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Let (M, f,G) be a manifold, a function and a Riemann metric on the
manifold. Topologists would use these data in order to analyze the manifold
by means of Morse theory, that is by studying the dynamical system = =
+V f. Many recent applications of physics to topology are based on another
point of view suggested in E. Witten’s paper Supersymmetry and Morse
theory J. Diff. Geom. (1982).

Given the data (M, f,G), physicists introduce some super-lagrangian
whose bosonic part reads

Sty =3 [ (lP + 19AP)at

and try to make sense of the Feynman path integral

/ Sl

Quasi-classical approximation to the path integral reduces the problem to
studying the functional S near its critical points, that is solutions to the
2-nd order Euler-Lagrange equations schematically written as

1) &=[f"Vf.

However a fixed point localization theorem in super-geometry allows further
reduction of the problem to a neighborhood of those critical points which are
fixed points of some super-symmetry built into the formalism. The invariant
critical points turn out to be solutions of the 1-st order equation

(2) @=+Vf
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studied in the Morse theory.

Two examples:

— Let M be the space of connections on a vector bundle over a compact
3-dimensional manifold X and f = CS be the Chern-Simons functional.
Then (1) is the Yang-Mills equation on the 4-manifold X x R, and (2) is the
(anti-)selfduality equation. Solutions of the anti-selfduality equation (called
instantons) on X x R are involved into the construction of Floer homology
theory in the context of low-dimensional topology.

— Let M be the loop space LX of a compact symplectic manifold X and f be
the action functional. Then (1) is the equation of harmonic maps S' xR — X
(with respect to an almost Kdhler metric) and (2) is the Cauchy-Riemann
equation. Solutions to the Cauchy-Riemann equation (that is holomorphic
cylinders in X) participate in the construction of Floer homology in the
context of symplectic topology.

In both examples the points in M are actually fields, and both Yang-Mills
and Cauchy-Riemann equations admit attractive generalizations to space-
times (of dimensions 3 + 1 and 1 + 1 respectively) more sophisticated then
the cylinders. It is useful however to have in mind that the corresponding
field theory has a Morse theory somewhere in the background.

In the lectures we will be concerned about the second example. Let us
mention here a few milestones of symplectic topology.
—1In 1965 V. Arnold conjectured that a hamiltonian transformation of a com-
pact symplectic manifold X has fixed points — as many as critical points of
some function on X.
—1In 1983 C. Conley & E. Zehnder confirmed the conjecture for symplectic tori
R?" /7", In fact they noticed that fixed points of a hamiltonian transforma-
tion correspond to critical points of the action functional § pdg — H(p, q,t)dt
on the loop space LX due to the Least Action Principle of hamiltonian me-
chanics, and thus reduced the problem to Morse theory for action functionals
on loop spaces.
—1In 1985 M. Gromov introduced the technique of Cauchy-Riemann equations
into symplectic topology and suggested to construct invariants of symplectic
manifolds as bordism invariants of spaces of pseudo-holomorphic curves.
—In 1987 A. Floer invented an adequate algebraic-topological tool for Morse
theory of action functionals — Floer homology — and proved Arnold’s con-
jecture for some class of symplectic manifolds. In fact there are two types of



inequalities in Morse theory: the Morse inequality
# (critical points) > Betty sum (X)

which uses additive homology theory and applies to functions with non-
degenerate critical points, and the Lusternik-Shnirelman inequality

# (critical levels) > cup-length (X)

which applies to functions with isolates critical points of arbitrary complexity
and requires a multiplicative structure.

— Such a multiplicative structure introduced by Floer in 1989 and called now
the quantum cup-product can be understood as a convolution multiplication
in Floer homology induced by composition of loops LX x LX — LX. It
arises every time when a Lusternik-Shnirelman-type estimate for fixed points
of hamiltonian transformations is proved. For instance, the 1984 paper by
B. Fortune & A. Weinstein implicitly computes the quantum cup-product
for complex projective spaces, and the pioneer paper by Conley & Zehnder
also uses the quantum cup-product (which is virtually unnoticeable since for
symplectic tori it coincides with the ordinary cup-product).

— The name “quantum cohomology” and the construction of the quantum
cup-product in the spirit of enumerative algebraic geometry were suggested
in 1989 by E. Witten and motivated by ideas of 1+ 1-dimensional conformal
field theory. Witten showed that various enumerative invariants proposed by
Gromov in order to distinguish symplectic structures actually obey numer-
ous universal identities — to regrets of symplectic topologists and benefits
of algebraic geometers.

— Several remarkable applications of such identities to enumeration of holo-
morphic curves and especially the so called mirror conjecture inspired an
algebraic - geometrical approach to Gromov - Witten invariants, namely —
Kontsevich’s project (1994) of stable maps. The successful completion of the
project in 1996 by several (groups of) authors (K. Behrend, B. Fantechi, J.
Li & G. Tian, Y. Ruan,...) and the proof of the Arnold-Morse inequality
in general symplectic manifolds (K. Fukaya & K. Ono, 1996) based on simi-
lar ideas make intersection theory in moduli spaces of stable maps the most
efficient technique in symplectic topology.

Exercise. Let z = p + ig be a complex variable and z(t) = >, ., 2 exp ikt be the
Fourier series of a periodic function. Show that the symplectic area ¢ pdq is the indefinite
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quadratic form §pdg = m " k|zx|? on the loop space LC. Deduce that gluing Morse cell
complexes from unstable disks of critical points in the case of action functionals on loop
spaces LX would give rise to contractible topological spaces. (This exercise shows that
Morse-Floer theory has to deal with cycles of infinite dimension and codimension rather
then with usual homotopy invariants of loop spaces.)

1 Moduli spaces of stable maps

Example: quantum cohomology of complex projective spaces. In
quantum cohomology theory it is convenient to think of cup-product opera-
tion on cohomology in Poincare-dual terms of intersection of cycles. In these
terms the fundamental cycle represents the unit element 1 in H*(CP"), a pro-
jective hyperplane represents the generator p € H?(CP"), intersection of two
hyperplanes represents the generator p*> € H*(CP"), and so on. Finally, the
intersection point of n generic hyperplanes corresponds to p" € H?*"(CP")
and one more intersection with p is empty so that H*(CP™) = Q[p]/(p"™) !

Exercise. Check that the Poincare intersection pairing (-, ) is given by the formula

1 dp
S 070 = 53 f 9001

The structural constants (a Ub, ¢) of cup-product count the number of in-
tersections of the cycles a, b, ¢ in general position (taken with signs prescribed
by orientations).

The structural constants (a o b, ¢) of the quantum cup-product count the
number of holomorphic spheres CP! — CP" passing by the points 0, 1, oo
through the generic cycles a,b,c. In our example they are given by the
formulas

q° if E+l+m=n
Prup,p™ =< ¢ if E+l4+m=2n+1
0 otherwise

The first row corresponds to degree 0 holomorphic spheres which are simply
points in the intersection of the three cycles. The second row corresponds

'We will always assume that coefficient ring is @ unless another choice is specified
explicitly.



to straight lines: all lines connecting projective subspaces p* and p™ form
a projective subspace of dimension n — k +n — m + 1 = [ which meets the
subspace p' of codimension [ at one point. The degree 1 of straight lines in
CP" is indicated by the exponent in ¢'. In general the monomial ¢? stands
for contributions of degree d spheres.

Exercise. Check that higher degree spheres do not contribute to the structural con-

stants (p* o p!,p™) for dimensional reasons. Verify that the above structural constants

indeed define an associative commutative multiplication o on H*(CP™) and that the gen-
erator p of the quantum cohomology algebra of Q H*(CP™) satisfies the relation p" ™! = ¢.
Show that the evaluation of cohomology classes from Q[p, q]/(p" ™ —¢) on the fundamental

cycle can be written in the residue form

/ (p.q) = 1 [ é(p, q)dp
[cPn]

Com ) prtl—g

As we shell see, the relation p"*! = ¢ expresses the following enumerative
recursion relation:
the number of degree d holomorphic spheres passing by given marked points
0,1,....,n,n+1,..., N through the given generic cycles p,p,...,p,a,...,b equals
the number of degree d — 1 spheres passing by the points n+1,..., N through
a,...,b.
Thus the very existence of the quantum cohomology algebra has serious enu-
merative consequences.

A rigorous construction of quantum cohomology algebras is based on the
concept of stable maps introduced by M. Kontsevich.

Stable maps. Let (X, €) be a compact connected complex curve ¥ with
at most double singular points and an ordered k-tuple € = (ey,...,€x) of
distinct non-singular marked points. Two holomorphic maps f : (X,¢) — X
and f': (X,€) — X to an (almost) Kéhler manifold X are called equivalent
if there exists an isomorphism ¢ : (X, €) — (X', ¢') such that its composition
with f" equals f. A holomorphic map f : (X, €) — X is called stable if it has
no non-trivial infinitesimal automorphisms.

Ezamples. (a) The constant map of an elliptic curve with no marked
points is unstable since translations on the curve are automorphisms of the
map.

(b) The constant map of CP! with < 3 marked points is unstable since the
group of fractional linear transformations of CP! is 3-dimensional. Similarly,
if ¥ has CP! as an irreducible component carrying < 3 special (= marked
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or singular) points, and the map f is constant on this component, then f is
unstable.

Exercise. Prove that any other map is stable.

The arithmetical genus g(X) is defined as the dimension of the cohomology
space H'(X, Ox) of the curve with coefficients in the sheaf of holomorphic
functions. The genus 0 curves (called rational) are in fact bunches of CP1’s
connected by the double points in a tree-like manner.

Exercise. Express the arithmetical genus of ¥ via Euler characteristics of its irre-

ducible components and the Euler characteristic of the graph whose vertices correspond
to the components and edges — to the double points.

The degree d of the map f is defined as the total sum of the homology
classes represented in X by the fundamental cycles of the components. Thus
the degree is an element in the lattice Ho(X,Z). The example of the degree
2 rational curve in CP? given by the affine equation xy = const which de-
generates to the union of two straight lines when const = 0 illustrates the
general rule: irreducible holomorphic curves can degenerate to reducible ones
but in the limit the genus and degree are conserved.

The set of equivalence classes of stable maps to X with fixed arithmetical
genus ¢, fixed number k of marked points and fixed degree d can be provided
with a natural structure of a compact topological space (due to Gromov’s
compactness theorem) and is called the moduli space of stable maps. We will
denote X} 4 the genus 0 moduli spaces (and will mostly avoid higher genus
moduli spaces throughout the text).

Examples. (a) Let X be a point. Then the moduli spaces are Deligne-
Mumford compactifications M, ; of the moduli spaces of complex structures
on the sphere with g handles and k& marked points. The spaces Mo and
Moy with k& < 3 are empty. Moz is a point (why?). A generic point in
My 4 represents the cross-ratio A of the ordered 4-tuple (0, 1, 00, A) of distinct
marked points in CP!. Of course, the Deligne-Mumford compactification
restores the forbidden values A = 0, 1, 00 so that My 4 ~ CP'. These values
however correspond to the 3 ways of splitting 4 marked points into two pairs
to be positioned on the 2 components of ¥ = CP! U CP! intersecting at a
double point.

(b) The moduli spaces X,, o of constant maps are the products X x Mo,
(empty for k < 3).



(c) The grassmannian CG(2,n + 1) of straight lines in CP™ is compact
and thus coincides with CF';.

Exercises. (a) Identify M 5 with the blow-up of CP? at 4 points.

(b) Show that the moduli space of rational maps to CP* x CP! of degree d = (1,1)
with no marked points is isomorphic to CP?. Is it the same as CP} 37

(c) How many points in CPg 4 represent stable maps with the image consisting of 4
distinct straight lines passing through the same point?

Evaluation of a stable map f : (X,€) at the marked points (e, ..., €x)
defines the maps ev = (evy,...,evy) : Xpq — XF. Forgetting the marked
point €; gives rise to tautological maps ft; : Xy11 4 — X} q as well as forgetting
the map f corresponds to the map X4 — Moy called contraction. One
should have in mind that forgetting f or a marked point can break the
stability condition. The actual construction of forgetting and contraction
maps involves contracting of all the irreducible components of 3 which has
become unstable.

For example, consider the fiber of ftyy1 : Xji114 — Xja over the point
represented by f : (X, €1, ...,ex) — X. A point in the fiber corresponds to a
choice of one more marked point on . Any choice will give rise to a stable
map unless the point is singular or marked in . However in the case of the
choice €11 = €; one can modify ¥ by an extra component CP! intersecting
3} at this point, carrying both €;1; and ¢; and extend f to this component as
the constant map. Similarly, in the case of a singular choice one can disjoin
the branches of ¥ intersecting at this point and connect them with an extra-
component CP! carrying the marked point €,,;. Both modifications give
rise to stable maps. Now it is easy to see that the fiber of ft;; is isomorphic
to (2, ¢€) (factorized by the finite group Aut(f) of automorphisms of the
map [ if they exist). In particular the map fty; has k canonical sections
(€1, ...y €k) : Xg.a — Xkt1.4 defined by the marked points in ¥. Moreover, the
evaluation map evyi1 : Xgi1,4 — X restricted to the fiber defines on (X, ¢) a
map equivalent to f. Thus the diagram defined by the projection ft; i, by
the map eviy; to X and by the sections ¢; can be interpreted as the universal
degree d stable map to X with k universal marked points (eq, ..., €).

Suppose now that X is a homogeneous Kéhler space (such as projective
spaces, grassmannians, ..., flag manifolds). Then (see M.Kontsevich (1994)
and K. Behrend & Yu. Manin (1996) ) the moduli space Xj 4 has a natu-
ral structure of a complex orbifold (= local quotients of manifolds by finite



groups) of complex dimension
dim Xy g = dim X + (e1(Tx),d) — 3+ k.

Here (¢1(T'x), d) denotes the value of the 1-st Chern class of the tangent bun-
dle Tx on the homology class d, and the formula follows from the Riemann-
Roch theorem on ¥ which allows to compute the dimension of the infinitesi-
mal variation space of holomorphic maps CP! — X.

The topology of orbifolds is similar to that of manifolds. In particular
one can develop Poincare duality theory and intersection theory in Xj, 4 using
the fundamental cycle of the orbifold which is defined at least over Q.

For general X the moduli spaces can have singularities and components
of different dimensions. Nevertheless one can define in the moduli space a
rational homology class (called the virtual fundamental cycle, see for instance
J. Li & G. Tian (1996)) which has the Riemann-Roch dimension and allows
to build intersection theory with the same nice properties as in the case of
homogeneous Kahler spaces. The initial point in the definition of the virtual
fundamental cycle is to understand that singularities of the moduli spaces
mean irregularity of the zero value of the Cauchy-Riemann equation selecting
holomorphic maps among all smooth maps. The cycle is to have the same
properties as if the Cauchy-Riemann equations were made regular by bringing
“everything” (including the almost complex structure) into general position.

Exercises. (a) Suppose that all fibers of a holomorphic vector bundle V' over a
rational curve ¥ are spanned by global holomorphic sections. Prove that H*(X,V) = 0
and find the dimension of H(3, V). Describe the tangent space at the point [f] to (the
Aut(f)-covering of the orbifold ) X}, 4 for homogeneous X.

(b) Consider the space X of constant stable maps to X of a given elliptic curve E with
one marked point as a subspace in the space of all smooth maps. Check that 0 is irregular
value of the Cauchy-Riemann equation linearized along a constant map and show that the

virtual fundamental class should have dimension 0 and be equal to the Euler characteristic
of X.

2 Gromov-Witten invariants

Structural constants of the quantum cup-product on H*(X) are defined by

(aob,c):= qul...qfr/ evi(a) Aevy(b) Aevi(e) ,
d [X3,4]
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where (dy, ..., d,) is the coordinate expression of the degree d in a basis of
the lattice Hy(X,Z) (which we assume isomorphic to Z"), the integral means
evaluation of a cohomology class on the virtual fundamental cycle, and a, b, c
are arbitrary cohomology classes of X.

Exercises. (a) Show that symplectic area of a holomorphic curve in (almost) Kéhler
manifold is positive. Deduce that the semigroup L C Ha(X,Z) of degrees of compact
holomorphic curves fits some integer simplicial cone in the lattice at least in the case of
Kihler manifolds with H?(X) spanned by Kihler classes. (In fact the same is true for
generic almost Kahler structures and therefore — for any almost Kahler X if L means the
semigroup spanned by those degrees which actually contribute to the structural constants.)
Conclude from this that the structural constants are (at worst) formal power series in
q1, ---, ¢ With respect to an appropriate basis in the lattice Ha(X).

(b) Make precise sense of the statement that QH*(X) is a g-deformation of H*(X).

(¢) Prove that the quantum cup-product o respects the following grading on H* (X, Q[[¢]]):
cohomology classes of X are assigned their usual degrees divided by 2 since we want to
count dimensions of cycles in “complex” units, and the parameters ¢; are assigned the
degrees in accordance with the rule deg ¢¢ = (c1(Tx), d).

One can define more general Gromouv-Witten invariants
(a1, .., ak)q ::/ evi(ar) A ... Nevi(ag)
[Xk,d]

which have the meaning of
the number of degree d holomorphic spheres in X passing through generic
cycles Poincare-dual to the classes aq, ..., ag.

Notice that the configuration of points mapped to the cycles is not spec-
ified, and thus the invariants differ from those which participate in our in-
terpretation of the relation p"*! = ¢ in QH*(CP"). In order to fix the con-
figuration one should use the fundamental cycle [ct™ (pt)] of a fiber of the
contraction map ct : Xj 4 — Moy. More generally, let A be a cohomology
class in Mg ;. The GW-invariant

Alay, ..., a)q = / ct*(A) Aevi(ar) A ... ANevi(ag)
[Xk,d]

has the enumerative meaning of
the number of pairs — a degree d map CP* — X, a configuration — such
that the configuration belongs to a cycle Poincare-dual to A and the map send



it to the given cycles in X.

One can do even better. Consider the section €; : Xy g — Xj41,4 defined
by the universal marked point. The conormal line bundle to the section
pulled back to X}, 4 by the section itself will be called the universal cotangent
line to the universal curve at the i-th marked point (why?). Thus we have k
tautological line bundles over X}, ; and we denote c(l), - ¢®) their 1-st Chern
classes.

Let T(c) = to + tic + tac* + ... be a polynomial in one variable ¢ with
coefficients ¢; € H*(X). Given k such polynomials 70!, ..., T we can
introduce the GW-invariants (called gravitational descendents)

AT TRy, = / ct*(A) Aevi TH (DY A L Aevy TH (W)
[Xk,dl

whose enumerative meaning is not so obvious (see however Exercise (b) be-
low).

Exercises. (a) Let G be a compact Lie group. Equivariant cohomology H¢ (M) of
a G-space M is defined as the cohomology H*(M¢) of the homotopy quotient Mg :=
(M x EG)/G and is a module over the coefficient algebra H¢ (pt) = H*(BG) of the G-
equivariant theory. Suppose that points of the G-space M have only finite stabilizers.
Show that H(M, Q) is canonically isomorphic to H*(M/G, Q). Use this fact in order to
define the Chern classes ¢(?) € H*(X}, q4) over Q accurately, that is taking into account the
automorphism groups Aut(f) of stable maps.

(b) A holomorphic section of a line bundle L over X with the 1-st Chern class p
determines a section of the bundle evy  ; L over the universal curve. Define the [ + 1-
dimensional bundle over Xy, 4 of I-jets of such sections at the 1-st universal marked point
and compute the Euler class of this bundle in terms of p and ¢V). Interpret the number
of degree d spheres subject to tangency constraints of given orders with given generic
hypersurfaces in X in terms of gravitational descendents.

As it follows directly from the definition of the structural constants, the
quantum cup-product is (super-)commutative ? and satisfies the following
Frobenius property with respect to the intersection pairing:

(aob,cy =(a,boc) .

2We will understand commutativity and symmetricity in the sense of super-algebra and
thus will further omit the prefix super. It is safe however to assume that cohomology of
X has trivial odd part for it is true in our examples of homogeneous Kahler spaces.
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Associativity the quantum cup-product can be then formulated as the sym-
metricity with respect to permutations of the indices (1,2, 3,4) in the follow-
ing quadratic combination of the structural constants

> (a1 0 a, ¢a)y* (¢p, a0 as) |

a76

where Y~ n*?¢, ® @3 is the coordinate expression for the Poincare-dual of the
diagonal A C X x X in terms of a basis {¢,} in H*(X) and the intersection
matrix (n°%) inverse to (ag) := ((¢a, d5)).-

The associativity property can be explained as follows. Consider the GW-
invariant A(ay, az, as, a4)q which counts the number of degree d spheres with
the configuration (0, 1, 00, A) of marked points mapped to the given 4 cycles.
It is obviously symmetric in (1,2,3,4) and does not depend on A. Now let
the cross-ratio A approach one of the exceptional values 0, 1 or co. In the
limit the same GW-invariant receives another interpretation: it counts the
number of pairs of maps f’, f” : CP! — X of degrees d’ + d” = d such that
f'(00) = f"(00) and f'(0), f/(1), f7(0), f”(1) belong to the given 4 cycles.
Which pair of the cycles constrains f’ and which — f” depends however
on the special value of the cross-ratio A. Rewriting the diagonal constraint
f'(00) = f"(00) in X x X in terms of ¢, ® ¢p and summing contributions
of various degrees with the weights ¢¢ we arrive at the identity between the
above quadratic expression of the structural constants and the GW-invariant

Z qu<a1> az, as, a4>d
d

symmetric under permutations.

Exercise. (a) Formulate the above argument in terms the contraction map ct :
X4.4 — My 4 and the evaluation map evh x evy : X3 g X X3 gv and prove the associativity
of the quantum cup-product for a homogeneous Kéhler space.

(b) Apply the same argument to the contraction maps ct : X g — Mo with k > 4
in order to show that the GW-invariant Y, ¢% A(a1, ..., ax)q counting the number of maps
CP' — X sending 1,...,k to ay, ..., ar can be expressed in terms of multiple products in
QH*(X) as (a1,a20a30...0ag).

(c) Considering the degeneracy of the complex structure on a genus g Riemann surface
3 to the curve of geometrical genus 0 with g self-intersections, express the virtual number
of holomorphic maps ¥ — X in terms of the quantum cup-product.

The associativity identity and the above interpretation of multiple prod-
ucts in QH*(X) are examples of universal relations between G'W -invariants
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referred sometimes as composition laws or Witten-Dijkgraaf-Verlinde- Verlinde
equations. Another universal identity reads:

0 0
Qia—qi<a>pj © b> = qja—qu,pi © b>

where (p1,...,pr) in an integer basis in H*(X) dual to the basis in Hy(X,Z)
which we use for labeling the degrees d by (di,...,d,). Due to ¢;0¢%/dq; =
d;q?, it follows from the divisor equation

(a,pi,b)a = di{a,b)q

which simply means that a degree d sphere has intersection index d; with a
codimension 2 cycle Poincare-dual to p;.
Exercise. Prove the divisor equation by computing the push-forward (ft2). evs(p;)

from X3 4 to X2 4. Apply the same argument to 1 instead of p; in order to conclude that
lo =id and give the enumerative explanation of the latter statement.

The divisor equation has the following remarkable interpretation. Con-

sider the system of 1-st order linear differential equations for a vector-function
of ¢ with values in H*(X)

0
3 h Z—§: ; O g
3)  hq 9a.° "
depending also on the parameter h.
The system (3) is consistent for any non-zero value of the parameter h.
Indeed, the differential equations mean that the vector-function § is annihi-
lated by the connection operator

(3

Vh::hd—Zpio%/\ .
=1

The operator consists of the De Rham differential d and of the exterior mul-
tiplication by the matrix-valued differential 1-form A' := Y (p;o)dIng;. The
consistency condition means that the connection is flat for any A:

V2= R2d2 — hdA' + AL A AL =0 .

This is equivalent to commutativity of the quantum multiplication operators
p;o and to the element-wise closedness dA' = 0 of the matrix-values 1-form.
The latter is guaranteed by the divisor equations.
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Consistency of a differential system means that solutions exist. The role
of solutions of the system (3) in Gromov-Witten theory can be explained in
terms of gravitational descendents. Consider the GW-invariants

Sap = (¢a, e(Pina) /h )+ Zq (plnq)/hhgb_ﬁcw
d£0

Here c is the 1-st Chern class of the universal cotangent line at the 2-nd (of
the two) marked points so that 1/(h —¢) = h™' + ch™® + 2h™> + ... is an
example of the function T'(c) participating in the definition of gravitational
descendents, and plng=p;Ing; + ... + p, Ing,.

The matriz (Sap) is a fundamental solution matriz of the linear differential
system (3).

One of the ways to approach this statement begins with a closer look
at the universal cotangent line at the last marked point over X3 4. Since
the sphere CP! with 3 marked points has a canonical coordinate system,
the universal cotangent line appears to be a trivial line bundle. Such a
conclusion is false because of reducible curves, which means that the line
bundle has a non-vanishing section over the part of X3, corresponding to
irreducible curves, and the class ¢ is represented by a divisor consisting of
the compactifying components. However, if such a component corresponds
to reducible curves ¥ = CP! U CP! with the 3-rd marked point situated on
the same CP! as at least one of the others, then the trivializing argument
still applies since this CP! has 3 special points. We conclude that the divisor
representing ¢ corresponds to the components where the first CP! carries
the 1-st and the 2-nd marked points, and the 3-rd marked point is located
on the 2-nd CP'. A more detailed analysis shows that the class ¢ in X34 is
represented by

Z [ Xs.a0] Xa [ X2

d'+d'"=d

where A symbolizes the diagonal constraint f’(co) = f”(0). Similarly to the
case of the associativity equation this factorization of the class ¢ implies that

> gt T(ea = 3 0, piodu® (65, TO) 43 a5, 0Ty )

af d#0
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The second step consists in relating (a, p;, T'(c))q with (a, T'(c))q in a fash-
ion similar to the divisor equation. At the first glance the invariants are
related by the push-forward of p; along the map fty : X34 — X5 4 and thus
differ by the factor d;. This conclusion is false because ft5(c®)) # ¢® on
X3.4. More precisely, the universal cotangent line L at the last marked point
coincides with the pull-back from X 4 of the universal cotangent line L' with
the same name unless the last marked point coincides with the forgotten 2-nd
marked point. Recalling the construction of forgetting maps we find that L
is trivial on the divisor D := [e3] in X3 4 while ft] L’ restricted to D ~ X, 4 is
equivalent to the universal cotangent line on X3 4. This actually means that

c1(fty L') = 1 (L) + [D] and [D] Ney(L) =0 .
We arrive at the following generalization of the divisor equation:

(@, 9 T(0))a = ds{a, T(e))a + (@, pi D)=L (O)

)d-

It is left only to notice that T'(c) = 1/(h — ¢) is the eigen-function of the
operation (T'(c) — T'(0))/c with the eigen-value 1/h and that the conclusion
of the second step agrees with the differentiation of S,s in Ing;.

Exercise. Give another, rigorous proof of the fundamental solution statement (in the

case of homogeneous X):
(a) following the argument in the second step prove the string equation

T(c) —T(0)

c

<CL, L T(C)>d = <CL, >d

(b) apply the 4-point argument to the descendent A{a,p;, 1,T(c))q in order to prove that

Z<aapia ¢a>d<¢ﬁ’ L, T(C)>d = <Q,pi, T(C)>d
af

(c) deduce the differential equation for (S,s3) formally, using (a),(b) and the generalized
divisor equation.

The differential equations for the gravitational descendents give one more
example of universal identities between GW-invariants and along with some
initial conditions (asymptotical at ¢ = 0) allows to recover the gravitational
descendents from the structural constants of the quantum cohomology alge-
bra. A more general theory involving other GW-invariants and gravitational
descendents will be outlined in the exercises.
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Exercises. Define the genus 0 potential of X as the following formal function of ¢

and t € H*(X):
=1
F(ta Q) = Zyzqd<tataat>d
k=0 =~ d

Solutions to the following exercises can be obtained by slight modification of the arguments
used in the proof of the WDVV, string and divisor equations.

(a) Express the GW-invariants (a1, ..., ar)q as Taylor coefficients of F.

(b) On the space H*(X), define the quantum cup-product o; depending on ¢ by

{aop b, c) i = 0y0p0.F

where 0, F means the directional derivative of F' as a function of ¢ in the direction of the
vector v € H*(X). Prove that o, provides the cohomology space with the structure of
commutative associative Frobenius algebra with unity 1 at least if X is a homogeneous
Kahler space. Find the degrees of the parameters ¢, ¢ which make the quantum cup-product
graded.

(c) Show that the connection Vj := hd — > (da0)A (it can be understood as a
connection on the tangent bundle of the manifold H*(X) ) is flat for any /i # 0.

(d) Introduce the potential

w1 J Ps
Saﬁ = E E E q <¢O"t""’t’h_c(k+2)>d
k=0 d

for the gravitational descendents. Prove that (S,g) is a fundamental solution matrix for
the differential system VS = 0 (at least in the case of homogeneous Kéhler spaces).

(e) Prove the following generalization of the divisor equation: for our basis (p1, ..., pr)
in H%(X) and any a, b, ¢

Op, 0a0p0.F = qiaiaaabacF.
qi

Analyze the relation between the g-deformation o of the cup-product introduced at the
beginning of the section 2 and the t-deformation oy.

(f) Find generalizations of WDVV, string and divisor equations to gravitational de-
scendents. Show that all the genus 0 descendents (T, ...,T*); are determined by the
potential F'. Introduce the potential

F(I)=> % > qH T (W), .., T( M)y
k d

for genus 0 gravitational descendents and try to describe the procedure expressing F in
terms of F' (we refer to B. Dubrovin, The geometry of 2D topological field theory for the
answer).

(g) Introduce higher genus analogies F, of the potential F and find the higher genus
versions of the string and divisor equations.
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3 QH*(G/B) and quantum Toda lattices

The following proposition has been so far the most efficient tool for com-
puting relations in quantum cohomology algebras. Introduce the following
formal vector-function of ¢ with values in the cohomology algebra H*(X)
and depending on the formal parameter A~

. Ing)/h -1 qd
J = ePRO/h L p Zev* ﬁ) ,
d40

where ev, is the push-forward along the evaluation map ev : X; 4 — X, and
plng = > pilng. In fact J is determined by the conditions (J, ¢3) = Sos
where we assume that ¢, with the index aw = 0 is the unity 1 € H*(X). Thus
components of the vector-function J form the “1-st row” in the fundamental
solution matrix (S,g) of the differential system (3).

Proposition. Suppose that a polynomial differential opemtorD(hqa%, q,h)
annihilates the vector-function J. Then the relation D(po, q,0) = 0 holds true
in the quantum cohomology algebra QH*(X).

Proof. Application of the operator D to the fundamental solution matrix
S of the system (3) yields (Mo + AM; + ... + BN My)S where M; are some
matrix-functions of ¢ and My = D(po, ¢,0). By the hypothesis the 1-st row in
the product vanishes and thus the 1-st row in each M; vanishes too since the
fundamental solution matrix S is non-degenerate. In particular the entries
(1, D(po, q,0)¢p3) = (D(po,q,0), pz) of the 1-st row in M, are all zeroes and
thus D(po,q,0) =0. O

The proposition indicates that quantum cohomology is a quasi-classical
limit of the actual quantum object — the differential system (3). We will
illustrate applications of the proposition to computation of Q H*(X) with the
example (due to B. Kim (1996)) of the flag manifold X = G/B of a complex
semi-simple Lie group G (here B is the Borel subgroup, and the subgroup of
unipotent upper-triangular matrices in SL,,11(C) is a good example to have
in mind). Roughly speaking,
Kim’s theorem identifies J with the ground state of the quantum Toda system
corresponding to the Langlands-dual group G’
(on the level of simple complex Lie algebras the classical series B, and C,
are Langlands-dual to each other while all others are self-dual).
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Example: A,. The differential operator

h? ~ 0? ~
H:= Eza—t?—;€tl bi-1

=0

is called the hamiltonian operator of the quantum Toda system (correspond-
ing to SL,11). The Hamilton function

% i p? _ i eti—ti-1
=0 =1

on the (complex) phase space with the symplectic structure » | dp; Adt; defines
evolution of the classical Toda system of r + 1 interacting particles. The
Toda system is completely integrable on both classical and quantum levels,
and according to Kim’s theorem the conservation laws play a key role in the
quantum cohomology theory of the manifold

X={0cC'c..cC cCct

of complete flags in C"+1.
The cohomology algebra H*(X) is canonically isomorphic to

Qlpo; - pr]/(01(p), -+ 0 41(p))

where p; is the 1-st Chern class of the tautological line bundle with the fiber
C1/C* (prove this !).

The flag manifold X has r projections to the partial flag manifolds X
defined by omitting the ¢-dimensional space in the flag. The fibers of the
projections are isomorphic to CP! (why?).

Exercise. Prove that any compact holomorphic curve in X of the same degree 1; as
the fiber of the projection X — X is one of the fibers.

The exercise identifies X with the moduli space Xp 1, of degree 1; ra-
tional stable maps to the flag manifold X, and also identifies the projection
X — X with the forgetting map X1, — Xo,1,. The classes 1; form a
basis in the lattice Ho(X,Z), and we will use the weight ¢? for contributions
of holomorphic curves of degree (dy, ..., d,) with respect to this basis. These
notations generalize to arbitrary X = G/B as follows.
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Exercises. (a) Using the Bruhat cell partition of G/B and the spectral sequence of
the bundle BT" — BG (induced by the embedding of the maximal torus into G) identify
H*(G/B,C) with the algebra of C[g]4? of Ad-invariants on the Lie algebra of G.

(b) Among the subgroups in G containing B (they are called parabolic) there are
r sub-minimal parabolic subgroups Pi, ..., P. (the minimal one is B) corresponding to
simple roots. Put X = G/P; and identify X with X1, and X — X — with
ft : X171i e XO,li

(c¢) Show that the degree of any compact holomorphic curve in X is a non-negative
integer combination Y d;1;.

(d) Using 1-st Chern classes of line bundles identify the lattice of weights of g (that is
the lattice of characters of the maximal torus in the simply connected model of G) with
H?(X,Z) and show that (11, ...,1,) is a basis of simple roots of the coroot system (which
is the root system for g’.

(e) Let (p1, ..., pr) be the dual basis in H?(X,Z) (p; are called fundamental weights).
Show that ¢1 (Tx) = 2(p1 + ... + pr-) (in other words, degq; =2,i=1,...,7).

(f) Find the relation of the classes p1, ..., p, with what we denoted po, ..., p, in the case
of SLTJrl .

It turns out that the exercise (b) provides enough geometrical information
for our purposes about rational curves in the flag manifolds G/B.

Lemma 1. Let Q := ) Q;jpip; = 0 be the quadratic relation in the
algebra H*(X) defined by the Killing Ad-invariant quadratic form ong. Then

the relation
= Qly)a

holds true in the quantum cohomology algebra of X.

Proof. For degree reasons ()(po) must be a linear combination ) cxqs.
The coefficient ¢y, is then the GW-invariant | Q;;(ps, pt, p;j)1, which depends
only on the intersection indices of the fiber in X — X® through the given
point pt in X with the divisors p; and p;. It equals > Qi;pi(1x)p;(1k) = Qe
since the bases {p;} and {1} are dual. O

Lemma 2. The differential operator

H:= tha > Q(1k)g

annihilates J.

Proof. Application of H to the fundamental solution matrix S yields

)= > QL)g+ hZquz pjo)]S.

18



The 1-st two terms annihilate each other by Lemma 1, and the sum of order
h has zero 1-st row since the 1-st row entries (1,p; o ¢g) = (pj, ¢s) in the
matrix p;o do not depend on ¢. U

Lemma 3. A formal series I of the form

6(p1nq)/hz qud

d>0

with Py € H*(X,Q[h™]) which satisfies the differential equation HI = 0 is
uniquely determined by Fy.

Proof. The equation HI = 0 gives rise to the recursion relation

Qp+hd)Ps = Q(1x)Pua,
k

for the coefficients, and Q(p + hd) is invertible in H*(X) for d # 0 since p;
are nilpotent and Q(d) > 0. O

Corollary 1. The GW-descendent J for the flag manifold X = G/B
15 uniquely determined by the differential equation HJ = 0 and the initial
condition Py = 1.

Corollary 2. Let D(hqa%, q, h) be a polynomial differential operator com-

muting with H and suppose that the principal symbol D(p,0,0) vanishes
in the algebra H*(G/B). Then DJ = 0 and therefore D(po,q,0) = 0 in
QH*(G/B).

Proof: The hypotheses about D guarantee that I = D.J satisfies HI =0
and has zero initial term F,. [J

Example: A,. Consider the characteristic polynomial \"*! + D \" +
we. + DX+ D,y of the matrix

0 t1—to
555 € 0 0
-1 R 6t2—t1 0
on 9 ty—t
—_ v 3—L2
0 1 55; ©
0o .. 0 -1 2

Otn,

Exercise. (a) Should we worry about non-commutative determinants?
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(b) Express H in terms of Dy and Ds.
(¢) Check that symbols of the differential operators Dy, ..., D,11 Poisson-commute.
(d) Prove that [H, D;] = 0 for all i.

t;—t

Taking e'*~*~1 on the role of ¢; and replacing the derivations hd/0t; in
the above matrix by p; we obtain the following

Theorem. 3 Quantum cohomology algebra of the manifold of complete
flags in C™' is canonically isomorphic to the algebra

@[p(b -5 Pry 41, >qT]/(D1(p> q)> "'>D?“+1(p> q))

of reqular functions on the invariant Lagrangian variety of the classical Toda
lattice.

For general flag manifolds G/ B the differential operators commuting with
H come from the theory of quantum Toda lattices on G’. Consider holomor-
phic functions f : G’ — C which transform equivariantly under left transla-
tions by the “lower-triangular” unipotent subgroup N, and right translations
by the “upper-triangular” unipotent subgroup N_ in accordance with given
generic characters &4 : Np — C*:

flaitgro) =& (x7") fg)é=(ao) .

Restriction of such a function to the maximal complex torus in G’ (which will
be the configuration space of the Toda lattice) determines f on a dense subset
in G'. The commuting differential operators — quantum conservation laws
of the Toda lattice — originate of course from the center Z of the universal
enveloping algebra Ug’. The algebra Ug’ identifies with the algebra of, say,
left-invariant differential operators on G’. Its center consists of bi-invariant
differential operators on GG’ and thus preserves the sheaf of equivariant func-
tions described above. Thus Z acts on functions on the maximal torus by
commuting differential operators.

In fact the bi-invariant laplacian on the group gives rise to the hamil-
tonian operator H via this construction accompanied by “the p-shift 7 —
conjugation by the multiplication operator ¢” where p is the semi-sum of
positive roots of the Lie algebra g’. The center Z is known to be isomorphic
to the algebra of Ad-invariant polynomials on g’ through the Harish-Chandra

3See A. G. & B. Kim, I. Ciocan-Fontanine, B. Kim (1996).
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isomorphism. This gives us 7 commuting polynomial differential operators
D(p, q, h) which are known to have W-invariant principal symbols D(p, 0, 0)
after the conjugation by ¢. * Thus, combining the above lemmas with known
results of representation theory about quantum Toda lattices, B. Kim (1996)
proves:

QH*(G/B) is isomorphic to the algebra of regqular functions

@[pb ceoy Pry 41, >Qr]/(D1(P> q)> "'>Dr(p> q))

where (Dy, ..., D,) is the complete set of homogeneous conservation laws of
the Toda system with the Hamilton function Q(p) — > Q(1k)qx.

Of course, these conservation laws can be obtained not only as symbols of
the commuting differential operators but also form Ad-invariant polynomials
on g’ by suitable symplectic reduction of T*G’ with respect to the left-right
translations by N, x N_.

Exercises. (a) Express the geometrical construction of the commuting differential
operators in algebraic terms of the universal enveloping algebra and compute the operator
generated by the bi-invariant laplacian. Choose the characters £+ so that after the p-shift
the operator coincides with H. (In fact the algebraic language of Ug’ is more suitable for

observing the necessary polynomiality properties of our differential operators.)
(b) Give enumerative interpretation of the relation H(p,q) = 0 in QH*(X).

4 Singularity theory

In quantum cohomology theory we have encountered a linear pencil of flat
connections

(4) Vii=hd—=> A(t)dt:n

on a trivial vector bundle with the fiber H over some base B. Given such a
pencil one can ask about asymptotical behavior of horizontal sections as h —
0. It is natural to suspect that the asymptotical behavior should be related to
some geometry associated with the operator-valued 1-form A'. We will study
this geometry under the semi-simplicity assumption that the common eigen-
vectors of the commuting operators A;(¢) form a basis {v*(t)},a = 1,..., N
for each t € B. We may also assume (for the sake of our applications) that

4see B. Kostant (1974) M. Semenov-Tian-Shansky (1987), or B. Kim (1996). By the
way, the invariance property of the symbols with respect to the Weyl group W at ¢ =0 is
a consequence of the theory of Verma modules and their BGG-resolutions.
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the operators A; are symmetric with respect to the constant coefficient inner
product (-, -), and that the eigen-basis is orthonormal. In our actual situation
H is the cohomology space of X and contains a distinguished element 1.
The inner product on H is carried over to the algebra C[B][Ay,..., A, as
(¢, 1) == (1,p(A)(A)1) and automatically satisfies the Frobenius property.

Proposition (see for instance A. G. & B. Kim). The eigen-value 1-forms

SO p(t)dt; are closed and thus form a Lagrangian variety L in the cotangent
bundle T*B with N branches over the base B.

Roughly speaking, the proposition means that the subalgebra in QQ H*(X)
generated by the degree 2 classes can be always treated as the algebra of
functions on a Lagrangian variety. The invariant Lagrangian variety in the
phase space of the Toda lattice provides a good example.

Exercises. (a) Prove the proposition by differentiating the constant function wq (v*) =
1 where w®(t) is the corresponding common eigen-covector of operators A;(t).

(b) Give another proof: diagonalize the 1-form, A = WD'W~1 and derive dD! = 0
from dA' = 0. Notice that this proof require stronger assumptions than (a).

(c) Show that L is given by the characteristic equation det(A! — >~ p;dt;) = 0 (to be
satisfied for all values of the commuting coordinates dt; on the tangent space T3 B) at least
if the eigen-value 1-forms D} are everywhere distinct.

(d) Identify the commutative algebra C[B][Aj, ..., A,] with the algebra of functions on
L (at least under the same hypotheses as in (c)).

(e) Show that the basis of delta-functions of the branches in L diagonalizes the inner
product (¢, ) in the algebra:

o= > %

p*€LNT} B (»*)

where A is a suitable function on L. Show that in the quantum cohomology setting the
function A/(dim H) represents the cohomology class Poincare-dual to a point.

The class in H*(X x X) Poincare-dual to the diagonal defines an element in C[L x g L].
Show that A is the restriction of this element to the diagonal L C L xp L. Compare both
descriptions of A with the residue formula for Poincare pairing in QH*(CP™) from the
exercise in the section 1.

(f) Consider the function u on L defined as a (local) potential [} p;dt; of the eigen-
value 1-forms. Taking into account the grading in quantum cohomology algebras show
that the restriction to L of the linear function ¢1(Tx) = > pip; plays the role of such a
potential.

Now let us try to find an asymptotical representation of a fundamental
solution S to the differential system V;S = 0 in the form

S = U(t)(1 + hd(t) + o(h)) exp(U/h)
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of the product of a formal matrix series in A and the exponential function
of the diagonal matrix U/h. Equating the terms of order A° in the equation
ViS = 0 we obtain A'W = WdU which means that columns of ¥ must
be eigen-vectors of A! and the entries of the diagonal matrix U must be
potentials u, of the eigen-value 1-forms. In the order A! we have U—1d¥ =
[dU, ®]. Since commutator with a diagonal matrix has zero diagonal entry,
this means that in the variation W(¢) of an (orthogonal !) eigen-basis of A!
inner squares of the eigen-vectors may not vary.

Exercise. Proceed to higher orders in A in order to show that the asymptotical
fundamental solution in the form W(1 + A®; + h2Ws + ...) exp(U/h) exists.

Reformulating the result of our computation in terms of the algebra of
functions on L we conclude that the system V;s = 0 has a basis of solutions
with the asymptotical expansion 5, = e“?*O)/A(A/2(p2)(1+o(h)), and that
the corresponding component (1,8,) of the vector-function J assumes the

form
Jo= 0 4 ol
o= =140
a1+ o)
This form strongly resembles stationary phase asymptotics of oscillating in-
tegrals in singularity theory — the subject we have to discuss next.

Let # : Y — B be a family of complex manifolds ¥; and f : ¥ — C
be a holomorphic function. One defines the Lagrangian variety L C T*B
parametrized by critical points of functions f; := f|Y; as follows. A critical
point is a point in y € Y where the differential d, f is projectable to a covector
p(y) on B applied at t = w(y). Since f; may have several critical points, we
obtain several covectors in 7y B. The pull-back of the action 1-form > p;dt;
to the critical set by the map y — p(y) is the differential of the critical value
function y — f(y), and thus the variety L C T*B swept by the covectors p(y)
is isotropic and under some mild genericity assumptions — Lagrangian. It is
called the Lagrangian variety generated by the family (Y;, f;). Notice that the
algebra of functions on L can be considered as a family of finite-dimensional
algebras H; := C[Y;]/(0f:/0y) of functions on the critical sets.

Suppose now that Y; are provided with a holomorphic family w; of holo-
morphic volume forms. Then one can define the Hessian A(y) of f; at a
critical point y as the determinant of the Hess matrix (9%f;/0y?) with re-
spect to a unimodular local coordinate system (which requires that w(y) =
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dyi A ... Ndy,, m =dimY). If f; has only non-degenerate critical points one
can introduce the residue pairing of functions on Y;

b= 3 ¢(Z)ff,§y)

yEcrit(ft)

which makes H; a Frobenius algebra. The residue pairing can be also de-
scribed by the integral residue formula

_ 1 oY wy
(¢,9) = 2y ﬁaﬁ/aw' o Of

=Ej} a—yl...aym

In this form the residue pairing extends to the functions f; with any isolated
singularities and is known to remain non-degenerate as a bilinear form on
the algebra H;.

Consider now the complex oscillating integral of the form

I(t) = /6ft/hwt

over a real m-dimensional cycle I'; in Y;. It is a function on B, and one can
study the dependence of I in ¢ by deriving differential equations for it in the
following manner.

Ezercise. Differentiating the 1-dimensional integral I = [ e’ /3=t)/hdy derive the
equation h2I = tI. Compare the symbol p? = ¢ of the equation with the equation of the
critical set in the family of phase functions f; = y3/3 — ty.

In general the coincidence observed in the exercise is true only asymptoti-
cally when A — 0. Differentiating the integral by hd/0t; yields an amplitude
factor ¢ = 0f;/0t; +o(h). At the same time differentiation h0/Jy; along the
fibers of the family Y; yields the factor df;/0y; + o(h) but does not change
the value of the integral. Thus, performing computations modulo A we would
conclude that differentiation of I by hd/0t; is equivalent to multiplication by
Jf:/0t; in the algebra H;. (Notice that the analogue of this statement in the
quantum cohomology theory holds precisely and not only modulo £).

Furthermore, the stationary phase approximation to the integral I near
a critical point y yields



Exercise. The Gaussian integral ffooo exp(—ay?/h)dy with positive a and h is pro-

1/2.

portional to h*/2/a'/2. Expand the integral

/ e(f(o)7ay2+by3+cy4+”')/h(1 + ay + 5:92 + )dy
into the asymptotical series ~ h'/2ef(0)/hq=1/2(14-0(h)). Show that the integral [ e~/ (y)dy
with ¢ vanishing identically in a neighborhood of y = 0 is a flat function of i at & = 0.
Give higher-dimensional generalizations of these statements.

The similarity between asymptotical solutions to the system VS = 0
arising from quantum cohomology theory and asymptotics of complex oscil-
lating integrals suggests the following, rather optimistic, conjecture:

Given a compact (almost) Kihler manifold X of complex dimension m,
one can associate to it a family (Yy, fy,w,) of algebraic m-dimensional mani-
folds, functions and complex volume forms parametrized by the complex torus
H?*(X,C)/H?*(X,2miZ) in such a way that the gravitational descendent J
corresponding to X satisfies the same differential equations as the complex
oscillating integral I, that is

<Ja¢a> :/ efq/hwq

for suitable bases of classes ¢o in H*(X) and of cycles Ty, in Yy.

It is interesting to look at this formulation in the degenerate case when
the manifold X is algebraic and has zero 1-st Chern class ¢;(7Tx) (such X are
called Calabi- Yau manifolds in a broad sense, and abelian manifolds, elliptic
curves, K3-surfaces and their higher-dimensional generalizations provide a
pool of examples). It is expected that the manifolds Y; in this case are also
compact and therefore the functions f; are constant. Yet Y; should carry a
non-vanishing holomorphic m-form w; and thus must have zero 1-st Chern
class as well. The oscillating integrals degenerate to the periods [ w; of the
volume forms which are known to distinguish non-equivalent complex struc-
tures. On the other hand, since Y; are compact algebraic manifolds, one can
define their GW-invariants, quantum cohomology algebras, etc. Then vari-
ations of complex structures detected by periods of complex volume forms
on X are expected to represent GW-invariants of Y. This symmetric picture
of mirror correspondence between Calabi-Yau manifolds is the classical (and
somewhat oversimplified) version of the mirror conjecture. In fact the rela-
tion between symplectic (resp. complex) geometry of X and complex (resp.
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symplectic) geometry of Y is expected to be much more profound than the
equality between periods I of holomorphic forms and the solution J of our
differential system.

With the same reservations, we can interpret the above conjecture as
a proposal to generalize the mirror conjecture beyond the class of Calabi-
Yau manifolds. As it follows from our asymptotical analysis of the system
Vi = 0, one should admit non-compact manifolds Y, provided with non-
constant function f, on the role of mirror partners and be prepared to sacrifice
the symmetry of the mirror correspondence.

Exercise. Let X be a non-singular degree 5 hypersurface in CP*. Show that it is a
Calabi-Yau manifold, that its quantum cohomology algebra is nilpotent, the Lagrangian
variety L is a multiple zero section in 7* B and the differential equation for J does not really

depend on A. Generalize these observations to arbitrary CY manifolds. Compare these
results with properties of complex “oscillating” integrals with constant phase functions.

The actual motivation of the generalized mirror conjecture comes from
supporting examples based on toric geometry. Here is the simplest one.
Example: the mirror of CP!. The integral

I = / eWitv2)/h dyr A\ dys
rc{yiy2=q} dq

satisfies the Bessel differential equation

4 2
(hqa_q) I'=ql

and therefore (Y, f;,w,) where Y, is given by the equation y1y» = ¢ in
Y = C? the function f, is the restriction to Y, of f = y; + yo, and w, is the
relative “volume” form (dy1 A dy2)/d(y1y2) on Y, can be taken on the role
of the mirror partner of X = CP!. In greater detail, let & > 0,q # 0. The
function f, in the coordinate y; # 0 on Y, reads f, = y1 + ¢/y1 and has two
critical points y; = +¢*/? with the critical values +2¢*/2. On the line of values
of f, pick two paths starting from the critical values and going to infinity
toward the direction Re f;, — —o0. Each such a path has two preimages in Y,
which glue up to a non-compact cycle when oriented oppositely. The integral
I over each of the two cycles (denote them I'y.) converges. As a function of ¢
it satisfies the Bessel differential equation. Indeed, in logarithmic coordinates
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T; = Iny;,t = Inq the integral takes on the form

/ 6(6T1+6T2)/h dT1 /\ dT2
f‘iC{Tl—l—Tg:t} d(Tl _I_ T2) ’

and the double differentiation h20%/0T,0T; yields the amplitude factor e1+72
= q. The variety L generated by the family f, is described by the relation
p* = ¢ in QH*(CP'). The potential u = [p dlng of the action 1-form
coincides with the the critical value function £2¢'/? = 2p. Since the Hessian
A(p) of f, = Tt + ge~ ™t at the critical points equals 2p, the residue pairing
defines the Frobenius structure on C[L] identical to the Poincare pairing

(2mi)~t § dp ¢/ (p* — q).

Exercises. (a) Using holomorphic version of the Morse lemma show that all critical
points of the real part of a holomorphic Morse function in m variables have the same
Morse index m. Deduce that under some transversality assumptions about a holomorphic
function f : Y — C at infinity the rank of the relative homology group H,,(Y,Re f —
—00) equals the total multiplicity of critical points. Generalize to higher dimensions the
construction of the cycles 't from the above example. Show that in the example the
cycles I'y. form a basis in the group Hq(Yy, Re f; — —o0). Find the place for the compact
cycle |y1| =1 in this group.

(b) Prove that (Yg, fy,wq) with

dyl AN dy +1
Yo v Ynt1 = fq = (y1 + ... +yn+1)|Yq, Wqg = —d(y1 Y +S

is the mirror partner of X = CP™ in the same sense as in the case n = 1 studied in the
example.

5 Toda lattices and the mirror conjecture
The example of the mirror partner for CP! can be generalized to the manifold

X of complete flags in C"** as follows.
Consider the following “2-dimensional Toda lattice” with (r+1)(r+2)/2
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vertices and r(r + 1) edges:

wl o
LT el
Ll sl
Lo wl v,

For each edge € of the lattice we introduce a complex y.. For each 1x 1-square

Yo

e — O

Yy | L ys

e — O

Ys

we impose the “commutativity” relation y,ys = y,ys. These relations deter-
mine the variety Y of complex dimension 7 + r(r + 1)/2 in the space with
coordinates y.. Using the notation wu;, v; (as shown on the diagram) for the
variables y. corresponding to the edges next to the diagonal, we fiber Y over
the space B with coordinates ¢, ..., ¢,

1 = U1V1, ...y @ = UpUp.

For ¢...q. # 0 all the relations together mean that all y. are non-zero and
that their logarithms satisfy the Kirchhoff law: the voltage drops Iny. ac-
cumulate to 0 over a closed contour, and Ing; determine the voltage drop
between neighbor diagonal vertices. Thus one can express y. via the ver-
tex “potentials” — variable T}, corresponding to the vertices v of the lattice:
ye = exp(T,, —T,_) where v; and v_ are respectively the head and the tail of
the edge €. In particular, the variables T}, corresponding to all under-diagonal
vertices form a coordinate system on the covering of the complex torus Y.
We put
wg = A dT,
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and define f; as the restriction to Y, of the function

f — E ye — E eTu+(e)_Tu,(e)‘
€

all edges €

Theorem. ®> Complex oscillating integrals

h
I:/ ela/ Wy
rcy,

satisfy the differential equations DI = ... = D, 11 = 0 where D;(hqd/0q, q)
are the quantum conservation laws of the quantum Toda lattice associated
with the group SLy.1.

Corollary. The family (Yy, f,) generates in T*B the invariant Lagrangian
variety Di(p,q) = ... = Dy11(p, q) = 0 of the classical Toda lattice.

Exercise. Check that in the case r = 1 the theorem agrees with the example of the
mirror partner for CP?.

Even the corollary is not quite obvious. We will prove it by induction on
the number of diagonals in our 2-dimensional lattice. Let us recall that that
the operator D := X"*1 + D \"+ ...+ D, is the characteristic polynomial of
the matrix introduced in the section 3. Denote tg, 1, ...t, the vertex variables
T, corresponding to the diagonal vertices. Since Jf/0t; = v; — u;+1 and
q; = u;v;, we need to prove that the characteristic polynomial of the following
matrix equals A"*! at critical points of f:

—U1 U1 0
—1 V1 — U2 U2V2 0
Ay = 0 -1 vy —uz wusvs
0 -1 o,

The matrix A,;; factors into the product UV of the following square matri-

5See A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and
the mirror conjecture.
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ces:

(51 0 —1 V1 0 ..
1 w 0 .. 0 -1 v O .
U— 0 1 ws 0 .. V= 0 0 -1 v3 O
0 1 w O . 0 =1 v,
] 0 1 0] I 0 -1

Since V' is invertible, the matrix UV is similar to B = VU. We find:

[ V1 — U V1U2 0 0 i
—1 V2 — U3 VaUs 0 0
B — 0 —1 V3 — U3 V3Uyg 0
0
0 -1 v,—u, O
] 0 -1 0

We claim that the characteristic polynomial of B equals \**! by the induc-
tion hypothesis. Indeed, using “commutativity” of the 1 x 1l-squares next
to the diagonal of the lattice and the criticality conditions 0 = 9f/0T, =
e (= TYe at the vertices v next to the diagonal we can identify the up-
per left » x r corner of the matrix B with the matrix A, corresponding to
the 2-dimensional lattice with the main diagonal cut off. By the induction
hypothesis det(A + A,) = A" under the conditions df/9T, = 0 at all other
under-diagonal vertices v. [

The prove of the theorem can be obtained as a non-commutative ver-
sion of the above inductive argument. Application of the operator D to the
function exp(f/h) yields the amplitude factor det(A + A,41) which is, as we
already know, equivalent to \"*! modulo the ideal generated by the partial
derivatives 0f /0T, along directions tangent to the fibers Y,. Derivatives in
these directions annihilate the integral I, but the equivalence modulo the
ideal is not sufficient: we need to earn the same equivalence modulo exact
forms by honest consecutive differentiation. This plan can be completed
without complications. However, the actual meaning of the integral I in har-
monic analysis on SL,,; and in the theory of quantum Toda lattices remains
unclear. Generalizations of this mirror construction to the flag manifolds
G/ B of other semi-simple groups are also unknown.
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Exercise. Thinking of 2-dimensional lattices of a block-triangular shape, guess mirror
partners of the manifolds of partial flags in C™*!, starting with CP” and grassmannians.
Check that your answer for CP" gives rise to the same mirror partner as in the section 4.

Remark. The “right” answer to the exercise remains only a guess: although quantum
cohomology algebras of partial flag manifolds have been described and their conjectural
mirrors — found, the differential equations for I and J have not been identified so far.

References

[1]

V. 1. Arnold. Sur un propriété topologique des applications canoniques de la
mechanique classique. C. R. Acad. Sci. Paris 261 (1965), 3719 — 3722.

V. Batyrev, I. Ciocan-Fontanine, B. Kim & D. van Straten. Conifold transitions.
Preprint, Mittag-Leffler Inst., 1997.

K. Behrend & B. Fantechi. The intrinsic normal cone. Invent. Math. (1997).

K. Behrend & Yu. Manin. Stacks of stable maps and Gromov-Witten invariants.
Duke Math. J. 85 (1996), 1 — 60.

I. Ciocan-Fontanine. On quantum cohomology rings of partial flag varieties. Institut

Mittag-Leffler Report No. 12, 1996/1997.

C. C. Conley & E. Zehnder. The Birkhoff-Lewis fixed point theorem and a conjecture
of V. I. Arnold. Invent. Math. 73 (1983), 33 — 49.

R. Dijkgraaf, E. Verlinde & H. Verlinde. Notes on topological string theory and 2D
quantum gravity. In “String Theory and Quantum Gravity”, M. Green et al. (Eds.)
World-Scientific, Singapore, 1991, 91 — 156.

B. Dubrovin. The geometry of 2D topological field theories. In “Integrable Systems
and Quantum Groups”, Lect. Notes in Math. 1620, Springer-Verlag, Berlin, 1996,
120 — 348.

T. Eguchi, K. Hori & C.-S. Xiong. Gravitational quantum cohomology. Preprint,
1996.

A. Floer. Morse theory for Lagrangian intersections. J. Diff. Geom. 28 (1988), 513
— 547.

A. Floer. Symplectic fized points and holomorphic spheres. Commun. Math. Phys.
120 (1989), 575 — 611.

B. Fortune & A. Weinstein. A symplectic fized point theorem for complex projective
spaces. Bul. Amer. Math. Soc. 12 (1985), 128 — 130.

K. Fukaya & K. Ono. Arnold conjecture and Gromov- Witten invariants. Preprint,
1996, 155 pp.

31



[14]

[22]

[23]

[24]

[25]

[26]
[27]

A. Givental. Homological geometry and mirror symmetry. In “Proceedings of the
International Congress of Mathematicians, 1994, Ziirich ”, Birkhauser, Basel, 1995,
472 - 480.

A. Givental. Stationary phase integrals, quantum Toda lattices, flag manifolds
and the mirror conjecture. In “Topics in Singularity Theory”, A. Khovansky, A.
Varchenko, V. Vassiliev (Eds.), Adv. in Math. Sci., AMS, Providence, RI, 1997, 103
- 116.

A. Givental & B. Kim. Quantum cohomology of flag manifolds and Toda lattices.
Commun. Math. Phys. 168 (1995), 609 — 641.

M. Gromov. Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82
(1985), 307 — 347.

B. Kim. On equivariant quantum cohomology. IMRN (1996), No. 17, 841 — 851.

B. Kim. Quantum cohomology of flag manifolds G/B and quantum Toda lattices.
Preprint, 1996.

B. Kim. Quantum Lefschetz principle. Preprint, 1997.

M. Kontsevich. Enumeration of rational curves via toric actions. In “The moduli
space of curves”, R. Dijkgraaf, C. Faber, G. van der Geer (Eds.), Progr. in Math.
129, Birkhauser, Boston, 1995, 335 — 368.

B. Kostant. On Whittaker vectors and representation theory. Invent. Math. 48
(1978), 101 — 184.

J. Li & G. Tian. Virtual Moduli cycles and Gromov-Witten invariants in general
symplectic manifolds. Preprint, alg-geom/9608032.

Y. Ruan. Virtual neighborhoods and pseudo-holomorphic curves. Preprint, 1996, 83
pp.-

M. Semenov-Tian-Shansky. Quantization of Toda lattices. In “Dynamical systems
77, V. Arnold, S. Novikov (Eds.), Encyclopaedia of Math. Sci. 16, Springer-Verlag.

E. Witten. Supersymmetry and Morse theory. J. Diff. Geom. 117 (1982), 353 — 386.

E. Witten. Two-dimensional gravity and intersection theory on moduli space. Sur-

veys in Diff. Geom. 1 (1991), 243 — 310.

32



