancel out with some
explicit part of the contribution from isolated fixed points; the latter are represented by

chains of multiple covers of straight lines connecting the two marked points.

Let us write down explicitly the factor Coef f f(d) from Proposition 9.8 (compare with
[3]). Coeffi(d) =

T (I = XN 4+ m(X — N)/d)[(A) — Ag)/d]mH1=Dd-1
d(1+ (N = X))/ RA)TT g fsy (@m)2Ga) (N — Aa + (N — Ai) /d)

(here the product in the numerator is Fuler(V'), the denominator — it is essentially
Euler(N'") where however the cancellation with ¢;|,-», is taken care of — has been computed
using the exact sequence 0 — C — C"*' @ H — Ty — 0 of vector bundles over Y = CP",
and the “hard-to-explain” extra-factor d is due to the orbifold structure of the moduli spaces

(the d-multiple map of C” onto the (i7)-line in CP™ has a discrete symmetry of order d)

- 1 Iy (1523 +m)
- L . n >\i—>\a d ’
(A = X))/ R+ dTIn_ 4 my i (¢ Aj_Ai) +m)

Now it is easy to check
Proposition 9.9. The correlators z;(Q,1/w) are power series > Ci(d)Q® in Q with

coefficients C;(d) which are reduced rational functions of w with poles of the order < 1 at
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= d/(N\; — N) with d = 1,...,d. The correlators z; are uniquely determined by these

properties, the recursion relations of Proposition 9.8 and the initial condition C;(0) = 1.

The proof of Theorem 9.5 is completed by the following
Proposition 9.10. The series

(D — N)w +m)
ZQ d'Ha# (v = da)w + m)

satisfy all the conditions of Proposition 9.9.
Proof. The recursion relation is deduced by the decomposition of the rational functions of
w into the sum of simple fractions (or, equivalently, from the Lagrange interpolation formula

for each numerator through its values at the roots of the corresponding denominator).

10 Complete intersections with [; + ...+, =n

Let X C Y = CP" be a non-singular complete intersection given by equations of degrees
(l1,...,1;) with l; + ... + I, = n. There are only two points where our proof of Theorem 9.1
would fail for such X. One of them is the Lagrange interpolation formula in the proof of
Proposition 9.10. Namely, the rational functions of w there are not reduced — the degree
dl of the numerator is equal to the degree dn of the corresponding denominator. The other
one is Lemma 9.7. Namely, we have the following lemma instead.

Lemma 10.1. The type (ii) fixed point component in Y4 makes zero contribution via
Borel localization formulas to sz,d c?=1.. unless it consists of maps (C'UC" xg,11) — Y
where C' is mapped to a fized point in CP™ and carries both marked points, and C" is a
disjoint union of d irreducible components (intersecting C' at d special points) mapped (each
with multiplicity 1) onto straight lines outgoing the fixed point. All type (ii) components
make zero contribution to fYZ,d c..

Let us modify the results of Section 9 accordingly. As we will see, the LHS in Theorem
9.5 is now only proportional to the RHS, and we will compute the proportionality coefficient
(a series in ¢) directly.

Proposition 10.2. Put z;(Q,h) := Z;(hQ,h). Then

2(Q,h) =14> Q%Coeff i(d)+> > Q"Coeff I(d) z(Q, (N — Xi)/d)

>0 j#i d'>0
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where Coef f ;(d) is equal to the contribution of type (ii) fized point components to
fYZd )4 E! ei(¢i), and

Coot 1) = 1 I, 1Hféﬂl<<i_i”+m>
oe .
[()\_)\)/h_l—d] Oml(am;é(j (( m)

Corollary 10.3. The correlators z(Q,1/w) are power series >, Ci(d)Q* with coeffi-
cients

Ci(d) = Py(w, \, N)/TIITE _ (A — Ao)w +m)

where Py = PYw™ + ... is a polynomial in w of degree nd. The correlators z; are uniquely

determined by these properties, the recursion relations of Proposition 10.2 and the initial

PO
ZCoeff ZQ T )\d WY,

conditions

Proposition 10.4. The series

7 T (I — N )w + m)
_ d - Ta=1""m=1 a’', a
g ZQ AT, (A — Aa)w + m)

satisfy the requirements of Corollary 10.3 with the initial condition

(lahi — N,)lad (oA — N, )l
a 1 . alla’\i a
ZQ d'Ha# )t P T

Now let us compute Coef f ;(d) using the description of type (ii) fixed point components
given in Lemma 10.1.

Proposition 10.5. Contribution of the type (ii) fized point components to
> Q7 fYZd ) Ey i s

o (laXi — N,)la
Ha;éi()\i - )\a)

Proof. Each fixed point component described in Lemma 10.1 is isomorphic to the Deligne

exp{@ }oexp{—Q L!...[,!} .

- Mumford configuration space Mg 412. Our computation is based on the following known
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formula (see for instance [3] ) for correlators between Chern classes of universal tangent lines

at the marked points:

/ 1 _ (1/wy + ... + 1/wy)*3
Mo (w1 + Cg )) (wy + C(k)) W1... W

Consider the type (ii) fixed point component specified by the following combinatorial

structure of stable maps: d degree 1 irreducible components join the i-th fixed point with
the fixed points with indices ji, ..., j4. Using the above formula and describing explicitly the
normal bundle to this component in Y54 and localization of the Euler class E/, we arrive to

the following expression for the contribution of this component to ng ) (—c)? 1, Ely:

e 17— 1H£Z 1(Tadi = N, —I—m()\ )
s=1
)

( )\Js a#ﬂsﬂ()\.?s )\a)

Summation over all type (ii) components in all Y5 4 with weights Q? gives rise to

IT, 11 _ — XN, +m(p—N\))
QX bl tnp M) )

The exponent can be understood as a sum of residues at p # \;, 0o and is thus opposite to

the sum

(A — N
Ha;éi()\i - )\a)

of residues at co and \;.
Corollary 10.6. z,(Q, 1/w) = 2/(Q,w) exp(—1!...1,!Q).
Proof. Multiplication by a function of ) does not destroy the recursion relation of

Proposition 10.2 but changes the initial condition.

We have proved the following
Theorem 10.7. Suppose ly + ... + 1, =n. Then

G — ppt=hildtet) /R Z dt llp X, + mh)...10§" (L,p — X, + mh)
A(p — No +mh)..1T%p — X\, +mbh)

S = §'|acorg = PPl drte! o 1L (P + mh)

e, w+mmwl(mwpww‘

35



Corollary 10.8. Let D = hd/dt + 13!...1.le*. Then
Dn+1_TS = ll...lT6tH;»:1(ljD + h)(ljD + (lj - 1)h) S.

Corollary 10.9. In the quantum cohomology algebra of X the class p of hyperplane
sections satisfies the following relation (with the same reservation in the case dim X < 2 as
in Corollary 9.3):

(p+ L. L) T =1 drq(p+ 1) L)

Control examples. * 1. X = pt in CP* (n = 1,r = 1,1 = 1). The above relation
takes on p+¢q = ¢, or p = 0. Since P? = 0, we also find from Theorem 10.7 that S =
Pexp(—e') > e¥/dl = P, or (1,S) = 1 as it should be for the solution of the differential
equation hd/dt s = 0 that arises from quantum cohomology of the point.

2. X = CP! embedded as a quadric into CP? (n = 2,7 = 1,1 = 2). We get (p+ 2¢)* =
4q(p + 2q), or p* = 4¢*>. Taking into account that p is twice the generator in H?(CP?)
and the line in CP! has the degree 2 in CP? we conclude that this is the correct relation
in the quantum cohomology of CP!. This example was the most confusing for the author:
predictions of the loop space analysis [9] appeared totally unreliable because they gave a
wrong answer for the quadric in CP2?. As we see now, the loop space approach gives correct
results if [; + ... + 1, < n and require “minor” modification (by the factor exp(—I!...l.lq/h)
) in the boundary cases [; + ...[, = n; the quadric on the plane happens to be one of such
cases.

3. n=3,7r=1,1=3. We have (p+6q)* = 27q(p + 6q)?, or p> = 9qp? + 63¢*p + 27 - 28¢>.
In particular, (p * p,p) = 9¢(p, p) + 63¢*(p, 1) + 27 - 28¢3(1,1) = 27q + 0 + 0 which indicates

that there should exist 27 discrete lines on a generic cubical surface in CP3.

11 Calabi-Yau projective complete intersections

Let Ly(Y) denote, as in Section 6, the moduli space of stable maps v : CP' — CP" x CP!
of bidegree (d, 1) with 2 marked points mapped to CP™ x {0} and CP" x {oco} respectively.
Let &; denote the equivariant Euler class of the vector bundle over Ly(Y) with the fiber

41 am thankful to A. Collino [30] who pointed to me that in the hypersurface case the statement of
Corollary 10.9 was conjectured independently by several authors on the basis of numerical data.
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H°(CP',¢*(V)) where V is the bundle on CP" x CP! induced from our convex bundle
®,H' by the projection to the first factor.

Consider the equivariant correlator

P :/ Euler (V) S'(t,h) S'(1,—h) =

dt d'r o) erller (i) / e 7 Mes(¢i)
E,— 2 E,— "
Ze ZHJ#Z)\—A)/YM d h+c Y, , d “h+oc

d,d'
In the case [y + ... + [, < n it is easy to check using the explicit formula for S’ from
Theorem 9.5 that

11, Hl o (lap — N, — mh)
@ (t T/h dr CL d
omi % Z I7_, 11 (p Aj— mh)]

This is an equivariant version of a formula found in [9] in the context of loop spaces and
toric compactifications of spaces of rational maps. Namely, consider the projective space L/,
of (n + 1)-tuples of polynomials in one variable of degree < d each, up to a scalar factor
(notice that L/, has the same dimension d(n + 1) +n as Lg). It inherits the component-wise
action of the torus 7"*! and the action of S! by the rotation of the variable (“rotation of
loops”). Integration over the equivariant fundamental cycle in L/, is given by the residue

formula

1 fdp
fp, A R) = 271 % 7 11, _o(p — Aj — mh)’

Consider the equivariant vector bundle over L/, such that substitution of the (n + 1)
polynomials into r (invariant) homogeneous equations in CP" of degrees [y, ..., [, produces a

section of this bundle. The equivariant Euler class of the bundle is
& =T 1o (lap — X, — mh),

The formula for ¢ indicates that there should exist a close relation between the spaces
Ly and L. This relation is described in the following lemma whose proof will be given in
the end of this Section.

The Main Lemma. There exists a natural S* x T -equivariant map p : Ly — L.
Denote —p the equivariant 1-st Chern class of the Hopf bundle over L, induced by p to Ly.
Then
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O(t,7) = ZedT/ ePt=m/he,
Lq

d
Define ®'(q,z,h) := P®|i=rizng=er- (By the way the limit of the series & at h =
has the topological meaning of what is called in [7] the generating volume function, and
the meaning of this limit procedure in terms of differential equations satisfied by ® is the

adiabatic approzimation.)
Corollary 11.1. ®'(¢,2) :==Y_,q de eP*Ey =

pzz q Edpa)\)\ h) d

" omi 7_o 11, o (p — A; — mh)

where Eq = 1.(&Eq) 1s a polynomial (of degree < (n 4+ 1)d) of all its variables.

Proof. The integrals E*) = de p*€s, k = 0,...,dim L/, which determine the push-
forward p, (€) are polynomials in (A, X', k). The matrix [ L, pitdimLa=i ig triangular with all
eigenvalues equal to 1. This means that there exists a unique polynomial in p with coeffi-
cients polynomial in (A, N, h) which represents the push-forward with any given polynomials
E® (XN, h).

The last argument also proves

Proposition 11.2. Suppose that a series

Pi(p,\, N, h)

_ d ’

5T Z LI _ (p— \; — mh)

with coefficients Py which are polynomials of p of degree < dim Ly has the property that for
every k = 0,1,2, ... the g-series ¢ sp"dp has polynomial coefficients in (A, N,h). Then the

coefficients of all Py are polynomials of (A, X', k), and vice versa.

The coefficient Ey4(p, A\, X', k) in the series &' has the total degree (I + ... +[,)d + r
according to the dimension of the vector bundle whose Euler class it represents. Consider
the following operations with the series ®:

(i) multiplication by a series of €' and / or €7;

(ii) simultaneous change of variables t — t + f(e), 7+ 7+ f(e7).

(iii) multiplication by exp[C(f(e') — f(e7))/h] (here the factor C' should be a linear
function of (A, \') in order to obey homogeneity).
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Proposition 11.3. The property of the series ® to generate polynomial coefficients
Ei(p, \, N, h) is invariant with respect to the operations (i), (ii), (1)

Proof. The polynomiality property of coefficients in @' is equivalent, due to Proposition
11.2, to the fact that for all k the g-series (0/02)*|.—o® has polynomial coefficients.

Multiplication by a series of ¢ does not change this property, which proves the invariance
with respect to multiplication by functions of e”.

The roles of ¢t and 7 can be interchanged by the substitutions p — p + hd,h — —h in
each summand of ®. This proves the invariance with respect to multiplication by functions
of €.

The operation (ii) transforms @’ to

1 Z gl @ % exp{th + f(qe™) — f(q) Eq(p)
211
d

dp.

n TR w— L
Since the exponent is in fact divisible by A, the derivatives in z at z = 0 still have
polynomial coefficients. This proves the invariance with respect to (ii). The case of the

operation (iii) is analogous.

We are going to use the above polynomiality and invariance properties of the correlator
® in order to describe quantum cohomology of Calabi- Yau complete intersections in CP”
(in which case [y + ... + I, = n+ 1). We will use this polynomiality in conjunction with
recursion relations based on the fixed point analysis of Sections 9,10. The result can be
roughly formulated in the following way: the hypergeometric functions of Theorem 9.5 in
the case I3 + ... + I, = n + 1 can be transformed to the correlators S’ by the operations
(1),(ii),(iii). Notice that in the Calabi — Yau case all our formulas are homogeneous with
the grading degq = 0,degp = degh = deg\ = deg)\ = 1,degz = —1. In particular
the transformations (i)—(iii) also preserve the degrees of the numerators F; in ®’. In the
“positive” case l; + ... + I, <n where degg=n+1—>_ 1, > 0 the transformations (i)—(iii)
in fact increase degrees of the numerators £, and are “not allowed”. The only exception is
the operation (iii) with f(q) = const ¢ in the case Iy + ...+ [, = n when degq = 1. The right
value —I[;!...l,! of the constant can be found by counting contributions of curves of degree 1.
In Section 10 we have found this answer by a straightforward computation involving curves

of all degrees.
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Consider now the correlator ® (defined in The Main Lemma) in the Calabi-Yau case
I + ...+ 1, = n+ 1. Localization to S!-fixed points in Ly (as in Section 6) expresses ® via

the correlators Z; (defined in Section 9) as follows:

a> o ,
P = Z H - 6>\Z(t )/h Zi(6t, FL) ZZ(6 ,—FL).

j#i(A

Proposition 11.4. (1) The coefficients of the power series Z;(q,h) = > ,¢°Ci(d) are
rational functions
P(i)
d

Cy(d) =
( ) d!hdﬂj?siﬂgn:l()\i — )\j + mh)

where chi) is a polynomial in (h, A\, \') of degree (n + 1)d.

(2) The polynomial coefficients Ep(p) in @ are determined by their values
Ep(\i + dh) = (LA — X)) P (R)PY (—h)

atp=XN+dh,1=0,....n,d=0,...,D.
(3) The correlators z;(Q, h) := Z;(Qh, h) satisfy the recursion relation

d C A= A
2@ =1+ Y Dt S Y o o M)
>0 d>0 j#i

where R; 4 = Rﬂl he + Rgld R4 4 ... ds a polynomial of (h, N, N) of degree < d, and

LI (1 — N 4 m(N\ — ) /d)

C I(d) =
Oeffz() d'Ha;ézml(am)#(.?d()\ )\ _I_m()\ _)\)/d)

For any given {R; 4/i = 0,...,n, d =1,2,...} these recursion relations have a unique solution

{2}

Proof. (3) We have

_1+Zq Zh‘k 1/ Eles (o +quh / deo(ngZ)(i_H_)C

d>0 Y24 d>0 Y24

U

where the integrals of the last sum have zero contributions from the type (ii) fixed point

components (Lemmas 9.7,10.1). Thus these integrals have a recursive expression identical
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to those of Sections 9 and 10. The terms of the double sum constitute the initial condition
{R;a}. The recursion relations have the form of the decomposition of rational functions
of h (coefficients at powers of ) = ¢/h) into the sum of simple fractions in the case when
degrees of numerators exceed degrees of denominators. This proves existence and uniqueness
of solutions to the recursion relations.
(1) follows directly from the form and topological meaning of the recursion relations.
(2) follows from the definition of ® in terms of Z;.

Introduce now the class P of solutions to the recursion relation 11.4(3) which give rise
(via 11.4(2)) to polynomial coefficients E; in the corresponding &’

Proposition 11.5. A solution from P is uniquely determined by the first two coefficients
RE%,REQ,Z’ =0,...,n, 0 < d < oo, of its initial condition (that is by the first two terms in
the expansion Z; = ZZ-(O) + Zi(l)/h + ... as power series in 1/h.

Proof. Perturbation theory: suppose that two solutions from the class P have the same
initial condition up to the order (d — 1) inclusively. Then (2) shows that corresponding Ej
for these solutions coincide for k& < d and the variation 0 E4(p) vanishes at p = \; + kh for
0 < k < d. This means that the polynomial §F, is divisible by ILII% 2 (p — A\; — mA). On
the other hand (1) and (2) imply that the variation 0 R; 4 of the initial condition satisfies

S Ria(h) Ha(lahi — NI IIE (N — Aj + mh) = 0 Eglpx,+nd

(since R;p = 1) and thus §R; 4 is divisible by h9=1. Since 0R; 4 is a degree d polynomial, it
leaves only the possibility
0Ria = 0RO h + R\ h .

Thus if two class P solutions coincide in orders A%, ™! then dR; 4 = 0, and thus the very
solutions coincide.

Proposition 11.6. The class P is invariant with respect to the following operations:

(a) simultaneous multiplication Z; — f(q)Z; by a power series of q with f(0) = 1;

(b) changes Zi(q, h) — e S D" Z(qef D R) with f(0) = 0;

(c) multiplication Z; — exp(C f(q)/h)Z; where C is a linear function of (\,\') and
f(0) =0.

Proof. The operations (a),(b),(c) give rise to the operations of type (i)-(iii) for corre-
sponding polynomials F,. Thus it suffices to show that the operations (a),(b),(c) transform

a solution {z;} of the recursion relations to another solution.
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Recall that the recursion relation 11.4(3) expresses z; as formal power series in () with
coefficients (at Q) being rational functions of i decomposed into simple fractions with the
poles h = (\; — \;)/d, d < D, plus the polynomial parts R; p(h) of degrees < D.

Consider the recursion coefficient Q¢ Coef f f (d) responsible for the simple fraction with
the denominator (\; — A; + dh). Application of the operations (a), (b), (c) to the left and
right hand sides of the recursion relation causes respectively the following modifications in

this coeflicient:

Q" f(QRQ/F(QN — Xi)/d),

@'~ @exp 212+ apion) - 2L 20,
1Y) _ Q0 2
Q* — Q%exp{C - C v %/d }.

In the case of the change (b), additionally, the argument () in z; on the RHS of the recursion
relation gets an extra-factor exp[f(Qh) — f(Q(N\; — A\i)/d)].

All the modifying factors written above actually take on 1 at h = (A\; — \;)/d. This
means that the recursion coefficient responsible for the simple fraction with the pole at
h = (A\j — \;)/d does not change and that the operations (a), (b), (c) modify only the
polynomial initial conditions R; p(h).

Under our assumptions about f (that f(0) = 1 in (a) and f(0) = 0 in (b), (c)) the
modifying factors depend on A only in the combination QQh. This implies that the degrees of

the new initial conditions R; p(h) still do not exceed D.

Let us consider now the hypergeometric series

_ i o T 0L (1, — X, + mh)
7T _ (A = Ao + mh)

where l; +...+ 1, =n+ 1.
It is straightforward to see that {Z;} satisfy the recursion relations of Proposition 11.4(3)
(see the proof of Proposition 9.10) and that the formulas of Proposition 11.4(2) generate

corresponding

o

1 I _ Hld(lp—)\’—mh)
O — — p(t—7)/h dr a a
QWi% c Z e 11 _ o (p — A\i — mh) dp
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with polynomial numerators. Thus {Z} is a solution from the class P.
Computation of the first two terms in the initial condition gives

e e}

z; O = flg) =) (lla(lzz!!‘)‘n'—gfd)! q*

Z; O =X g (@) — 91(@)] + O A)ai(a) = Y Nogia (@)

where
Id

L T4 (1ad)! 1
gzzgq (df)nﬁ Q-

m=1

Let us compare these initial conditions with those for {Z;}.

Proposition 11.7. ZZ-(O) =1, Zi(l) = 0.

Proof. The first statement follows from the definition of Z; while the second means that
sz,d Elei(¢i) = 0 for all d > 0. It is due to the fact that the class Eljej(¢;) is a pull-back
from Y7 4. (In fact we have just repeated an argument proving (5) from Section 5 and thus

the proposition can be deduced from general properties of quantum cohomology.)
Combining the last three propositions we arrive to the following

Theorem 11.8. The hypergeometric solution {Z(q,h)} coincides with the solution
{Zi(Q,h)} up to transformations (a),(b),(c). More precisely, perform the following oper-
ations with {Z;}

1) put

Q = qexp{>_ lalgi. () — 91()]/f (@)} ,

2) multiply Z;(Q(q), h) by
1

exp{m[;m — X)g(a) = O (N — Aa))gr ()]},

3) multiply all Z; simultaneously by f(q).

«

Then the resulting functions coincide with hypergeometric series Z}(q, h).

Proof. The three steps correspond to consecutive applications of operations of type
(b),(c) and (a) to {Z;} and transform the initial condition of Proposition 11.7 to that for
{Z;}. According to Propositions 11.5,11.6 this transforms the whole solution {Z;} to {Z}.
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Consider the solutions

s; = eMT/h Zi(eT,h)

to the equivariant quantum cohomology differential equations
Corollary 11.9. The operations

1) change T =t+ ", lalgi, (") — gi(eM)]/ f(€),
2) multiplication by

f(e") exp{[gi (€’ Zl Z&gza

transform {s;} to the hypergeometric solutions

hf(eh)}

_ _pt/h a1l ap )\ —l—mh)
= Z (0= e F )

of the differential equation

d * _ t lg d /
(ha Aa)s" =e HaHmzl(hladt A +mh) s

For N =0, A\ + ...+ A, = 0 the solutions s have the following integral representation

/ u(’}‘)/h...u;\ﬁ/h dug A ... N\ du,
rnc{Fy(u)=et} Fl(u) Fr(u) dFO

where

F1 = (1—U1—...—ul1), Fg = (1—ul1+1—...—ul1+12), ...,FT = (1—ul1+m+lril+1—...

—Ulyy..41,)
and Fy = ug...up,.

Corollary 11.10. The hypergeometric class S*(t,h) € H*(CP™) = C[P]/(P"™)

g Pt/hz dtH Hl wLo(loP + mh)
P + mh)ntt

whose n + 1 —r non-zero components are solutions to the Picard-Fuchs equation

d n+l—r * __ t la—1 d *
(dt) s*=ly...0e HaHm:l(ladt +m)s
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for the integrals

/ dug A ... A\ duy,

yn-rex; AFg NdFY A o NdE,

(here X] = {(ug, ..., un)|Fo(u) = €', Fi(u) = 0, ..., F.(u) = 0}) are obtained from the class
S (describing the quantum cohomology D-module for the Calabi-Yau complete intersection

X" C CP),
Ey

0 )
h+c§)

S = 6PT/hZ€dT(60)*(
d

by the change

T=t+Y lala.(e) = gi(e)]/f(e)

followed by the multiplication by f(e').

Proof. Corollary 11.9 shows that for ' = 0,>_ A, = 0 these change and multiplication
transform the corresponding equivariant classes S’ and S” * to one another. The class —p in
the formula for s} in Corollary 11.9 is the equivariant Chern class of the Hopf line bundle over
CP". In the limit A = 0 it becomes —P while S” and S’ * transform to their non-equivariant
counterparts S and S*.

Remarks. 1) Notice that the components S and S§ in
S* = 1. L [P"Sg(t) + PHIST(t) + ... + P"SE(t)]

are exactly f(e') and tf(e") + >, la[gi. (") — g1(e")] respectively. Thus the inverse transfor-
mation from S* to S consists in division by S§ followed by the change T" = S5 (t)/S§(t) in
complete accordance with the recipe [16, 18, 9] based on the mirror conjecture.

2) According to [17] the (n — r)-dimensional manifolds X; admit a Calabi-Yau com-
pactification to the family X| of mirror manifolds of the Calabi-Yau complete intersection
X" C CP". The Picard-Fuchs differential equation from Corollary 11.10 describes vari-
ations of complex structures for X’. This proves the mirror conjecture (described in detail
in [18]) for projective Calabi-Yau complete intersections and confirms the enumerative pre-
dictions about rational curves and quantum cohomology algebras made there (and in some
other papers) on the basis of the mirror conjecture.

3) The description [15] of the quantum cohomology algebra of a Calabi-Yau 3-fold in
terms of the numbers ny of rational curves of all degrees d (see for instance [9] for the

description of the corresponding class S in these terms) has been rigorously justified in [14].
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Combining these results with Corollary 11.10 we arrive to the theorem formulated in the

introduction.

Proof of The Main Lemma.

In our construction of the map u : Ly — L, we will denote Ly the moduli space of stable
maps C — CP" x CP! of bidegree (d,1) with no marked points (it also has dimension
d(n+ 1) +n). The construction works for any given number of marked points but produces
a map which is the composition of p with the forgetful map. In this form it applies to the
submanifold of stable maps with two marked points confined over 0 and oo in CP! (this
submanifold is what we denoted L, in the formulation of The Main Lemma).

Let ¢ : C — CP™ x CP! be a stable genus 0 map of bidegree (d,1). Then C =
CoUC)...UC, where Cy is isomorphic to CP! and |Cy maps Cy onto the graph of a degree
d < dmap CP' — CP", and for i = 1, ..., the bidegree (d;,0) map ¢|C; sends C; into the
slice CP™ x {p;} where p; # p; and dy + ... +d, =d —d.

The map p : Lqg — L}, assigns to [¢] the (n+ 1)-tuple (fog : f1g: ... : fng) of polynomials
(= binary forms) on CP! where ¢ is the polynomial of degree d — d with roots (p, ..., pr)
of multiplicities (dy, ...,d,) and the tuple (fo : ... : f,) of degree d’ polynomials (with no
common roots, including co) is the one that describes the map |Co.

In order to prove that the map p is regular 5 let us give it more invariant description.
The construction below can be generalized to any positive line bundle instead of Ocpn(1).

Denote Ly the moduli space of bidegree (d, 1) stable maps with an extra-marked point
and pull back to ﬁd the line bundle

H := Hom(m{Ocpn (1), 75Ocp1(d))

by the evaluation map e : ﬁd — CP" x CP! (where 7; are projections to the factors).
Consider the push-forward sheaf HY := Rm.e*(H) of the locally free sheaf e*H along the
forgetful map = : Ly — Lg. To a small neighborhood U C Ly, it assigns the Oy -module
H(m=Y(U), e*H) of sections of e*H.

Claim. 1) H is a rank 1 locally free sheaf on L.

2) The fiber at [¢)] of the corresponding line bundle can be identified with

H(Co, (¥]Co)*(H) ® O(=[p1])*" .. ® O(=[p:]))*").

5] am thankful to M. Kontsevich who communicated to me another, more elementary proof of this
statement.

46



3) The kernel of the natural map
h: HY(C, ¢} (Ocpn(1))) — H(C, 4" 15(Ocpr(d)) = H'(CP', O(d))

defined by a nonzero vector in this fiber consists of the sections vanishing identically on Cj.

Using this, we pick n + 1 independent sections of Ocpn(1) (that is homogeneous coor-
dinates on CP"), define corresponding sections of e*7iOcpn(1) and apply the map h. By
this we obtain a degree 1 map from the total space of the line bundle H® to the linear
space C"*' @ H°(CP', O(d)). Since the homogeneous coordinates on CP"™ nowhere vanish

simultaneously, we obtain a natural map
Lq — L), = Proj(C"™ @ H°(CP*, O(d)))

which sends [¢] to (fog : ... : fng) and conclude that u is regular.

The remaining statements of The Main Lemma are proved by looking at localizations of
the equivariant class p at the S'xT"*!-fixed points in L/, and L, (in this paragraph we use the
notation L, for the same space as in the formulation of The Main Lemma). The fixed points
in L/, are represented by the vector-monomials (0:...: 0: 2% : 0: ... : 0) where p localizes to
Ai+dh. A fixed point in L, is represented by ¢ with ¢)(Co) = (0:...:0:1:0:...:0),r = 2,
po = 0, p1 = oo and the maps ¥|Cy : C, — CP", k = 1,2 representing T""!-fixed points
respectively in Ys 4 and Y3 44 such that their (say) second marked points are mapped to
the point 1(Cp). This implies that the class p*(p) localizes to A\; + d’'h at such a fixed point
and thus the pull back of p to the fixed point set

{[Y] € Yo x Youga|(ea x e2)([)]) EACY XY

of the S*-action on Ly coincides with the pull back through the common marked point of the
T™+!equivariant class p+d'h on the diagonal A = CP™. Now localizations of [ Ly ePt=7E; to
the fixed points of S'-action identify the form of the correlator ® given in The Main Lemma
with the definition of ® as the convolution of S’(¢, k) and S’(7, —h).

In order to justify the claim we need to compute the space of global sections of the sheaf
e*(H) over the formal neighborhood of the fiber 7='([¢]) of the forgetful map m : Lg — Lq.
The fiber itself is isomorphic to the tree-like genus 0 curve C. Let (z;,y;),j =1,....,N >r

be some local parameters on irreducible components of C' near the singular points such
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that €; = xjy; are local coordinates on the orbifold Ly near [)] (one should add some local
coordinates €’ on the stratum e; = ...y = 0 of stable maps C' — CP" in order to construct
a complete local coordinate system on Lg). Such a description of local coordinates on Ly
follows from the very construction of the moduli spaces of stable maps to convex manifolds;
we refer the reader to [3, 6] for details.

A line bundle over the neighborhood of C' C Ly can be specified by the set

uj(z;t,e),05(y;t e), j=1,..., N,
of non-vanishing functions describing transition maps between trivializations of the bundle
inside and outside the neighborhoods (with local coordinates (z;,y;,&1,...,€;,...,en,€")) of
the double points.

Let us consider first the following model case. Suppose that C' consists of r+1 irreducible
components (Cy, C1, ..., C;) such that each C; with j > 0 intersects Cy at some point p;. Let
x; be the local parameter on Cj near p;, and the line bundle (of the degree —d; < 0 on Cj)
be specified by v; = yj_dj

In the neighborhood of p; a section of such a bundle is given by a function s(z;,y;,€;)
satisfying

d; —
]Sj(yj 175)

s=y;
where the function s; represents the section in the trivialization over the neighborhood of
C; — pj. Here €; means that ¢; is excluded from the set of coordinates ¢ (remember that
ej = x;y;). This implies that s; = 5? fj(yj_lej,e) where f; is some regular function. Thus
this section in the neighborhood of p € Cj is given by a function s(z;,¢) = ZE;»lj fi(xj,e) with
zero of order d; at x; = 0, and the restriction of this section to the neighborhood of Cj is
determined by s.
In other words, the C[[¢]]-module of global sections in the formal neighborhood of C
identifies with the module of global sections on Cj for the line bundle given by the loops
z; u; instead of u; (this corresponds to the subtraction of the divisor ) d;[p;].

j
The more general situation where v; is the product of y; 4

with an invertible function
w;(y;, xj,€;) preserves the above conclusion with w™ts = ZE;»lj fi(xj,e) instead of s.
Obviously, the above computation bears dependence on additional parameters.
Now we apply our model computation to the neighborhood of a general tree-like curve

C' inductively by decomposing the tree into simpler ones starting from the root component
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Co. We conclude that the Cl[¢]]-module of sections of the bundle e*(H) is identified with
the module of sections of some line bundle over the product of Cy with the polydisk with
coordinates (g1, ..., &y, ...,en, €'), and that this line bundle is e*(H) for Cy (given by the loops
u; in our current notations) twisted by the loops Ij_dj in the punctured neighborhoods of
the points (p1, ..., p;), where (dy, ..., d,) are the degrees of the maps ¢|C; : C; — CP" (in the
notations of the claim so that d; + ... +d, = d — d').

This implies that the C[[¢]]-module H° of global sections can be identified with the module
of those global sections of the degree d — d' locally free sheaf (¢|Cp)*(H) ® C[[¢]] which have
zeroes of order d; at p; for j = 1,...,r. In particular

1) H° is a free C|[[¢]]-module of rank 1,

2) H" ®cqe (Clle]]/(g)) is the 1-dimensional space H|;y) described in the claim, and

3) non-zero vectors in H°|)] represent sections of ¢*(H) over C' non-zero on Cj (and
thus their product with a non-zero on Cj section of ¥*7}(Ocpn (1)) can not vanish identically
on Cy.)

Factorization by the discrete group Aut() preserves (1 — 3) with Cl[¢]] replaced by
C[[e]] 4.

12 Quantum Serre duality

Results of Sections 9 — 11 on quantum cohomology algebras of projective complete intersec-
tions can be understood as a study of the recursion relations which arise from localization to
fixed points of tori actions. In this Section we apply the same technique to the more general
quantum cup-product structures defined by solutions of WDV V-equations. Comparing the
solutions which correspond (see Section 4) to a convex vector bundle over CP™ and its dual
we will arrive to a quantum analogue of the Serre duality theorem. The canonical coordi-
nates of semisimple Frobenius manifolds that we discussed in Section 8 will play here a key

role.

We begin with a known property of quantum correlators for X = pt. Consider the series

W)=+ D0 (o () S —

Tty —kwte y+c>k+2
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where f(c) = fo + fic+ foc® + ... is a given function of the 1-st Chern class of the universal
tangent line on the Deligne - Mumford spaces X o := M07k+2, and ( ... )g42 are defined by
integration over these spaces.

Lemma 12.1.

6U/m—l—U/y
W($> y) =T
r+y

where U depends on f and does not depend on x and y.

Proof. This fact is well-known in the axiomatic theory [2] of Frobenius structures and
their 7-functions. Consider the correlators

V(z):= lim yW(z,y), U := lim z(V(z) — 1)

Yy—00 T—00

(they correspond to replacing 1/(y + ¢) or/and 1/(x + ¢) by 1 in the definition of W). The
symmetries from the proof of Corollary 6.3 show that for the vector field F = 9/0fy —

> fr410/0f —
LpU =1, LpV =V/z, LyW = (= + 2 )W
Ty

(the so called string equations). The degree argument shows that for fo = 0 we have U =
0,V=1,W=1/(x +y). Thus V(z) = exp(U/x), W(zx,y) = (exp(U/x +U/y))/(x + y).
Notice that these identities are compatible with the WDV V-type equation
LW (x,y)LpU = LpV (z)LrV (y).
This lemma can be deduces also from the explicit formula for correlators between univer-
sal tangent lines over Deligne-Mumford spaces which we exploited in the proof of Proposition
10.5. As we see from the above proof some convergence-providing assumptions about f are

necessary in this lemma.

Consider now the following modification of the recursion relations of Sections 9 — 11:

: Sij . . CF(d) :
j _ Y% d d(Ui~Uy) /(A=) i 7 — )\,
Wi(z,y) "y + k%i d§>0 q’e I ESEw W (( e — N)/d, y).

Given U, ..., U, and the coefficients C? (d), the recursion relation has a unique matrix solution

(W?) in formal power series of g.
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Consider the torus-equivariant GW-theory on Y = CP"™ provided with the r-dimensional

convex vector bundle V = @& H% . Introduce the correlator

ZJ . Zq Z k" / T+ C(O 61(t)€k(t) m Euz€’f’k+27d

Yii2,4

where Fulerys 4 is the equivariant Euler class of the vector bundle H°(C, ez+2V) over Yjy2 4,
and [, ¢;Euler(V)¢;/(x+y) is taken on the role of the ill-defined summand with d = 0,n =
2.

Introduce another correlator, Z7;, replacing Ej2.4 by the equivariant Euler class Ef .,
of the vector bundle H'(C, e;,,V*) for d > 0 and by Euler~'(V*) for d = 0.

In both versions t = Y ' _ ta®a/Ils2a(Aa — Ag) denotes the general equivariant cohomol-

ogy class of Y.
Proposition 12.2. 1)
Zig = oy (lahi = A,) €/ W] et Ty (A — Aa)

where ug, ..., u, are the homogeneous canonical coordinates at t (uo = ua(t,q; X\, X)) of the

Frobenius structure, and (W7) is the solution to the recursion relation with Uy = u, and

17 _ T (1A — X+ m(\ — Ni)/d)

cl(d
O = T ezt O — e k08— AJJD)

2)
75y = W Mgy (A — M) [ Ty (N, — 1))

where ug, ..., u; are the homogeneous canonical coordinates at t* of the Frobenius structure,

and (W) is the solution to the recursion relation with U, = u’ and

7 _ T (=1 + X —m(\; — Ni)/d)

CI(d
D= T, oz o — e b 0%y — M)

(2

3) In each case put

Vi (z,U) = lim yW! = 6;; + V2 (U)/z + o(1/z).

Yy—oo

Then

to = U +iffaj(u), tr = +if/ﬁ(u
=0 =0
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Proof. The recursion for Z;; and Z;*j is based on the same idea as in Sections 9 — 11.
We use Borel’s localization formula in order to reduce computation of the correlators to
summation over all fixed point components in Y;.s 4. The components are labeled by trees
“walking” in the 1-skeleton of the n-simplex (the momentum polyhedron of the torus action
on CP™). Each tree contains the chain of edges connecting the vertices ¢ and j where the first
and the last marked points are mapped to. We cut off the 1-st edge (connecting the vertex
i with say vertex «). The rest of the chain contributes to the Borel localization formula by
Zi((Aa — Ai)/d,y) while the coefficient CY(d) takes in account the contribution of the edge
[i, ] of degree d.

The subtlety hidden in this argument is due to the possibility that the first marked point
can belong to a component of the curve which is mapped to the vertex ¢ and carries k more
special points giving birth to k& branches of the tree (not containing the last marked point)
and / or [ extra marked points (carrying the cohomology class t). Cutting off the first edge
we should take care of the weight obtained by integration over the factor My of the fixed
point set and by summation over all possibilities for the k£ branches.

However it is easy to see that this sum effectively reduces to the exponential series of
Lemma 12.1 (with f(c) unknown so far) and is thus equal to exp(U;/z 4+ U;d/(Ni — \o))-
Moreover, compaing the description of the correlator U; from the proof of Lemma 12.1 with
the definition of “local” equivariant correlators u; given in Section 8 and applying Theorem
8.1(a) we conclude that U; = w; is the canonical coordinate of the Frobenius structure. In
particular correlators U; are well-defined as formal g¢-series.

In order to prove the relation between flat and canonical coordinates described in the

part (3) of the Proposition, consider the correlators

z 1/ |1/m =0 Zy—wo Ha;ﬁj )\ _)\a)

Z <¢Z> PR ] >k+2d/k _t<¢l> >

k,d
The recursion relation for Z;; shows that Zi(l) = (Ui +>_; V) (i, 1).
Similarly,

Z;; .
Ty 2l s = L) = U+ Ve
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Remark. According to Section 6 the matrix lim, .., yZ;;(h,y) and its counterpart “with
«” are essentially the fundamental solutions of the linear differential systems defined by the
corresponding Frobenius structures on the equivariant cohomology space of CP™ provided
with the convex vector bundle V' (see Section 4). Proposition 12.2 identifies the fundamental
solution expressed in terms of canonical coordinates with the solution of a linear recursion
relation and additionally describes the non-linear transformation from canonical to flat coor-
dinates. These equations are exactly identical to the critical point equations obtained by M.
Kontsevich [3]. In particular the linear recursion relations can be also interpreted as critical
point equations for a quadratic combinatorial “Lagrangian” with the “kinetic energy” (its
terms should correspond to the edges of the momentum simplex) determined by the coeffi-
cients (C7(d))~! and the “potential energy” (whose terms should correspond to the vertices)
determined by the factors exp(U;da/(Ni — Aa) + Uidg/(Ni — Ag)). The important problem of
finding the general solution to the linear recursion relation remains open as well as the role of
these relations and of the quadratic combinatorial Lagrangian in the theory of isomonodromy

deformations [2] accompanying the concept of canonical coordinates — unclear.

Corollary 12.3 (Quantum Serre Duality).
At the points t and t* with the same canonical coordinates U = (ug, ..., un) = (ug, ..., uk)

the correlators (Z;;) and (Z};) satisfy the following relation:

1\ 7. 1)l

- o U

a=1\laAi = AgJHg—1{laA; a

Remarks. This fact (which is proved by comparisson of the coefficients Cij (d) of the
two recursion relations) can be explained in the following way: for the curve C' which is a
chain of CPY’s with two marked points py and ps on the first and the last component, the
Serre duality theorem provides a non-degenerate duality between H°(C,V @ O[—po]) and
H'(C,V* ® O[pwo]) since the canonical class K + [pg] + [po] on such a curve C'is trivial.

The quantum Serre duality theorem shows that the Frobenius structures on H;(CP")
corresponding to V and V* are equivalent, but the equivalence involves some transformation
of the flat coordinates. The same equivalence statement holds true in the limit A = 0, " # 0.
It is natural to conjecture that such an equivalence of two Frobenius structures corresponding
to V' and V* should be true for vector bundles over arbitrary Y. One of the two equiva-

lent Frobenius structures coincides with the Frobenius structure of the super-manifold (in
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terminology of [28]) of dimension (n|r) (here the fiber of the convex bundle V' over CP" is
considered odd) and in the limit \' = 0 degenerates to the Gromov-Witten theory on the
codimension r complete intersections X defined by sections of V. The second one corre-
sponds to an n + r dimensional non-compact manifold — the total space of the bundle V*.

It would be interesting to study the relation between the two structures in greater detail.

Corollary 12.4. The translations
(a): to —to+T
(b): to =t + AaT
on the Frobenius manifolds cause respectively the translations 0(1 = Uy+71 and Ua =Uy+ AT

of the canonical coordinates and the following transformations of the matriz (Z;;):
(a) Zij(U> x,y, q) = 67/m+7/yZij(U> x,y, q) )

(b) Ziy(U,@,y,q) = N HNZ5(U 2,0y, qe7)

The same transformation formulas hold for the matrix (Zl*j)

Proof. The translation (a) corresponds to the vector field > 9/0t, = > 0/0u, represent-
ing the unity of the quantum cup-product. The translation (b) corresponds to the symmetry
generated by the vector field ¢0/0q — > A\,0/0t,. This justifies the effect of the translations
on the canonical coordinates. The rest follows now directly from the form of the recursion
relation.

Remarks. This corollary explains the origin of the invariance property with respect to the
change of coordinates stated in Propositions 11.3,11.6: it is a consequence of the symmetries
(5), (6) from Section 5.

The proof of the mirror conjecture given in Sections 9 — 11 could be more straightforward
and conceptual if we had at our disposal a well-developed theory of Frobenius structures,
their flat and canonical coordinates, for the models of Landau-Ginzburg type (see [10]) more

general than K. Saito’s theory [29] of isolated critical points of holomorphic functions.
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