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The formula of Candelas, de la Ossa, Green and Parkes [6] expressing
the virtual numbers nd, d = 1, 2, 3, ..., of degree d holomorphic spheres on
quintic threefolds in CP 4 in terms of series solutions to the linear differential
equation
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has been intriguing algebraic and symplectic geometers since the beginning
of the decade. The first proof of this formula was given two years ago in the
extensive paper [9] among a number of other theorems on equivariant Gromov
– Witten theory. Several authors managed to adjust the approach of that
paper to complete intersections in homogeneous Kähler spaces [13, 2, 14], in
toric manifolds [11, 12] and to symmetric products of Riemann surfaces [4].

We present here a shortcut to our original proof in the case of quintic
threefolds. Several variants of the proof can be found in [9, 11, 12, 17, 5, 20]
as particular cases of more general theorems. Yet it seems useful to illustrate
all ingredients of the proof in the simplest nontrivial example.

We will assume that the reader is familiar with generalities on orbifolds
and orbibundles, equivariant cohomology and localization formulas, Kontse-
vich’s moduli spaces of stable maps [15, 3] and with the formulation of the
conjecture. We will concentrate therefore only on the issues relevant for the
proof of the mirror formulas.

∗Research supported by NSF grant DMS-9704774
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In the last section named Updates we outline several modifications of the
proof available at the moment and provide corresponding references.

The linear sigma-model. A quintic threefold in X = CP 4 is given
by a generic degree 5 homogeneous equation Q(x1, ..., x5) = 0. A degree
d parametrized curve CP 1 → X is described by 5 relatively prime degree
d binary forms which we will represent by the polynomials x1(ζ), ..., x5(ζ)
of degree ≤ d in the affine coordinate ζ on CP 1. The curve is situated
on the quintic if and only if the degree ≤ 5d polynomial Q(x1(ζ), ..., x5(ζ))
vanishes identically. This identity yields 5d + 1 equations of degree 5 in
the projective space LXd = CP 5d+4 of all (not necessarily relatively prime)
5-tuples of degree ≤ d polynomials. Attempting to count degree d spheres
on the quintics by means of intersection theory in LXd we will arrive to
the answer nd = 55d+1 which is meaningful, as it has been explained by D.
Morrison and R. Plesser in [19], but wrong.

Our approach to the quintic formula begins with the following observa-
tion [10]. The variety given in LXd by the equations Q(x(ζ)) ≡ 0 is invariant
with respect to the Möbius transformation group of CP 1, and one can em-
ploy equivariant intersection theory for curve counting. The maximal torus
S1 in the Möbius group acts via ζ 7→ ζ exp iφ on the space LXd. The coho-
mology algebra H∗

S1(LXd) is generated by the equivariant Chern class −p of
the Hopf bundle over LXd. The polynomial Q defines an invariant section
Q(x(ζ)) of an equivariant 5d + 1-dimensional bundle LVd over LXd. The
following formal series encodes complete equivariant topological information
about equivariant Euler classes of these bundles:

L(q, z) :=
∞∑
d=0

qd
∫
LXd

epzEuler(LVd) .

The integral in this formula means evaluation of an equivariant cohomology
class on the invariant fundamental class of the manifold and takes values in
the coefficient algebra H∗(BS1) of the equivariant cohomology theory. Thus
the coefficients of the (q, z)-series L are polynomials in one variable which
we prefer to denote ~. With this notation Euler(LVd) = 5p(5p − ~)(5p −
2~)...(5p− 5d~).

Theorem A ([10]). (a)

L(q, z) = 〈I(qe~z, ~−1), I(q,−~−1)〉 ,
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where

〈φ, ψ〉 :=

∫
CP 4

φ ψ Euler(O(5)) =
1

2πi

∮
φ(P )ψ(P )

5PdP

P 5

is the intersection pairing in the even cohomology algebra Q[P ]/(P 4) of the
quintic, and

I(q, ~−1) := eP ln q/~

∞∑
d=0

qd
(5P + ~)(5P + 2~)...(5P + 5d~)

(P + ~)5(P + 2~)5...(P + d~)5

is a formal vector-function with coefficients in this algebra.
(b) Components of the vector-function form a fundamental solution to the

linear differential equation (1).

Proof. (a) Compute the coefficients of the series L explicitly by the Duis-
termaat – Heckman formula,

∫
LXd

Φ(p, ~) =
1

2πi

∮
Φ(p, ~)dp

p5(p− ~)5...(p− d~)5
,

and change the order of summation. (b) Substitute I into (1). �

The non-linear sigma-model. The definition of the numbers nd ac-
cepted in [9] was given by M. Kontsevich [15] on the basis of intersection
theory in moduli spaces of stable maps to X. Let Xn,d denote the moduli
orbifold of degree d genus 0 stable maps with n marked points. For any such
map f : (Σ, ε1, ..., εn) → X, the section Q of the degree 5 line bundle over
X defines an element in the 5d + 1-dimensional space H0(Σ, f∗O(5)) and
hence — a section of the orbibundle Vd over Xn,d formed by these spaces.
According to Kontsevich’s definition the Euler class of this bundle capped
with the fundamental class of the orbifold is taken on the role of the virtual
fundamental class in the corresponding space of stable maps to the quintic.
Taking in account the multiple cover formula [1] proved in [18], one gives the
following recursive definition of the virtual numbers of degree d spheres in
quintic threefolds ∑

m|d

nd/m
m3

:=

∫
X0,d

Euler(Vd).
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The first step in our proof of the conjecture extracting these numbers from
the differential equation (1) consists in mimicking Theorem A within the
framework of moduli spaces.

Introduce the graph space GXn,d as the moduli orbifold of stable maps to
GX = CP 1 ×X of degree d in projection to X and degree 1 in projection to
CP 1. Let GVd be the orbibundle with the fiber H0(Σ, f∗ OCP 1 ⊗OX(5)) of
dimension 5d + 1. The space and the bundle inherit the S1-action from the
Möbius transformation group on CP 1.

There is a natural equivariant birational isomorphism (see Main Lemma
in [9])

µ : GX0,d → LXd (2)

defined as follows.
A stable map f : Σ → CP 1 ×X of bi-degree (1, d) is represented by the

graph of a map f0 : CP 1 → X of some degree d0 ≤ d and several “vertical”
curves fi : (Σi, εi) → {ζi} × X of bi-degrees (0, di), i = 1, ..., r, attached to
the graph at the points fi(εi). The number r of such vertical curves can vary
from 0 to d, and their total degree d1 + ...+ dr equals d− d0.

The graph component f0 is described by 5 mutually prime binary forms
of degree d0 uniquely up to a common constant factor (we record them by
5 polynomials (x′1(ζ), ..., x

′
5(ζ)). Multiply these polynomials by the same

binary form of degree d−d0 with the roots at ζ1, ..., ζr of multiplicity d1, ..., dr
respectively (it is encoded by the polynomial x(ζ) = (ζ−ζ1)

d1 ...(ζ−ζr)
dr with

the obvious convention about the roots at ζ = ∞). Then the polynomials
(x1(ζ), ..., x5(ζ)) := (x(ζ)x′1(ζ), ..., x(ζ)x

′
5(ζ)) represent the image µ(f) in the

space LXd.
Obviously, the map µ is equivariant with respect to the natural actions

of the automorphism group PSL2(C)×PSL5(C) of CP 1 ×X on GX0,d and
LXd = Proj(H0(CP 1,OCP 1(d))⊗H0(X,OX(1))∗) and is therefore indepen-
dent on the choice of the coordinate systems (x1 : ... : x5) and ζ on X and
CP 1. In order to check that µ is regular let us assume for the moment that
the map f is transverse to the five coordinate hyperplanes CP 1 × x−1

i (0),
to ∞ × X, and that the intersections of f(Σ) with the coordinate hyper-
planes are away from ∞×X. Then these intersections are all simple (even
if f is a multiple cover, they are simple distinct non-singular points on Σ),
their projections to CP 1 are away from ∞ and determine the roots of the
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polynomials x1(ζ), ..., x5(ζ). The projective coordinates of the intersection
point f(Σ) ∩ (∞ × X) determine the top coefficients of the polynomials
x1(ζ), ..., x5(ζ) uniquely up to a non-zero scalar factor (we can fix it by re-
quiring that the top coefficient of x1(ζ) equals 1). Now, consider the point
[f ] represented by the map f in the moduli orbifold GX0,d and a local non-
singular chart near this point. Due to the simplicity of the intersection points
of f(Σ) with the coordinate hyperplanes and with ∞×X the roots and top
coefficients of the polynomials xi(ζ) are regular functions of the map in a
sufficiently small neighborhood of [f ] (if this is not obvious yet, consider the
universal stable map ev : GX1,d → CP 1 × X and describe the intersection
points as local sections of the forgetting map ft : GX1,d → GX0,d). Thus the
map µ is regular at [f ] since top coefficients and roots uniquely determine
the polynomials.

Choosing the coordinate systems on CP 1 and X in general position to a
given f we conclude that µ is regular everywhere.

The map µ allows one to compare the equivariant Euler classes of LVd
and GVd. Let −p denote the equivariant Chern class of the Hopf bundle over
LXd pulled-back to GX0,d. Introduce the formal series

G(q, z) :=
∞∑
d=0

qd
∫
GX0,d

epzEuler(GVd).

Theorem B

G(q, z) = 〈J(qez~, ~−1), J(q,−~−1)〉 ,

where the formal vector-function J with values in the cohomology algebra
Q[P ]/(P 4) is defined by

J(q, ~−1) := e(P ln q)/~[1 + ~−1
∞∑
d=1

qd ev∗(
Euler(Vd)

~ − c
)], (3)

c denotes the Chern class of the line orbibundle over X1,d formed by cotangent
lines to the curves at the marked point, the map ev : X1,d → X is defined
by evaluation of stable maps at the marked point, and the push forward is
well-defined by

〈φ, ev∗ Ψ〉 =

∫
CP 4

5Pφ ev∗ Ψ :=

∫
X1,d

(ev∗ φ)Ψ.
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Proof (see [9], Section 6). It consists in application of fixed point local-
ization in equivariant cohomology. A fixed point of the S1-action on GX0,d

is represented by a stable map Σ → GX which consists of the graph of a
constant map CP 1 → X with two “vertical ” curves of degrees d− d′ and d′

mapped to the slices ζ = 0 and ζ = ∞ and attached to the graph. Thus the
fixed point components are given by the diagonal constraint at the marked
points in the Cartesian product X

(0)
1,d−d′ × X

(∞)
1,d′ , d

′ = 1, ..., d − 1, (and are

isomorphic to X
(0)
1,d and X

(∞)
1,d for d′ = 0, d). The normal bundle to the fixed

point component has the equivariant Euler class (−~)(−~−c(0))(~)(~−c(∞))
(unless d′ = 0 or d in which case a half of the product should be taken).
The Euler classes occur in the denominator of the localization formula. The
bundle GVd restricted to the fixed point set splits into V ′

d−d′ ⊕V ′
d′ ⊕ ev∗O(5)

where ′ symbolizes that the subspace in H0(Σ, f∗O(5)) consisting of sections
vanishing at the marked point is taken. Due to the multiplicative property of
Euler classes, Euler(GVd) factors correspondingly. Since the map µ sends the
fixed point component in GXd to the corresponding fixed point component
in LXd, the class p localizes to ev∗(P ) + d′~. It remains only to rearrange
the summation over d and d′ as the double sum over d′ and d′′ = d − d′. �

The divisor equation. It is useful to figure out the place of the series
J in the axiomatic structure of Gromov – Witten theory (see for instance
Dubrovin’s book [7]). Genus 0 Gromov – Witten invariants of a Kähler man-
ifold Y define on H∗(Y ) the structure of a Frobenius manifold. It basically
consists of the quantum cup-product in each tangent space and a family of flat
connections ∇~ on the tangent bundle defined by the quantum multiplication
operators and depending on a parameter which we denote ~−1. Structural
constants of the quantum cup-product are third partial derivatives Fαβγ of
the potential

F (T ) =
∑
n,d

qd

n!
(T, ..., T )n,d ,

where T is a general cohomology class of Y ,

(T, ..., T )n,d :=

∫
[Yn,d]virt

ev∗
1(T )... ev∗

n(T ),
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and the “foreign” formal parameter q is introduced in order to provide con-
vergence of the d-sum in l-adic topology at least. For instance, the numbers
nd for quintic threefolds are encoded by the Yukawa coupling

Fttt =
∑
n,d

qd

n!
(P, P, P, P t, ..., P t)n+3,d

which is obtained by differentiation of the potential restricted to the 2-nd
cohomology space of the quintic and, as we will see soon, coincides with the
formal Fourier series

K(qet) :=
∞∑
d=0

(P, P, P )3,dq
dedt = 5 +

∞∑
d=1

ndd
3qdedt

1 − qdedt
.

The vector fields on H∗(Y ) flat with respect to the connections ∇~ also
represent some Gromov – Witten invariants. Namely, the following matrix
is the fundamental solution to the system of linear differential equations
∇~S = 0:

Sψφ(T, ~
−1) := 〈ψ, φ〉 +

∑
n,d

qd

n!
(ψ, T, ..., T,

φ

~ − c
)n+2,d , (4)

where φ, ψ ∈ H∗(Y ), and c is the Chern class of the universal cotangent line
at the last marked point (as specified by the position of this class in the
correlator).

Of course, all the correlators for quintic threefolds Y are defined by means
of intersection theory in Xn,d with the Euler classes of the bundles Vd pulled-
back from X0,d by forgetting maps.

Theorem C.

〈J(qet, ~−1), e−(P ln q)/~φ〉 = 〈1, φ〉 +
∑
n,d

qd

n!
(1, P t, ..., P t,

φ

~ − c
)n+2,d

(5)

Proof ([9], Section 6). It consists in application of the string equation
followed by an iterative application of the divisor equation. The string and
divisor equations read respectively:

(1, T, ..., T,
φ

~ − c
)n+2,d = ~−1(T, ..., T,

φ

~ − c
)n+1,d, (6)
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(P, T, ..., T,
φ

~ − c
)n+2,d = d (T, ..., T,

φ

~ − c
)n+1,d + ~−1(T, ..., T,

Pφ

~ − c
)n+1,d,

(7)

where one should require n ≥ 2 in the case if d = 0. The equations allow to
push the classes ev∗

i (1) and ev∗
i (P ) of degree ≤ 2 from X2+n,d to X1,d along

the forgetting maps Xn+2,d → Xn+1,d → ...→ X1,d. This transforms the sum
of d-terms in the series (5) to ~−1( φ exp(t(P + d~)/~)/(~ − c) )1,d for d > 0
(and to 〈exp(tP/~), φ〉 for d = 0 since X3,0 = X). �

A similar application of the divisor equation to the Yukawa coupling shows
that Fttt(tP ) = K(qet). On the other hand, applying the string equation to
the elements S1,P(tP, ~−1) of the matrix (4) we extract the Yukawa coupling
as the coefficient at ~−2 in the second derivative in t. The theorem therefore
implies that

K(et) = 〈~2 d
2

dt2
J(et, ~−1), P 〉. (8)

Thus in order to prove the quintic formula it suffices to identify J and I up
to suitable mirror transformations.

We complete this subsection by including a proof of the string and divisor
equations. The argument seems to be standard in Deligne – Mumford theory.

The maps ft : Xk+1,d → Xk are defined [15, 3] by forgetting the first
marked point ε0 of a stable map f : (Σ, ε0, ..., εk) → X and producing a
new stable map f̃ : (Σ̃, ε1, ..., εk) → X by contracting those components of Σ
which have become unstable. The fiber of the forgetting map is canonically
identified with the quotient of the curve (Σ̃, ε1, ..., εk) by the finite automor-
phism group of the map f̃ . In particular the map ft has k canonical sections
εi defined by the marked points in the fibers and together with the evaluation
map ev0 : Xk+1,d → X can be considered as the universal stable map with k
marked points.

One derives the equations (6, 7) by comparing the Chern class c of the
universal cotangent line bundle over X1+k,d with the pull-back c̃ of the corre-
sponding class from Xk,d. The cotangent lines T ∗

εk
Σ and T ∗

εk
Σ̃ are canonically

identified unless εk is situated on the same irreducible component Σ0 of Σ as
ε0, the map f restricted to Σ0 is constant, Σ0 carries no other marked points
and contains only one singular point of the curve Σ. Since Σ0 ≃ CP 1 carries
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3 special points of different nature, the cotangent line T ∗
εk

Σ is canonically
trivialized in this case. In terms of the universal cotangent line bundles lk
and l̃k = ft∗ lk over Xk,d with Chern classes c and c̃ this means that l̃∗k ⊗ lk
has a canonical section non-vanishing outside the divisor εk(Xk,d) defined
by the universal marked point εk : Xk,d → Xk+1,d, and that lk restricted to
this divisor is trivial. Since the restriction of l̃k to the divisor coincides with
the conormal bundle to this divisor by the very definition of the universal
cotangent line T ∗

εk
Σ̃ on Xk,d, one concludes that the section has the 1-st or-

der zero along the divisor. Thus δ = c − c̃ is Poincare-dual in Xk+1,d to the
hypersurface εk(Xk,d), and cδ = 0.

We have

(1, T, ..., T, c̃mφ)k+1,d = 0, (P, T, ..., T, c̃mφ)k+1,d = d(T, ..., T, cmφ)k,d

since the integral of the classes 1 and P over degree d curves equal 0 and
d respectively. Finally, replacing c̃ by c = c̃ + δ yields the extra-terms
(T, ..., T, cm−1φ)k,d and (T, ..., T, cm−1Pφ)k,d. This implies the string and divi-
sor equations since 1/(~− c) is the eigenfunction of the operation cm 7→ cm−1

with the eigenvalue 1/~. �.

Torus action. A link between I and J can be established via a recursion
relation satisfied by their equivariant perturbations Ieq and J eq.

Consider the standard action of the 4-dimensional torus G on X = CP 4.
The equivariant cohomology algebra H∗

G(X) is generated over the coefficient
ring Q[λ] = H∗(BG) by the equivariant Chern class −P of the Hopf line
bundle and satisfies the relation

(P − λ1)(P − λ2)(P − λ3)(P − λ4)(P − λ5) = 0

(where we assume that λ1 + ... + λ5 = 0). Evaluation of an equivariant
cohomology class on the invariant fundamental class can be computed via
fixed point localization:

∫
[X ]

φ(P, λ) =
5∑

α=1

φ(λα, λ)

eα
=

1

2πi

∮
φ(P, λ)dP

(P − λ1)...(P − λ5)

where eα = Πβ 6=α(λα−λβ) is the equivariant Euler class of the tangent space
to X at the fixed point rα where P restricts to λα. The equivariant Chern
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class of the anti-canonical line bundle OX(5) equals 5P , and we will denote
〈φ, ψ〉 the equivariant intersection pairing on H∗

G(X) with this Chern class:

〈φ, ψ〉 :=

∫
[X ]

5Pφψ.

The torus G acts on the moduli orbifolds Xn,d which allows one to intro-
duce the equivariant Gromov – Witten correlators (such as (T, ..., T )n,d and
(ψ, T, ..., T, φck)n+2,d where c and φ, ψ, T ∈ H∗

G(X) are equivariant cohomol-
ogy classes. The correlators take values in Q[λ] and turn into corresponding
non-equivariant Gromov – Witten invariants when specialized to λ = 0.

Similarly, one can use S1×G-equivariant intersection theory in the spaces
LXd and GX0,d and carry over Theorems A(a), B, C to the equivariant set-
ting. The proofs are identical to those given above, but the equivariant
counterpart of the hypergeometric series I is defined now by the series

Ieq := e(P ln q)/~

∞∑
d=0

qd
Π5d
m=1(5P +m~)

Πd
m=1Π

5
α=1(P − λα +m~)

, (9)

with coefficients in the equivariant cohomology algebra of X generated by
P (and represents a fundamental solution to some 5-th order ODE, which is
however irrelevant for our goal in this paper).

In order to describe the recursion relation satisfied by the hypergeometric
series Ieq let us strip off the factor exp(P ln q)/~, denote the remaining series

by Z(hg) and denote by Z
(hg)
α its fixed point localizations:

Z(hg)
α (q, ~−1, λ) =

∞∑
d=0

qd

d!~d
Π5d
m=1(5λα +m~)

Πd
m=1Πβ 6=α(λα − λβ +m~)

.

Coefficients of the formal q-series Z
(hg)
α are degree 0 rational functions in ~

with the first order pole at ~ = (λβ − λα)/m, β 6= α, m = 1, ..., d, and a high
order pole at ~ = 0. Rewriting the rational functions as sums of elementary
fractions we arrive at the following recursion relation:

Zα(q, ~
−1, λ) = (10)

1 +

∞∑
d=1

qd
Rα,d(~, λ)

~d
+

∑
β 6=α

∞∑
m=1

Cβ
α(m)

qm

λα − λβ +m~
Zβ(q,

m

λβ − λα
, λ),
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where Rα,d are some degree ≤ d polynomials in ~ with coefficients rational
in λ, and Cβ

α(m) are rational functions in λ which we will call the recursion

coefficients. Since Z
(hg)
β ≡ 1( mod q), the coefficient Cβ

α(d) can be read off

the qd-term of the series Z
(hg)
α as the residue at the pole ~ = (λβ − λα)/d.

We will refer to the sequence of polynomials Rα,d as the initial condition:
given such an initial condition, the recursion relation allows to recover the
solution {Zα, α = 1, ..., 5} unambiguously.

Now, starting with the Gromov – Witten invariant J eq, introduce the
vector q-series Z(GW )(q, ~−1, λ) with coefficients in the algebra H∗

G(X,Q(~))

by stripping off the factor exp(P ln q)/~, and denote by Z
(GW )
α the localization

of Z(GW ) at the fixed rα.

Theorem D ([9], Section 11). The series {Z
(GW )
α , α = 1, ..., 5} satisfy

the recursion relation (10) with the same recursion coefficients Cβ
α(d) (and

with another initial condition).

Proof ( [9], Sections 9, 11). It is based on localization to fixed points
of the torus G action on the moduli orbifolds X1,d. Consider a stable map
f : (Σ, ε) → X representing such a fixed point. The combinatorial structure
of the curve Σ is described by a tree of irreducible components (isomorphic to
CP 1 each). Some components are mapped onto the straight lines inX = CP 4

connecting the fixed points rα, α = 1, ..., 5, of the torus action, and the map
is a multiple cover ζ 7→ ζm in suitable affine coordinates on the source and
target CP 1, so that ζ = 0,∞ are mapped to the fixed points. The remaining
irreducible components of Σ are mapped to the fixed points in X. The
marked point ε must be mapped to one of the fixed points rα.

The fixed point in X1,d represented by f does not contribute to Z
(GW )
α

via localization formulas unless f(ε) = rα.
Suppose that ε is situated in an irreducible component of Σ mapped to

rα. Consider the whole connected component of the fixed point set XG
1,d in

X1,d which contains the equivalence class [f ]. We will show that this con-

nected component contributes to Z
(GW )
α by a polynomial in ~−1. Indeed,

the component can be described as the (quotient by a finite group of the)
product of some Deligne – Mumford spaces M̄0,k (why? — see [15] where
the fixed point set is described). The universal cotangent line orbibundle
over X1,d restricted to the connected component of XG

1,d coincides with the
universal cotangent line at one of the marked points over one of the factors
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M̄0,k. Thus its Chern class c is nilpotent on this component, and the geo-
metrical series (~− c)−1 reduces to a finite sum of terms cl/~l+1. Notice that
l ≤ dimM̄0,k = k − 3 is bounded by the total degree of the map f .

The fixed point localization terms just discussed form the initial condition
in (10). We will show that contributions of all other fixed points can be
arranged as the recursive part of (10). The idea is to cut off the component
of the curve (Σ, ε) → X carrying the marked point and to observe that the
rest of the curve represents a torus-invariant curve of smaller degree.

In greater detail, suppose that ε is situated at ζ = 0 on a multiple cover
ζ 7→ ζm of the line connecting rα with rβ. Then the universal cotangent
line orbibundle restricted to the connected component of XG

1,d is topologically
trivial (since (T ∗

εΣ)⊗m coincides in this case with the cotangent space T ∗
rαCP 1

to the line joining rα and rβ), but it carries a nontrivial infinitesimal action
of G given by the character (λα−λβ)/m. Thus the localization of (~−c)−1 at
this fixed point component yields the simple fraction mqm(m~ + λβ − λα)

−1.
The factor m is eventually compensated by the order of the automorphism
group of the map ζ → ζm which occurs in the denominator of localization
formulas on orbifolds. The weight qm counts the degree of this map as a
curve in X.

The whole contribution of the fixed point component to Z
(GW )
α via local-

ization formulas includes two more factors. Each of them takes in account the
equivariant Euler classes of the orbibundle V ′

d and of the normal orbibundle
to XG

1,d which occurs in the denominator of localization formulas.
The first factor corresponds to the irreducible component C = CP 1 of Σ

carrying the marked point, and the second one — corresponds to the remain-
ing part Σ̃ of the curve Σ. The map f restricted to Σ̃ has degree d−m and
represents a point in the space XG

1,d−m. The fiber H0(Σ, f∗V ′) of V ′
d contains

the subspace of sections vanishing on C , which coincides with the fiber of
V ′
d−m. The normal spaces to XG

1,d split similarly into parts corresponding to

C and Σ̃. The intersection point ζ = ∞ of C with Σ̃ plays the role of the
marked point ε̃ in Σ̃. The deformation of f corresponding to smoothening
of the curve Σ at the double point ε̃ is represented in the tangent space to
X1,d by the line Tε̃C ⊗ Tε̃Σ̃ and contributes the factor (λβ − λα)m

−1 − c̃ to
the denominator of the localization formula. Thus the contribution of Σ̃ is
correctly accounted by the factor Z

(GW )
β (q,m/(λβ − λα), λ) in the recursion

relation (10).
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The remaining factor in the localization formula is a rational function of
λ and can be computed explicitly as the ratio of two Euler classes in the
case m = d when Σ̃ is a point (in the example of quintics we are studying,
the factor has actually been computed in [15]). It turns out to coincide
with the recursion coefficient Cβ

α(m). We recommend the reader to carry
out this computation (it amounts to analyzing the torus action on spaces of
holomorphic sections of O(5) and TX lifted to the multiple cover ζ 7→ ζm

of the line joining rα and rβ) or at least to look at some details of this
computation in [15]. �

A plausible argument in [9, 11] intended to explain the “miraculous”
coincidence of the recursion coefficients has been formalized in [17].

Polynomiality. The recursion relation (10) has much more solutions
with various initial conditions than the mirror transformations can handle.
However, according to Theorem A and Theorem B, the solutions Z(hg) and
Z(GW ) have the following polynomiality property.

Let us call a solution Z(q, ~−1, λ) to the recursion relation (10) polynomial
if the formal (q, z)-series

〈Z(qe~z, ~−1, λ), ePz Z(q,−~−1, λ)〉 (11)

has coefficients polynomial in ~.

The solution Z(GW ), by the very definition (3), satisfies also the asymp-
totical condition

Z(q, ~−1, λ) = 1 + o(~−1). (12)

Theorem E ([9], Proposition 11.5). A polynomial solution to the recur-
sion relation (10) satisfying the asymptotical condition (12) is unique.

Proof: perturbation theory. Let Z be a polynomial solution and let δR =
Rd−R

(GW )
d denote the discrepancy in the initial conditions for Z and Z(GW )

with minimal d > 0. Then Z and Z(GW ) coincide modulo qd due to the
recursion relation. The polynomiality property for Z and Z(GW ) modulo
qd+1 translates into regularity at ~ = 0 of

〈δR(~)~−d, e(P+d~)z〉 + 〈δR(−~)(−~)−d, ePz〉.

Localizations of this intersection index to fixed points in X are — for each
power of ~−1 — finite sums of monomials zl exp(λαz), l = 0, 1, 2, ..., α =
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1, ..., 5. Linear independence of such monomials for generic λ implies that
the localizations

δRα(~)~−de~z + δRα(−~)(−h)−d,

where Rα(~) are some polynomials in ~ of degree ≤ d, must be regular at
~ = 0 on their own.

Consider first (A~−2 + B~−3) exp(~z) + (A~−2 − B~−3) modulo z2. The
regularity condition at ~ = 0 implies A = 0 and then B = 0. Applying
this argument inductively we conclude that δRα(~)~−d = Aα +Bα~−1 where
Aα, Bα do not depend on ~.

Assuming now that Z also satisfies the asymptotical condition (12) we
find δR = 0. �

Mirror transformations. The hypergeometric series Ieq has the asymp-
totical expansion

Ieq = e(P ln q)/~(f0(q) + f1(q)
P

~
+ o(~−1)),

where the series

f0 =
∑
d=0

qd
(5d)!

(d!)5
,

f1 =
∑
d=1

qd
(5d)!

(d!)5
(

5d∑
m=d+1

5

m
),

are found from (9) (remember that λ1 + ...+ λ5 = 0).
The mirror transformations, namely the division of Ieq by f0 followed by

the change of variable ln q 7→ ln q + f1(q)/f0(q), transform Ieq to a new
vector-function with the same asymptotical behavior as

J eq = e(P ln q)/~(1 + o(~−1)).

Therefore the following theorem guarantees that the transformed series coin-
cides with J eq. Passing to the non-equivariant limit λ = 0 we conclude that
the same mirror transformations take I into J .

Thus the Yukawa coupling (8) is indeed extracted from the fundamental
solution I to the differential equation (1) by the procedure conjectured in [6].

Theorem F ([9], Propositions 11.3, 11.6). The mirror transformations
take polynomial solutions of the recursion relation (10) to polynomial solu-
tions of the same recursion relation.

14



Proof: straightforward (see [9]). The division operation does not change
the form of the recursion relation and also preserves the polynomiality prop-
erty since the extra factor f0(q exp(~z))f0(q) does not produce negative pow-
ers of ~ in the (q, z)-series (11). The change of the variables ln q 7→ ln q+g(q)
transforms z in this series into z+[g(q exp(~z))−g(q)]/~. At ~ = 0 the differ-
ence vanishes. It is therefore divisible by ~, and thus the change of variables
preserves the polynomiality property too.

When applied to the recursion relation (10) literally, the change of vari-
ables modifies it to a new recursion relation. In the new form the elementary
fraction

qm

m~ + λα − λβ
=

qm

~(λα − λβ)

1

~−1 +m/(λα − λβ)

occurs with the extra factor

δ := exp[mg(q) + λαg(q)~
−1 − λβg(q)

m

λβ − λα
]

= exp[λαg(~
−1 +m/(λa − λβ))].

Thus δ − 1 is divisible by ~−1 + m/(λα − λβ). Since g(0) = 0, the result of
this division is a q-series with coefficients polynomial in ~−1 at each power
of q. Thus the transformation affects only the initial condition and takes a
solution of the recursion relation into another solution. �

Updates.

Definitions. The definition of virtual numbers nd in terms of Euler classes
of the orbibundles Vd over X0,d should be considered as tentative and has
been replaced by a more universal construction, due to J. Li & G. Tian
[16], of virtual fundamental classes [Y0,d] defined in intrinsic terms of the
quintic 3-fold Y rather than in terms of the embedding i : Y ⊂ X. Thus in
order to place the above proof of the quintic formula into the framework of
contemporary definitions one needs to check that i∗[Y0,d] in H∗(X0,d) equals
the cap-product of the virtual fundamental class [X0,d] with Euler(Vd). This
is easy and can be done as follows.

Consider first a model problem studied in [8]: given a holomorphic sec-
tion s : B → E of a vector bundle E → B over a compact complex man-
ifold, construct a cycle in the zero locus Z = s−1(0) of the section which
is Poincare-dual to the Euler class of the bundle. The model problem is
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solved by the normal cone construction: the normal cone C ⊂ E|Z to the
zero locus has pure dimension dimB, and the homological intersection in
E|Z of the fundamental cycle [C ] with that of the zero section represents
in H∗(Z) the required Euler class. The construction can be adjusted to the
orbifold/orbibundle situation.

The virtual fundamental cycle construction in [16] is based on the obser-
vation that the normal cone C ⊂ E|Z is intrinsic with respect to the scheme
structure of Z and the tangent-obstruction complex ds : TB|Z → E|Z of vector
bundles over Z defined by the differential of the section. The kernel of ds|z∈Z
is the algebraic tangent space TzZ. In the case when Z is a moduli space of
stable maps to Y , J. Li & G. Tian exhibit a tangent-obstruction complex of
orbibundles T → E with this property and by this define the intrinsic normal
orbi-cone C ⊂ E and the virtual fundamental class [Z] := [C ]∩ [zero section]
in H∗(Z,Q).

In our situation Z = Y0,d is given in the orbifold X0,d by a section s of
Vd : E0,d → X0,d. Using the exact sequence 0 → TY → TX|Y → NY → 0
where NY is the normal bundle to Y in X we obtain the exact sequence

0 → H0(Σ, f∗TY ) → H0(Σ, f∗TX) → H0(Σ, f∗NY ) → H1(Σ, f∗TY ) → 0

for each stable map f : Σ → Y . Since the fibers of Vd|Z coincide with
H0(Σ, f∗NY ), this implies (via the description [15, 16] of the algebraic tan-
gent space T[f ]Y0,d in cohomological terms of deformation theory) that the
complex ds : TX0,d

|Z → E0,d|Z can be taken on the role of the tangent-
obstruction complex in the definition of the virtual fundamental cycle [Y0,d].
Thus this cycle represents in H∗(X0,d) the Euler class of Vd.

While this obvious argument shows that the GW-invariant of Y in ques-
tion can be computed in terms of the GW-theory for the convex bundle
V : E → X, some other GW-invariants of Y can not be interpreted in terms
of the bundle. In order to distinguish the GW-theory of the bundle from the
GW-theory of Y we, following A. Schwarz, refer in [11] to the first one as the
GW-theory of the supermanifold ΠE.

The map µ. Applications of our approach to complete intersections in
toric manifolds more general than projective spaces showed that some steps
in the above proof are redundant. In the remaining part of the text we discuss
several such steps which can be simplified or avoided. The first of them is
our use of the map µ : GX0,d → LXd.
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The map was used in order to define the equivariant class p on GX0,d as a
pill-back of the corresponding class on LXd and thus assure the polynomiality
property of the GW-invariant J eq. Consider instead the following S1 × G-
equivariant GW-invariant of CP 1 ×X:

∞∑
d=0

∞∑
n=0

qd

n!
[T, ..., T ]n,d, (13)

where T = z(p⊗ P ), p is the generator of the S1-equivariant cohomology of
CP 1 satisfying p(p− ~) = 0, P is the generator of the G-equivariant algebra
of X, and [...]n,d is the equivariant GW-invariant defined by integration over
GXn,d against the Euler class of GVn,d. The series (13) is defined without
fixed point localization and thus is a (q, z)-series with coefficients polynomial
in ~ and λ. On the other hand, applying localization to fixed points of S1-
action on GXn,d as in the proof of Theorem B (notice that p localizes to 0
at ζ = 0 and to ~ at ζ = ∞) and then using the divisor equation for zP as
in the proof of Theorem C we will find that the series (13) coincides with
〈J eq(q exp ~z, ~−1), J eq(q,−~−1)〉. This argument was mentioned in [11] and
was used in [12].

Theorem F. The invariance of the recursion relation (10) under mir-
ror transformations can be deduced from the string and divisor equations.
Namely, consider the G-equivariant GW-invariant J eq defined by integration
over Xn+2,d against the Euler classes of Vn+2,d:

〈J , φ〉 = 〈1, φ〉 +
∑

(n,d) 6=(0,0)

qd

n!
(1, T, ..., T,

φeP ln q/~

~ − c
)n+2,d (14)

with T = a(q) + b(q)P where a, b are power q-series vanishing at q = 0. One
can derive a recursion relation for J eq in exactly the same way as we derived
the recursion relation for J eq in Theorem D. The recursion coefficients will
be the same as in Theorem D, but the initial condition will depend now on
a and b. On the other hand the string and divisor equations show that

J eq = ea(q)J eq(qeb(q), ~−1)

and is therefore a result of a mirror transformation applied to J eq. Also,
using the argument from the previous subsection with suitable function of a
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and b on the role of T , we can make sure that J eq must a priori satisfy the
polynomiality condition as well.

Mirror transformations. As it was shown in [9] (Section 12) and [12]
(Section 5), there is a “non-linear Serre duality” equivalence between genus
0 equivariant GW-theory for a convex supermanifold ΠE and such a theory
for the non-compact total space E∗ of the concave dual bundle V ∗ : E∗ → X.
Namely, their genus 0 GW-invariants differ by a change of variables which
can be explicitly described in terms of GW-invariants of either of them (see
[12], Section 5).

On the other hand, the mirror formulas can be generalized, as it was
shown in [17] and [12] (Section 4), to include genus 0 equivariant GW-
invariants of concave bundles E∗. The proof is completely parallel to the
one given above. However, in the case if the bundle V ∗ is the direct sum of
at least two line bundles, the GW-invariant J eqE∗ for E∗ is equal to the corre-
sponding hypergeometric series IeqE∗ which in this case happens to satisfy the
asymptotical condition of the uniqueness Theorem E. With this observation,
a proof of the quintic formula looks as follows (see Section 5 in [12]).

Describe quintic 3-folds by two equations in CP 5 of degree 1 and 5. For
the concave bundle O(−1)⊕O(−5) over CP 5, prove the equality J eqE∗ = IeqE∗

following the steps Theorem B — Theorem D — Theorem E as explained
above. Now the mirror transformation between J eqΠE and IeqΠE emerge from
the general formulas of “non-linear Serre duality”.

Theorem D. The proof of mirror formulas given in [17] is based on some
recursive property of the S1 × G-equivariant Euler classes of the bundles
GVd over GX0,d named eulerity. In fact the property can be easily deduced
from our recursion relation (10) as it is done in [9] (Proposition 11.4 (b)).
The inverse implication is also immediate. However, the proof of the eulerity
property given in [17] is based on an argument similar to our proof of Theorem
B (localization for the S1-action) and thus completely eliminates the role of
localization formulas for the G-action as a computational tool (and uses only
the very fact of their existence).

With this observation, the reduction of the quintic formula to “non-linear
Serre duality” theorem looks particularly short: prove eulerity property in the
case of the concave bundle O(−1)⊕O(−5) over CP 5 following the argument
in [17] and use a uniqueness theorem (parallel to Theorem E above) in order
to identify J eqE∗ with IeqE∗.
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We see that the only new, after M. Kontsevich’s paper [15], geometrical
construction which has survived so far through all variants of the proof of the
quintic formula is the S1-equivariant theory on the graph spaces GX0,d which
originates from the loop space interpretation [10] (see also [21]) of Gromov –
Witten invariants.

All other ingredients of the proof have somewhat combinatorial character
and can be interchanged and simplified. This progress does not mean however
that the mirror symmetry phenomenon has been adequately understood.
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