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Abstract. Given a holomorphic vector bundle E over a compact Kähler man-
ifold X , one defines twisted Gromov–Witten invariants of X to be intersection

numbers in moduli spaces of stable maps f : Σ → X with the cap product
of the virtual fundamental class and a chosen multiplicative invertible char-

acteristic class of the virtual vector bundle H0(Σ, f∗E) ⊖ H1(Σ, f∗E). Using
the formalism of quantized quadratic Hamiltonians [25], we express the de-

scendant potential for the twisted theory in terms of that for X . This result
(Theorem 1) is a consequence of Mumford’s Grothendieck–Riemann–Roch the-

orem applied to the universal family over the moduli space of stable maps. It
determines all twisted Gromov–Witten invariants, of all genera, in terms of

untwisted invariants.
When E is concave and the C×-equivariant inverse Euler class is chosen

as the characteristic class, the twisted invariants of X give Gromov–Witten
invariants of the total space of E. “Non-linear Serre duality” [21,23] expresses

Gromov–Witten invariants of E in terms of those of the super-manifold ΠE:
it relates Gromov–Witten invariants of X twisted by the inverse Euler class

and E to Gromov–Witten invariants of X twisted by the Euler class and E∗.
We derive from Theorem 1 non-linear Serre duality in a very general form

(Corollary 2).
When the bundle E is convex and a submanifold Y ⊂ X is defined by

a global section of E, the genus-zero Gromov–Witten invariants of ΠE coin-
cide with those of Y . We establish a “quantum Lefschetz hyperplane section

principle” (Theorem 2) expressing genus-zero Gromov–Witten invariants of a

complete intersection Y in terms of those of X . This extends earlier results
[4,10,18,29,33] and yields most of the known mirror formulas for toric complete

intersections.

Introduction.

The mirror formula of Candelas et al. [11] for the virtual numbers nd of degree
d = 1, 2, 3, . . . holomorphic spheres on a quintic 3-fold Y ⊂ X = CP 4 can be stated
[20] as the coincidence of the 2-dimensional cones over the following two curves in
Heven(Y ; Q) = Q[P ]/(P 4):

JY (τ ) = ePτ +
P 2

5

∑

d>0

nd d
3
∑

k>0

e(P+kd)τ

(P + kd)2

and

IY (t) =
∑

d≥0

e(P+d)t (5P + 1)(5P + 2) . . . (5P + 5d)

(P + 1)5(P + 2)5 . . . (P + d)5
.

The new proof given in this paper shares with earlier work [10, 18, 21, 29, 33, 35]
the formulation of sphere-counting in a hypersurface Y ⊂ X as a problem in the
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Gromov–Witten theory of X.

Gromov–Witten invariants of a compact almost-Kähler manifold X are defined
as intersection numbers in moduli spaces Xg,n,d of stable pseudo-holomorphic maps
f : Σ → X. Most results in this paper can be stated and hold true in this generality
(see Appendix 2 in [6]): the only exceptions are those discussed in Sections 9 and
10 which depend on equation (18). We prefer however to stay on the firmer ground
of algebraic geometry, where the majority of applications belong.

Given a holomorphic vector bundle E over a compact complex projective man-
ifold X and an invertible multiplicative characteristic class c of complex vector
bundles, we introduce twisted Gromov–Witten invariants as intersection indices
in Xg,n,d with the characteristic classes c(Eg,n,d) of the virtual bundles Eg,n,d =
“H0(Σ, f∗E)⊖H1(Σ, f∗E)”. The “quantum Riemann–Roch theorem” (Theorem 1)
expresses twisted Gromov–Witten invariants (of any genus) and their gravitational
descendants via untwisted ones.

The totality of gravitational descendants in the genus-zero Gromov–Witten the-
ory of X can be encoded by a semi-infinite cone LX in the cohomology algebra of
X with coefficients in the field of Laurent series in 1/z (see Section 6). Another
such cone corresponds to each twisted theory. Let LE be the cone corresponding
to the total Chern class

c = λdim + c1λ
dim −1 + . . .+ cdim.

Theorem 1 specialized to this case says that the cones LX and LE are related by a
linear transformation. It is described in terms of the stationary phase asymptotics
aρ(z) of the oscillating integral

1√
2πz

∫ ∞

0

e
−x+(λ+ρ) ln x

z dx

as multiplication in the cohomology algebra by
∏

i aρi
(z), where ρi are the Chern

roots of E.
Assuming E to be a line bundle, we derive a “quantum hyperplane section the-

orem” (Theorem 2). It is more general than the earlier versions [4, 18, 29, 33] in
the sense that the restrictions t ∈ H≤2(X; Q) on the space of parameters and
c1(E) ≤ c1(X) on the Fano index are removed.

In the quintic case when X = CP 4 and ρ = 5P , the cone LX is known to contain
the curve

JX(t) =
∑

d≥0

e(P+zd)t/z

(P + z)5 . . . (P + zd)5
,

and Theorem 2 implies that the cone LE contains the curve

IE(t) =
∑

d≥0

e(P+zd)t/z (λ + 5P + z) . . . (λ+ 5P + 5dz)

(P + z)5 . . . (P + dz)5
.

One obtains the quintic mirror formula by passing to the limit λ = 0.

The idea of deriving mirror formulas by applying the Grothendieck–Riemann–
Roch theorem to universal stable maps is not new. Apparently this was the initial
plan of M. Kontsevich back in 1993. In 2000, we had a chance to discuss a similar
proposal with R. Pandharipande. We would like to thank these authors as well
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as A. Barnard and A. Knutson for helpful conversations, and the referee for many
useful suggestions.

The second author is grateful to D. van Straten for the invitation to the workshop
“Algebraic aspects of mirror symmetry” held at Kaiserslautern in June 2001. The
discussions at the workshop and particularly the lectures on “Variations of semi-
infinite Hodge structures” by S. Barannikov proved to be very useful in our work
on this project.

1. Generating Functions

Let X be a compact complex projective manifold of complex dimension D. De-
note by Xg,n,d the moduli orbispace of genus-g, n-pointed stable maps [8, 31] to
X of degree d, where d ∈ H2(X; Z). The moduli space is compact and can be
equipped [9, 34, 38] with a (rational-coefficient) virtual fundamental cycle [Xg,n,d]
of complex dimension n+ (1 − g)(D − 3) +

∫

d c1(TX).
The total descendant potential of X is a generating function for Gromov-Witten

invariants. It is defined as

(1) DX(t0, t1, . . .) := exp




∑

g≥0

~g−1Fg
X(t0, t1, . . .)



 ,

where Fg
X is the genus-g descendant potential,

(2) Fg
X(t0, t1, . . .) :=

∑

n,d

Qd

n!

∫

[Xg,n,d]

(

∞∑

k1=0

(ev∗
1 tk1)ψ

k1

1 ) . . . (

∞∑

kn=0

(ev∗
n tkn

)ψkn
n ).

Here ψi is the first Chern class of the universal cotangent line bundle over Xg,n,d
corresponding to the ith marked point, the map evi : Xg,n,d → X is evaluation
at the ith marked point, t0, t1, . . . ∈ H∗(X; Q) are cohomology classes, and Qd is
the representative of d ∈ H2(X; Z) in the semigroup ring of degrees of holomorphic
curves in X.

Let E be a holomorphic vector bundle over X. We associate to it an element
Eg,n,d in the Grothendieck group K0(Xg,n,d) of orbibundles1 over Xg,n,d as follows.
Consider the universal stable map

Xg,n+1,d
evn+1

- X

Xg,n,d

π

?

formed by the operations of forgetting and evaluation at the last marked point.
We pull E back to the universal family and then apply the K-theoretic push-
forward to Xg,n,d. This means the following: there is a complex 0 → E0

g,n,d →

1We will usually omit the prefix orbi.
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E1
g,n,d → 0 of bundles on Xg,n,d with cohomology sheaves equal to R0π∗(ev

∗
n+1 E)

and R1π∗(ev
∗
n+1E) respectively. Moreover, the difference

Eg,n,d := [E0
g,n,d] − [E1

g,n,d]

in the Grothendieck group of bundles does not depend on the choice of the complex.
These facts are based on some standard results about local complete intersection
morphisms, and are discussed further in Appendix 1.

A rational invertible multiplicative characteristic class of complex vector bundles
takes the form

(3) c(·) = exp

(
∞∑

k=0

sk chk(·)
)

where chk are components of the Chern character and s0, s1, s2, . . . are arbitrary
coefficients or indeterminates. Given such a class and a holomorphic vector bundle
E ∈ K0(X) over X, we define the (c, E)-twisted descendant potentials Dc,E and
Fg

c,E by replacing the virtual fundamental cycles [Xg,n,d] in (1, 2) with the cap-

products c(Eg,n,d)∩ [Xg,n,d]. For example, the Poincaré intersection pairing arises
in Gromov–Witten theory as an intersection index inX0,3,0 = X, and in the twisted
theory therefore takes on the form

(4) (a, b)c(E) :=

∫

[X0,3,0]

c(E0,3,0) ev∗
1(a) ev∗

2(1) ev∗
3(b) =

∫

X

c(E) a b.

We will often assume that all vector bundles carry the S1-action given by fiber-
wise multiplication by the unitary scalars. In this case the chk should be under-
stood as S1-equivariant characteristic classes, and all Gromov–Witten invariants
take values in the coefficient ring of S1-equivariant cohomology theory. We will
always identify this ring H∗(BS1 ; Q) with Q[λ], where λ is the first Chern class of
the line bundle O(1) over CP∞.

2. Quantization Formalism

Theorem 1 below expresses Dc,E in terms of DX via the formalism of quantized
quadratic Hamiltonians [25], which we now outline. Consider H = H∗(X; Q) as
a super-space equipped with the non-degenerate symmetric bilinear form defined
by the Poincaré intersection pairing (a, b) =

∫

X
ab. Let H = H((z−1)) denote

the super-space of Laurent polynomials in 1/z with coefficients in H , where the
indeterminate z is regarded as even. We equip H with the even symplectic form

Ω(f , g) :=
1

2πi

∮

(f (−z), g(z)) dz

= −(−1)f̄ ḡΩ(g, f ).

The polarization H = H+ ⊕H− defined by the Lagrangian subspaces H+ = H [z],
H− = z−1H [[z−1]] identifies (H,Ω) with the cotangent bundle T ∗H+.

The standard quantization convention associates to quadratic Hamiltonians G
on (H,Ω) differential operators Ĝ of order ≤ 2 acting on functions on H+. More
precisely, let {qα} be a Z2-graded coordinate system on H+ and {pα} be the dual
coordinate system on H−, so that the symplectic structure in these coordinates
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assumes the Darboux form

Ω(f , g) =
∑

α

[pα(f )qα(g) − (−1)p̄αq̄αqα(f )pα(g)].

For example, when H is the standard one-dimensional Euclidean space then f =
∑
qkz

k +
∑
pk(−z)−1−k is such a coordinate system. In a Darboux coordinate

system the quantization convention reads

(qαqβ )̂ :=
qαqβ

~
, (qαpβ )̂ := qα

∂

∂qβ
, (pαpβ )̂ := ~

∂2

∂qα∂qβ
.

The quantization gives only a projective representation of the Lie algebra of qua-
dratic Hamiltonians on H as differential operators. For quadratic Hamiltonians F
and G we have

[F̂ , Ĝ] = {F,G}ˆ+ C(F,G),

where {·, ·} is the Poisson bracket, [·, ·] is the super-commutator, and C is the cocycle

C(pαpβ , qαqβ) =

{

(−1)q̄α p̄β if α 6= β,

1 + (−1)q̄αp̄α if α = β,

C = 0 on any other pair of quadratic Darboux monomials.

We associate the quadratic Hamiltonian hT (f ) = Ω(T f , f )/2 to an infinitesimal

symplectic transformation T , and write T̂ for the quantization ĥT . If A and B are
self-adjoint operators on H then the operators f 7→ (A/z)f and f 7→ (Bz)f on H
are infinitesimal symplectic transformations, and

C(hA/z , hBz) = str(AB)/2.

In what follows, we will often apply symplectic transformations expT in the

quantized form exp ĥT to various generating functions for Gromov–Witten invari-
ants — that is to certain formal functions of q = q0 + q1z + q2z

2 + . . . ∈ H+

and ~ — which we refer to as asymptotic elements of the Fock space. In fact the
quantized symplectic transformations that we will use do not have a convenient
common domain that includes all the formal functions which we will need. We
will therefore not describe any “Fock space”, but instead regularly indicate those
special circumstances that make the application of particular quantized symplec-
tic transformations to particular generating functions well-defined. Such special
circumstances usually involve -adic convergence with respect to some auxiliary for-
mal parameters (such as sk in Corollary 3, 1/λ in (11), Q in (12), etc.). The key
point here is that our formulas provide unambiguous rules for transforming gener-
ating functions (and their coefficients): the description of these rules as symplectic
transformations or their quantizations remains merely a convenient interpretation2.

Let us begin by setting up notation for such an interpretation. We will assume
that the ground field Q of constants is extended to the Novikov ring Q[[Q]] (or to
Q[[Q]] ⊗ Q(λ) in the S1-equivariant setting) and will denote the ground ring by
Λ. The potentials Fg

X(t0, t1, . . .) are naturally defined as formal functions on the
space of vector polynomials t(z) = t0 + t1z + t2z

2 + . . . where t0, t1, t2, . . . ∈ H .
The total descendant potential DX is simply the formal expression exp

∑
~g−1Fg

X

2This approach, somewhat resembling the terminology in the theory of formal groups, is not
the only one possible. We refer to Section 8 in [26] where the class of tame asymptotic functions

(convenient for the purposes of that paper) is introduced.
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defined by these formal functions. It cannot be viewed as a formal function of ~

and t because of the presence of ~−1- and ~0-terms in the exponent. The reader
uncomfortable with this situation could note that the formal functions F0

X and F1
X

when reduced modulo Q contain only terms which are respectively at-least-cubic
and at-least-linear in the variables ti, and that DX can therefore be considered as
a formal function of ~, t/~ and Q/~. This point of view will, however, play no role
in what follows.

We regard the total descendant potential (1) as an asymptotic element of the
Fock space via the identification

(5) q(z) = t(z) − z

which we call the dilaton shift. The twisted descendant potentials Dc,E can be
similarly considered as asymptotic elements of Fock spaces corresponding to the
super-space H equipped with the twisted inner products (4). Alternatively, we can
identify the inner product spaces (H, (·, ·)c(E)) with (H, (·, ·)) by means of the maps

a 7→ a
√

c(E). Using the corresponding identification of Fock spaces we consider
the twisted descendant potentials Dc,E as asymptotic elements of the original Fock
space via the twisted dilaton shift:

(6) q(z) =
√

c(E) (t(z) − z).

We thus obtain a formal family Ds := Dc,E of asymptotic elements of the Fock
space depending on the parameters s = (s0, s1, s2, . . .) from (3). Note that, due to
the dilaton shift, Ds as an element of the Fock space is built out of formal functions
of q defined near the shifted origin q(z) = −

√

c(E)z, which varies with s.

3. Quantum Riemann–Roch

Let us identify z with the first Chern class of the universal line bundle L and
denote by 〈·〉 the one-dimensional subspace spanned by the asymptotic element “·”
of the Fock space.

Theorem 1.

〈Dc,E〉 = △̂ 〈DX〉 ,

where △ : H → H is the linear symplectic transformation defined by the asymptotic
expansion of

√

c(E)

∞∏

m=1

c(E ⊗ L−m).

This should be interpreted as follows. Let ρ1, . . .ρr be the Chern roots of E, and
let

s(·) =
∑

k≥0

sk chk(·)
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Then

ln

(
√

c(E)

∞∏

m=1

c(E ⊗ L−m)

)

=

r∑

i=1

(

s(ρi)

2
+

∞∑

m=1

s(ρi −mz)

)

=

r∑

i=1

1

2

[
1 + ez∂x

1 − ez∂x
s(x)

]∣
∣
∣
∣
x=ρi

∼
r∑

i=1




∑

m≥0

B2m

(2m)!
(z∂x)

2m−1s(x)





∣
∣
∣
∣
∣
∣
x=ρi

=
∑

m≥0

∑

l≥0

B2m

(2m)!
sl+2m−1 chl(E)z2m−1

Here the Bk are Bernoulli numbers:

t

1 − e−t
=
∑

k≥0

Bk
k!
tk

The operator of multiplication by chl(E) in the cohomology algebra H of X
is self-adjoint with respect to the Poincaré pairing. Consequently, the operator
of multiplication by chl(E)z2m−1 in the algebra H is an infinitesimal symplectic
transformation of H and so is ln△. Theorem 1 therefore follows from the following
more precise version.

Theorem 1′.

(7) exp

(

− 1

24

∑

l>0

sl−1

∫

X

chl(E)cD−1(TX)

)
(

sdet
√

c(E)
)− 1

24 Dc,E =

exp




∑

m>0

∑

l≥0

s2m−1+l
B2m

(2m)!
(chl(E)z2m−1 )̂



 exp

(
∑

l>0

sl−1(chl(E)/z)̂

)

DX

Here sdet(·) = exp str ln(·) is the Beresinian.

Remarks. (1) The variable s0 is present on the RHS of (7) only in the form
exp(s0ρ/z)̂ where ρ = ch1(E). For any ρ ∈ H2(X) the operator (ρ/z)̂ is in fact a
divisor operator: the total descendant potential satisfies the divisor equation

(8)
(ρ

z

)ˆDX =
∑

ρiQi
∂

∂Qi
DX − 1

24

∫

X

ρ cD−1(TX) DX .

Here Qi are generators in the Novikov ring corresponding to a choice of a basis in
H2(X) and ρi are coordinates of ρ with respect to the dual basis. For ρ = ch1(E)
the cD−1-term cancels with the s0-term on the LHS of (7). Thus the action of the
s0-flow reduces to the change Qd 7→ Qd exp(s0

∫

d
ρ) in the descendant potential DX

combined with the multiplication by the factor exp (s0(dimE)/48) coming from the
super-determinant.

(2) If E = C then Eg,n,d = C − E∗
g , where Eg is the Hodge bundle. The Hodge

bundles satisfy chk(Eg) = − chk(E
∗
g). In view of this, Theorem 1 in this case turns

into Theorem 4.1 in [25] and is a reformulation in terms of the formalism explained
in Section 2 of the results of Mumford [36] and Faber–Pandharipande [16]. The
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proof of Theorem 1 is based on a similar application of Mumford’s Grothendieck–
Riemann–Roch argument to our somewhat more general situation. The argument
was doubtless known to the authors of [16]. The main new observation here is
that the combinatorics of the resulting formula, which appears at first sight rather
complicated, fits nicely with the formalism of quantized quadratic Hamiltonians.
A verification of this — somewhat tedious but straightforward — is presented in
Appendix 1.

4. The Euler Class

The S1-equivariant Euler class of E is written in terms of the (non-equivariant)
Chern roots ρi as

e(E) =
∏

i

(λ+ ρi).

Using the identity (λ + x) = exp(lnλ −∑k(−x)k/kλk) we can express it via the
components of the non-equivariant Chern character:

(9) e(E) = exp

(

ch0(E) lnλ+
∑

k>0

chk(E)
(−1)k−1(k − 1)!

λk

)

.

Denote by De the element Ds of the Fock space corresponding to

sk =

{

lnλ k = 0
(−1)k−1(k−1)!

λk k > 0

Substituting these values of sk into (7), replacing chl(E) by
∑
ρli/l! and using the

binomial formula

(1 + x)1−2m =
∑

l≥0

(−1)l(2m− 2 + l)!

(2m− 2)! l!
xl

we arrive at the following conclusion.

Corollary 1.

De =
∏

i

(

sdet
√

λ + ρi

) 1
24

∏

i

exp

(
1

24

∫

X

[(λ+ ρi) ln(λ + ρi) − (λ+ ρi)] cD−1(TX)

)

∏

i

exp

(
∑

m>0

B2m

2m(2m− 1)

((
z

λ + ρi

)2m−1
)

ˆ
)

∏

i

exp

((
(λ + ρi) ln(λ + ρi) − (λ + ρi)

z

)
ˆ
)

DX .

Remark. The 1/z-term in this formula actually arises in the form

ρ lnλ +
∑ (−1)k−1ρk+1

k(k + 1)λk
=

∫ ρ

0

ln(λ+ x)dx = [(λ+ x) ln(λ + x) − (λ + x)] |ρ0.

It has positive cohomological degree and is small in this sense. The constant term
(λ lnλ−λ)/z is thrown away on the following grounds. According to [25], (1/z)̂ is
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the string operator and annihilates the descendant potential DX . Thus the opera-
tors exp((λ lnλ−λ)/z)̂ ) do not change DX . The rest of the series in the exponent
converges in the 1/λ-adic topology.

5. Quantum Serre

Introduce the multiplicative characteristic class

c∗(·) = exp
(∑

(−1)k+1sk chk(·)
)

.

Since chl(E
∗) = (−1)l chl(E) we have

c∗(E∗) =
1

c(E)
.

There is no obvious relationship between c∗((E∗)g,n,d) and c(Eg,n,d), but nonethe-
less the twisted descendant potentials Ds = Dc,E and D∗

s := Dc∗,E∗ are closely
related.

Corollary 2. We have D∗
s = (sdet c(E))−1/24 Ds. More explicitly,

Dc∗,E∗(t∗) = (sdet c(E))−
1
24 Dc,E(t),

where
t∗(z) = c(E)t(z) + (1 − c(E))z.

Proof. Replacing chl(E) with (−1)l chl(E), and sk with (−1)k+1sk in (7) preserves
all terms except the super-determinant. �

Corollary 3. Consider the dual bundle E∗ equipped with the dual S1-action, and
the S1-equivariant inverse Euler class e−1. Put

t∗(z) = z + (−1)dimE/2e(E)(t(z) − z)

and introduce the change ± : Qd 7→ Qd(−1)
R

d
ch1(E) in the Novikov ring. With this

notation
De−1,E∗(t∗, Q) = sdet[(−1)

dim E
2 e(E)]−

1
24 De,E(t,±Q).

Proof. We have e−1(E∗) =
∏

i(−λ − ρi)
−1. Since

(−λ+ x)−1 = exp

(

− ln(−λ) +
∑

k

xk

kλk

)

we find that e−1(·) = exp
∑
s∗k chk(·) where s∗k = (k − 1)!/λk for k > 0 and

s∗0 = − ln(−λ). For k > 0, s∗k = (−1)k+1sk as in the situation of Corollary 2.

However, s∗0 = −s0 −π
√
−1. We compensate for the discrepancy −π

√
−1 using the

divisor equation (8) described in Remark 1 following Theorem 1′. �

6. The Genus-Zero Picture

The genus-zero descendant potential F0
X can be recovered from the so called

“J-function” of finitely many variables due to a reconstruction theorem essentially
due to Dubrovin [14] and going back to Dijkgraaf and Witten [13]. The J-function
is a formal function of t ∈ H and 1/z with vector coefficients in H defined by

(10) ∀a ∈ H, (JX(t, z), a) := (z + t, a) +
∑

d,n

Qd

n!

∫

[X0,n+1,d]

n∧

i=1

ev∗
i t

ev∗
n+1 a

z − ψn+1
.
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We need the following reformulation of the reconstruction theorem in terms of the
geometry of the symplectic space (H,Ω).

The genus-zero descendant potential F0
X considered as a formal function of q ∈

H+ via the dilaton shift (5) generates (the germ of) a Lagrangian section LX ⊂
H = T ∗H+. In Darboux coordinates

LX = {(p,q) : p = dqF0
X}.

Proposition 1. LX is a homogeneous Lagrangian cone swept by a moving semi-
infinite isotropic subspace depending on dimH parameters. More precisely,

(i) tangent spaces L ⊂ H to LX are tangent to LX along zL and, vice versa,
if L = TfL is a tangent space to L then f is contained in zL;

(ii) JX(t,−z) ∈ H is the intersection of LX with (t− z) + H−.

Remarks. (1) LX ⊂ T ∗H+ is a formal germ of a Lagrangian section near q = −z.
Respectively all geometric statements about LX should be understood in the sense
of formal geometry.

(2) Part (i) of the Proposition implies that the tangent spaces L are Lagrangian
subspaces satisfying zL ⊂ L (as well as zL ⊂ LX). They consequently belong to

the loop group Grassmannian of the “twisted” series A(2), or to its super-version.
(3) Part (i) of the Proposition means that the tangent spaces L actually depend

only on dimH parameters and form a semi-infinite variation of Hodge structure in
the sense of [3].

(4) Part (i) follows easily from Dubrovin’s reconstruction formula (see [14, The-
orem 6.1]) in the axiomatic theory of Frobenius structures. We refer to [27] for
details. In Appendix 2 we give another, more direct proof applicable in Gromov–
Witten theory. It is based on Theorem 5.1 stated in [25] which relates gravitational
descendants with ancestors.

(5) Part (ii) of the Proposition follows immediately from the definitions of JX
and LX . Together with part (i) it shows how to reconstruct the cone LX from the
J-function. Namely, the first t-derivatives of JX(t, z) form a basis in the intersection
of the tangent space L to LX with zH− and therefore form a basis of L as a free
Λ[z]-module. We describe this reconstruction procedure in more detail in Section
8.

In the quasi-classical limit ~ → 0, quantized symplectic transformations exp Â
of Theorem 1′ acting on the total potentials considered as asymptotic elements
Ds of the Fock space turn into “unquantized” symplectic transformations acting by
Ls 7→ (expA)Ls on the Lagrangian cones Ls generated by the genus-zero potentials
F0

c,E.

Corollary 4.

Ls = △LX = exp




∑

m≥0

∑

l≥0

s2m−1+l
B2m

(2m)!
chl(E)z2m−1



 LX .

7. Quantum Lefschetz

In the case of genus-zero Gromov–Witten theory twisted by the Euler class e(E),
the corresponding Lagrangian cone Le is obtained from LX by multiplication in H
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by the product over the Chern roots ρ of the series

(11) bρ(z) = exp

(

(λ + ρ) ln(λ+ ρ) − (λ + ρ)

z
+
∑

m>0

B2m

2m(2m− 1)
(

z

λ + ρ
)2m−1

)

The series (11) is well-known [28] in connection with the asymptotic expansion of
the gamma function Γ((λ+ρ)/z). More precisely, (11) coincides with the stationary
phase asymptotics of the integral

1
√

2πz(λ + ρ)

∫ ∞

0

e
−x+(λ+ρ) ln x

z dx

near the critical point x = λ+ ρ of the phase function.
Let us assume now that E is the direct sum of r line bundles with the first

Chern classes ρi — in what follows we will need the Chern roots to be defined over
Z — and consider the J-function JX(t, z) =

∑

d Jd(t, z)Q
d. Put ρi(d) =

∫

d
ρi and

introduce the following hypergeometric modification of JX :

(12) IE(t, z) =
∑

d

Jd(t, z)Q
d

r∏

i=1

∏ρi(d)
k=−∞(λ+ ρi + kz)

∏0
k=−∞(λ+ ρi + kz)

.

Theorem 2. The hypergeometric modification IE , considered as a family t 7→
IE(t,−z) of vectors in the symplectic space (H,Ωe(E)) corresponding to the twisted

inner product (a, b)e(E) =
∫

X
e(E)ab on H, is situated on the Lagrangian section

Le,E ⊂ (H,Ωe(E)) defined by the differential of the twisted genus-zero descendant

potential F0
e,E.

Note that in defining Le,E we regard F0
e,E as a formal function of q via the

dilaton shift (5). Also, the following comment is in order. The series IE does not
necessarily belong toH((z−1)) because of possible unbounded growth of the numbers
ρi(d). However the coefficients of each particular monomial Qd do. Similarly,
multiplication by the series (11) moves the cone LX out of the space H((z−1)).
However modulo each particular power of 1/λ it does not (the invariance of the
cone with respect to the string flow exp(λ lnλ− λ)/z is once again essential here).
In fact all our formulas make sense as operations with generating functions (i.e.
give rise to legitimate operations with their coefficients) because of the presence
of suitable auxiliary variables — sk in Corollary 3, 1/λ in (11), Q in (12). More
formally, this means the following. We replace the ground ring Λ in H = H∗(X,Λ)
with its completion (which we will still denote Λ) in the appropriate (s-adic, 1/λ-
adic, Q-adic) topology. In the role of the symplectic space H, we should take the
space (we will denote it H{{z−1}}) of Laurent series

∑

k∈Z
hkz

k possibly infinite
in both directions but satisfying the following convergence condition: as k → +∞,
hk → 0 in the topology of Λ. In the following proof we will have to similarly replace
Λ[z] by Λ{z}, and the ring Λ should be also extended by

√
λ.

8. Proof of Theorem 2

Due to the equivariance properties (see [21], Section 6) of J-functions with respect
to the string and divisor flows (8) we have

(13) JX(t +
∑

(λ + ρi) lnxi) = e
P

(λ+ρi) ln xi
z

∑

d

Jd(t, z)Q
d
∏

i

x
ρi(d)
i .
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Integrating by parts (as in the proof of the identity Γ(x+ 1) = xΓ(x)) we find

(14) (2πz)−
r
2

∫ ∞

0

dx1 . . .

∫ ∞

0

dxr e
−

P

xi/zJX(t+
∑

(λ+ ρi) lnxi)

= IE(t, z)
√

e(E)
∏

i

1
√

2πz(λ + ρi)

∫ ∞

0

e
−xi+(λ+ρi) ln xi

z dxi .

We conclude that the asymptotic expansion of the integral (14) coincides with

IE(t, z)
√

e(E)
∏

i bρi
(z).

The multiplication by
√

e(E) identifies the Lagrangian cone Le,E ⊂ (H,Ωe(E))
with its normalized incarnation Le ⊂ (H,Ω). Therefore Theorem 2 is equivalent to

the inclusion IE(t,−z)
√

e(E) ∈ Le and, due to Corollary 4, — to

IE(t,−z)
√

e(E)
∏
bρi

(−z) ∈ LX . It remains to show therefore that the asymptotic
expansion of the integral (14) belongs to the cone determined by the J-function
JX(t, z). In fact we will prove the following.

Lemma. For each t, the asymptotic expansion of the integral (14) differs from

λdimE/2JX(t∗, z) (at some other point t∗(t)) by a linear combination of the first
t-derivatives of JX at t∗ with coefficients in zΛ{z}.

For this, we are going to use another property of the J-function JX well-known
in quantum cohomology theory and in the theory of Frobenius structures (see for
instance Section 6 in [21] and [14]). The first derivatives ∂JX/∂t

α satisfy the system
of linear PDEs

(15) z
∂

∂tα
∂

∂tβ
JX(t, z) =

∑

γ

Aγαβ(t)
∂

∂tγ
JX(t, z).

where we use a coordinate system t =
∑
tαφα on H . Indeed, we can argue as in [3].

The first t-derivatives of JX form a basis in the intersection of the tangent space L
to the cone LX with zH−. The LHS of (15) belongs to this intersection: it is in L
since infinitesimal t-variations of zL are in L, and it is in zH− since JX ∈ z+t+H− .

Further analysis reveals that Aγαβ are structure constants of the quantum coho-

mology algebra φα • φβ =
∑
Aγαβφα. In particular, z∂1JX = JX since 1• = id. We

use the notation ∂v for the directional derivative in the direction of v ∈ H and take
here v = 1.

We can interpret (15) as the relations defining the D-module generated by JX ,
i.e. obtained from it by application of all differential operators. Using Taylor’s
formula JX(t+yρ) = exp(y∂ρ)JX(t) we now view (14) as the asymptotic expansion
of the oscillating integral taking values in this D-module:

(16) (2πz)−
r
2

∫ ∞

0

dx1 . . .

∫ ∞

0

dxr e
−

P

xi+
P

(λ+z∂ρi
) ln xi

z JX(t, z) ∼

∏

i

e
(λ+z∂ρi

) ln(λ+z∂ρi
)−(λ+z∂ρi

)

z
+ 1

2 ln(λ+z∂ρi
)+

P

m>0
B2m

2m(2m−1)
z2m−1

(λ+z∂ρi
)2m−1

JX(t, z)

The exact form of the series is not relevant here. What matters is that the
relations (15) in the D-module allow us to rewrite any high order derivation as
a differential operator of first order and that composition of derivations coincides
with the quantum cup-product • modulo higher order terms in z:

z∂v1 . . . z∂vN
= z∂v1•...•vN

+ o(z),
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where o(z) stands for a linear combination of z∂φα
with coefficients in zΛ{z}. Using

this (and also the relation λJX = z∂λ·1JX mentioned earlier) we see that

∏

i

e
(λ+z∂ρi

) ln(λ+z∂ρi
)−(λ+z∂ρi

)

z JX(t, z) =
∏

i

e∂[(λ+ρi•) ln(λ+ρi•)−(λ+ρi•)]1+ o(z)
z JX(t, z)

= e
o(z)

z JX(t∗, z)

where t∗(t) = t+[
∑

(λ+ρi•) ln(λ+ρi•)− (λ+ρi•) ] 1. Processing next the factor

e
1
2 ln(λ+z∂ρi

), we take out
√
λ. The remaining factor e

1
2 ln(1+z∂ρi

/λ) together with
the rest of the exponent in the asymptotic expansion (16) yields an expression of
the type eo(z)/zJX(t∗, z) too. We conclude that the expansion (16) assumes the
form

λ
dim E

2 JX(t∗, z) +
∑

α

Cα(t∗, z) z∂φα
JX(t∗, z),

where the coefficients Cα(t∗, ·) are in Λ{z} as required.

Remark. The proof of the Lemma actually shows that given a family Φ(x, p) of
phase functions parameterized by p ∈ H∗ the asymptotic expansion of the oscillat-
ing integral

∫
dx eΦ(x,z∂)/zJX(t, z) belongs to the same cone as JX .

Thus we have proved that the vector IE(t,−z) is situated on the Lagrangian
cone Le,E and therefore differs from the value of the corresponding J-function
Je,E(τ,−z) at a suitable point τ = τ (t) by a linear combination of the deriva-
tives ∂Je,E/∂τ

α with coefficients in zΛ{z}. Moreover, these derivatives form a
basis in the tangent space L to Le,E considered as a free Λ{z}-module, and so
the derivatives ∂αIE/∂t

α ∈ L are expressible as their linear combinations. The
last statement is equivalent to the Birkhoff factorization U(z, z−1) = V (z−1)W (z)
where the columns of the matrix U are the derivatives of IE , and those of V are
the derivatives of Je,E .

Let us use now the obvious fact that modulo the Novikov variables Q the func-
tions IE and Je,E coincide (at t = τ ) and hence W (z) turns into the identity matrix
in this specialization. Thus detW ∈ 1 +QΛ{z} is invertible in Λ{z} and therefore
we can write V = UW−1. Together with the expression Je,E = z∂1Je,E of the
function z−1Je,E as one of the columns of the matrix V this proves existence of the
representation (17) in the following corollary.

Corollary 5. Let Le,E ⊂ (H,Ωe(E)) be the Lagrangian cone determined by the J-
function Je,E corresponding to (e, E)-twisted Gromov–Witten theory, and let Lt be
the tangent space to Le,E at the point IE(t,−z). Then the intersection (unique due
to some transversality property) of zLt with the affine subspace −z+zH− coincides
with the value Je,E(τ,−z) ∈ −z + τ (t) + H− of the J-function. In other words,

(17) Je,E(τ, z) = IE(t, z) +
∑

α

cα(t, z) z ∂φα
IE(t, z), where cα(t, ·) ∈ Λ{z},

and τ (t) is determined as the z0-mode of the RHS.

Remark. A by-product of Corollary 5 is a geometrical description of the “mirror
map” t 7→ τ : the J-function obtained as the intersection Lt ∩ (−z + zH−) comes
naturally parameterized by t which may have little in common with the projections
τ − z of the intersection points along H−.
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9. Mirror Formulas

Let us assume now that the bundle E (which is still the sum of line bundles
with first Chern classes ρi) is convex, i.e. spanned fiberwise by global sections, and
apply the above results to the genus-zero Gromov–Witten theory for a complete
intersection j : Y →֒ X defined by a global section. While the above proof of
Theorem 2 fails miserably in the limit λ = 0, the definition of the series Je,E and IE
and the relation between them described by Corollary 5 survive the non-equivariant
specialization. Namely, at λ = 0 the J-function Je,E degenerates into

JX,Y (t, z) = z + t+
∑

d,n

Qd

n!
(evn+1)∗

[

e(E′
0,n+1,d)

z − ψn+1

n∧

i=1

ev∗
i t

]

,

where (evn+1)∗ is the cohomological push-forward along the evaluation map evn+1 :
X0,n+1,d → X and e is the (non-equivariant!) Euler class. Here E′

0,n+1,d ⊂ E0,n+1,d

is the subbundle defined as the kernel of the evaluation map E0,n+1,d → ev∗
n+1E

of sections (from H0(Σ, f∗E)) at the (n+ 1)st marked point.
The function JX,Y is related to the Gromov–Witten invariants of Y by

(18) e(E)JX,Y (j∗u, z) =H2(Y )→H2(X) j∗JY (u, z),

since [Y0,n+1,d] = e(E0,n+1,d)∩ [X0,n+1,d] (see for instance [30]). The long subscript
here is to remind us that the corresponding homomorphism between Novikov rings
should be applied to the RHS.

On the other hand, the series IE in the limit λ = 0 specializes to

IX,Y (t, z) =
∑

d

Jd(t, z)Q
d
∏

i

ρi(d)∏

k=1

(ρi + kz)

since ρi(d) ≥ 0 for all degrees d of holomorphic curves. Passing to the limit λ = 0
in Theorem 2 and Corollary 5 we obtain the following “mirror theorem”.

Corollary 6. The series IX,Y (t,−z) and JX,Y (τ,−z) determine the same cone. In
particular, the series JX,Y related to the J-function of Y by (18) is recovered from
IX,Y via the Birkhoff factorization procedure followed by the mirror map t 7→ τ as
described in Corollary 5.

Remark. Corollary 6 is more general than the (otherwise similar) quantum Lef-
schetz hyperplane section theorems by Bertram and Lee [10,33] and Gathmann [18]
for

(i) it is applicable to arbitrary complete intersections Y without the restriction
c1(Y ) ≥ 0, and

(ii) it describes the J-functions not only over the small space of parameters
t ∈ H≤2(X,Λ) but over the entire Frobenius manifold H∗(X,Λ).

In fact the results of [18] allow one to deal with both generalizations and to compute
recursively the corresponding Gromov–Witten invariants one at a time. What has
been missing so far is the part that Birkhoff factorization plays in the formulations.

Now restricting JX,Y and IX,Y to the small parameter space H≤2(X,Λ) and
assuming that c1(E) ≤ c1(X) we can derive the quantum Lefschetz theorems of
[4, 10, 18, 29, 33]. A dimensional argument shows that the series IX,Y on the small
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parameter space has the form

IX,Y (t, z) = zF (t) +
∑

Gi(t)φi + O(z−1),

where {φi} is a basis in H≤2(X,Λ), Gi and F are scalar formal functions, and F
is invertible (we have F = 1 and Gi = ti when the Fano index is not too small).

Corollary 7. When c1(E) ≤ c1(X) the restriction of JX,Y to the small parameter
space τ ∈ H2(X,Λ) is given by

JX,Y (τ, z) =
IX,Y (t, z)

F (t)
, where τ =

∑ Gi(t)

F (t)
φi.

The J-function of X = CP n−1 restricted to the small parameter plane t0 + tP
(where P is the hyperplane class generating the algebra H∗(X,Λ) = Λ[P ]/(P n))
takes the form

(19) JX(t0 + tP, z) = z e(t0+Pt)/z
∑

d≥0

Qdedt
∏d
k=1(P + kz)n

.

For a hypersurface Y of degree l in CP n−1 we then have

(20) IX,Y (t0 + tP, z) = ze(t0+Pt)/z
∑

d≥0

Qdedt
∏ld
k=1(lP + kz)

∏d
k=1(P + kz)n

.

Corollary 8. On the small parameter space

(i) when l < n− 1,

JX,Y (t0 + tP, z) = IX,Y (t0 + tP, z);

(ii) when l = n− 1,

JX,Y (τ0 + tP, z) = IX,Y (t0 + tP, z)

where τ0 = t0 + l!Qet;
(iii) when l = n,

JX,Y (t0 + τP, z) = IX,Y (t0 + tP, z)/F (t)

where τ = G(t)/F (t) and the series F and G are found from the expansion
IX,Y = exp(t0/z)[zF +GP + O(z−1)]

Projecting JX,Y by j∗ onto the cohomology algebra Λ[P ]/(P n−1) ⊂ H∗(Y,Λ)
we recover the mirror theorem of [25] and, in the case l = n = 5, the quintic mirror
formula of Candelas et al. [11].

10. Serre Duality in Genus Zero

Let Lc,E be the Lagrangian cone in the symplectic space (H,Ωc(E)) defined by

the genus-zero descendant potential F0
c,E, and Lc∗,E∗ be the Lagrangian cone in

the symplectic space (H,Ωc∗(E∗)) defined by the genus-zero descendant potential

F0
c∗,E∗ . Let Jc,E and Jc∗,E∗ denote the J-functions of the cones Lc,E and Lc∗,E∗

respectively:

Jc,E(τ,−z) := Lc,E ∩ (−z + τ + H−),

Jc∗,E∗(τ∗,−z) := Lc∗,E∗ ∩ (−z + τ∗ + H−).



16 TOM COATES AND ALEXANDER GIVENTAL

The following result is obtained from Corollary 2 by passing to the quasi-classical
limit ~ → 0.

Corollary 9. The isomorphism

(H,Ωc∗(E∗)) → (H,Ωc(E)) : f 7→ c∗(E∗)f

of linear symplectic spaces identifies Lc∗,E∗ with Lc,E.

In particular, the family

H → H : τ 7→ c∗(E∗)Jc∗,E∗(τ,−z)
generates the cone Lc,E. We can therefore recover the J-function Jc,E from Jc∗,E∗ .

Corollary 10. Jc,E(τ, z) = zc∗(E∗)∂c(E)Jc∗,E∗(τ∗, z), where

(τ, φ) = ∂φ∂c(E)F0
c∗,E∗

∣
∣
t0=τ∗,t1=t2=...=0

∀φ ∈ H.

Proof. To simplify the notation put J := Jc,E, J∗ := Jc∗,E∗ , c := c(E), c∗ :=
c∗(E∗) = c−1. There exist coefficients Cα (which could a priori be polynomial in
z and depend on τ∗ but turn out here to be constant) and a change of variables
τ = τ (τ∗), such that

c∗J∗(τ∗, z) + z
∑

Cα∂φα
c∗J∗(z, τ∗) = z + τ +O(1/z).

The left-hand side therefore coincides with J(τ, z). Comparing the z-terms, we find
1 = c∗+c∗(

∑
Cαφα), i.e.

∑
Cαφα = c−1. Together with z∂1J

∗ = J∗ this implies
that J(τ, z) = zc∗∂cJ

∗(τ∗, z). Comparing the z0-terms we find

(τ, φ) =
1

2πi

∮

(J(τ, z), φ)
dz

z
= ∂cΩc∗(J

∗(τ∗,−z), φ) = ∂c∂φF0
c∗,E∗ |t0=τ∗ ,t1=t2=...=0.

�

We can repeat the above arguments in the situation of Corollary 3 where c = e

is the S1-equivariant Euler class.

Corollary 11. The map f 7→ (−1)dimEe−1(E)f , Q 7→ ±Q identifies Le−1,E∗ with

Le,E. Furthermore, we have e(E)Je,E(τ, z;Q) = z(−1)dimE∂e(E)Je−1,E∗(τ∗, z;±Q),

where for all φ ∈ H we have (τ, φ) = ∂φ∂e(E)F0
e−1,E∗(τ∗, 0, 0, ...;±Q).

Remark. Corollary 11 generalizes the “non-linear Serre duality” from [23] (Theo-
rem 5.2) obtained there by fixed point localization and applicable to torus-equivariant
bundles E with isolated fixed points.

Theorem 2, Corollary 9 and the mirror formulas of Section 9 have Serre-dual
partners obtained by replacing e and E with with e−1 and E∗. We assume that
the bundle E has integer Chern roots ρ1, ..., ρr, and thus that e−1(E∗) =

∏
(−λ −

ρi)
−1 = (−1)re−1(E). We put

I∗E∗(t, z) :=
∑

d

QdJd(t, z)
∏

i

∏0
k=−∞(−λ − ρi + kz)

∏−ρi(d)
k=−∞(−λ − ρi + kz)

=
∑

d

(±Q)dJd(t, z)
∏

i

∏ρi(d)−1
k=−∞ (λ+ ρi + kz)
∏−1
k=−∞(λ+ ρi + kz)

.
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Theorem 2′. The series I∗E∗ considered as a family t 7→ I∗E∗(t,−z) of vectors
in the symplectic space (H,Ωe−1(E∗)) corresponding to the twisted inner product

(a, b)e−1(E∗) =
∫

X
e−1(E∗)ab on H, is situated on the Lagrangian section Le−1,E∗ ⊂

(H,Ωe−1(E∗)) defined by the differential of the twisted genus-zero descendant poten-

tial F0
e−1,E∗.

Theorem 2′ can be proved by repeating arguments from Section 8. In fact Theo-
rem 2 follows easily from Theorem 2′ and Corollary 11. Namely, the divisor equation
(13) yields

(21) e(E)IE(t, z;Q) = (−1)rz∂e(E)I
∗
E∗(t, z;±Q).

Theorem 2′ implies that the family t 7→ I∗E∗(t,−z;Q) lies in Le−1,E∗ , and therefore
that the family t 7→ −z∂e(E)I

∗
E∗(t,−z;Q) does too since the cone Le−1,E∗ meets

each of its tangent spaces L along zL. Then the first statement in Corollary 11
implies that the family t 7→ IE(t,−z;Q) lies in Le,E .

When the classes ρi are positive, the bundle E∗ is concave in the sense that
H0(Σ, f∗E∗) = 0 for all non-constant maps f : Σ → X of compact connected
complex curves Σ. Then (e−1, E∗)-twisted Gromov–Witten invariants of positive
degrees d 6= 0 admit the non-equivariant specialization λ = 0. The reader can check
that in the case of toric manifoldsX the results of this section reproduce genus-zero
mirror theorems (Theorem 4.2 and Corollary 5.1) from [23].

We illustrate some results of the present section in an example where X =
CP n−1, E is a line bundle of degree 0 < l ≤ n, and the J-functions and their
hypergeometric modifications are restricted to the small parameter plane t0 + tP .
Then

JX(t0 + tP, z;Q) = z e(t0+Pt)/z
∑

d≥0

Qdedt
∏d
k=1(P + kz)n

,

IE(t0 + tP, z;Q) = z e(t0+Pt)/z
∑

d≥0

Qdedt
∏ld
k=1(λ + lP + kz)
∏d
k=1(P + kz)n

,

I∗E∗(t0 + tP, z;Q) = z e(t0+Pt)/z
∑

d≥1

(−1)ldQdedt
∏ld−1
k=0 (λ+ lP + kz)
∏d
k=1(P + kz)n

.

The factor λ + lP in I∗E∗ (corresponding to k = 0 in the numerators) contains no
z. As a result, the expansion I∗E∗(t0 + tP, z;Q) = z + (t0 + tP ) + O(1/z) is valid
for l < n. Thus Je−1,E∗(t0 + tP, z;Q) and I∗E∗(t0 + tP, z;Q) coincide when l < n.

Trying to compute Je,E using Corollary 11, we see from (21) that

e−1(E∗)z∂e(E)Je−1,E∗(t0 + tP, z;±Q) = IE(t0 + tP, z;Q) when l < n.

This results in the same formulas for Je,E as in Corollary 8, both equivariantly and
in the non-equivariant limit: Je,E(t0 + tP, z;Q) = IE(t0 + tP, z;Q) when l < n− 1,
and Je,E(τ0 + tP, z;Q) = IE(t0 + tP, z;Q), τ0 = t0 + l!Qet, when l = n− 1.

When l = n, we have the following expansion:

I∗E∗(t0 + tP, z;Q) = z + t0 + P t+ (λ + nP )Φ(t;Q) +O(1/z),

where

Φ(t, Q) =

∞∑

d=1

(−1)nd
(nd− 1)!

(d!)n
Qdedt.
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Theorem 2′ implies that Je−1,E∗(τ∗0 + Pτ∗, z;Q) = I∗E∗(t0 + P t, z;Q), where
τ∗0 + Pτ∗ = t0 + P t+ (λ+ nP )Φ(t, Q). From this change of variables we derive

λ
∂

∂t0
+ n

∂

∂t
= (1 + n

dΦ

dt
(t, Q))(λ

∂

∂τ∗0
+ n

∂

∂τ∗
).

Therefore

e−1(E∗)z∂e(E)Je−1,E∗(τ∗0 + τ∗P, z;±Q) = IE(t0 + tP, z;Q)/F (t, Q),

where

F (t, Q) = 1 + n
dΦ

dt
(t,±Q) =

∞∑

d=0

(nd)!

(d!)n
Qdedt.

Thus, trying to compute Je,E from Je−1,E∗ in the case l = n using Corollary 11,
we in fact arrive at the same result as in Corollary 8:

Je,E(τ0 + τP, z;Q) = IE(t0 + tP, z;Q)/F (t, Q),

where the change of variables (t0, t) 7→ (τ0, τ ) is determined by expanding this
identity:

z + τ0 + Pτ + O(1/z) = z + t0 + PG(t)/F (t) +O(1/z).

11. Further Comments

On quantum Riemann–Roch. The operators chl(E)z2m−1 commute. In the non-
equivariant setting this property is preserved under quantization for the operators
with m ≥ 0 which occur in Theorem 1. This is due to the nilpotence of chl(E) with
l > 0. Also, the summand with l = 1 on the LHS of (7) is the only one left in this
case. Thus formula (7) simplifies in the non-equivariant case:

Ds =
(

es0(c1(E),cD−1(TX ))e
1
2 s0χ(X) dimE

) 1
24

e
P

m≥0

P

l≥0 s2m−1+l
B2m
(2m)!

̂chl(E)z2m−1 DX .

The formula defines a formal group homomorphism from the group of invertible
multiplicative characteristic classes to invertible operators acting on elements of the
Fock space. It would be interesting to find a quantum-mechanical interpretation
of the normalizing factor in this formula. Since the Fock space should consist of
top-degree forms on H+ rather than functions, the contribution es0χ(X) dimE/48

from the super-determinant probably takes on the role of the Jacobian of our “bare
hands” identification q 7→

√

c(E)q. We do not have however a plausible physical
interpretation for the other factor.

On the Lagrangian cones. In the case of genus-zero Gromov–Witten theory of
X = pt the cone Lpt is generated by the family of functions in one variable x:

F (x,q) :=
1

2

∫ x

0

Q2(u) du, where Q(x) =
∑

qk
xk

k!
.

In particular, under analytic continuation in Q (from the formal neighborhood of
the function Q(x) = x to the space of all functions Q, say, polynomial in x) the cone
LX acquires singularities studied in geometrical optics on manifolds with boundary
(see for instance [2, 19, 37]) and called open swallowtails. It would be interesting
to study singularities of LX under analytic continuation and to understand the
significance of the relationship with geometrical optics.

According to some results and conjectures of [14] and [25], the Lagrangian cones
L corresponding to semisimple Frobenius structures are each linearly isomorphic to
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a closure of the Cartesian product of dimH copies of Lpt, and various models in
genus-zero Gromov–Witten theory differ only by the position of this product with
respect to the polarization. The same is true for the cones Ls corresponding to the
different twisted theories on the same X: according to Corollary 4 they are obtained
from each other by linear symplectic transformations. These transformations form
the multiplicative group exp(

∑
τmz

2m−1) where τm are even elements of the algebra
H . The action of this group on the semi-infinite Grassmannian resembles the
Grassmannian interpretation of the KdV hierarchy. It would be interesting to
further this analogy.

On the mirror theory. When X = pt, the function JX = exp(t0/z). When
E = Cn is the trivial bundle over the point, the integral (14) turns into

∫ ∞

0

. . .

∫ ∞

0

e−
x1+...+xn

z (x1 . . . xn)
λ
z dx1 ∧ . . .∧ dxn .

It would be interesting to find a “quantum symplectic reduction theorem” which
would explain how this integral is related to the J-functions of toric manifolds X
(see [22]) obtained by symplectic reduction from Cn. For example, when X =
CP n−1 = Cn//S1, components of the J-function (19) coincide with complex oscil-
lating integrals

(22) JX(t) = z

∫

γ⊂{u1...un=et}

e
u1+...+un

z
d lnu1 ∧ . . . ∧ d lnun

dt

over suitable cycles γ. For a degree l ≤ n hypersurface Y ⊂ X, this yields integral
representations for IX,Y and IY . Indeed the I-function (20) is proportional to the
convolution (14)
∫ ∞

0

dv e−
v
z JX(t + l ln v) =

∫

{u1...un=vlet}

e
u1+...+un−v

z
dv ∧ d lnu1 ∧ . . . ∧ d lnun

dt
.

Using the change ui 7→ uiv for i = 1, . . . , l ≤ n, we transform it to the “mirror
partner” of Y :

1

2πi

∫

{u1...un=et}

e(ul+1+...+un)/z d lnu1 ∧ . . . ∧ d lnun
(1 − u1 − . . .− ul) dt

=

∫

{u1...un=et; u1+...+ul=1}

e
ul+1+...+un

z
d lnu1 ∧ . . .∧ d lnun

d(1 − u1 − . . .− ul) ∧ dt
.

Another question. According to the physics literature [40], the mirror maps t 7→ τ
arise from the mysterious renormalization. According to [12] the mathematical
content of some important examples of renormalization in quantum field theory is
Birkhoff factorization in suitable infinite-dimensional groups. Are renormalization
and Birkhoff factorization synonymous?

On Serre duality. In the genus-zero theory, when E is convex and E∗ is con-
cave, the sheaves E0,n,d and −E∗

0,n,d are vector bundles with fibers H0(Σ, f∗E)

and H1(Σ, f∗E∗) respectively. Twisting by the Euler class of E∗
0,n,d one obtains

Gromov–Witten invariants of the non-compact total space of the bundle E∗. Genus-
zero invariants twisted by the Euler class of E0,n,d can be interpreted as Gromov–
Witten invariants of the super-manifold (ΠE), i.e. of the total space of the bundle
E with the parity of the fibers reversed.
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The “non-linear Serre duality” phenomenon emerged in [21, 23] in the context of
fixed point localization for genus-zero Gromov-Witten invariants of (ΠE) and E∗.
The duality was formulated as an identification (modulo minor adjustments such as
λ 7→ −λ, Q 7→ ±Q) of certain genus-zero potentials written in Dubrovin’s canonical
coordinates of the semi-simple Frobenius structures associated with the two theo-
ries. According to [24,25] the total descendant potential of a semi-simple Frobenius
structure can be described in terms of genus-zero data presented in canonical coor-
dinates. This implies a higher genus version of the non-linear Serre duality principle
whenever the fixed point localization technique [24] applies. Corollaries 2 and 3,
as well as their genus-zero counterparts Corollaries 10 and 11, assert the principle
in much greater generality and show that both the localization technique and the
reference to semi-simplicity and canonical coordinates in this matter are redundant.

Appendix 1. The proof of Theorem 1

We will begin by applying the Grothendieck–Riemann–Roch theorem to the
bundle ev∗

n+1(E) over the universal family of stable maps π : Xg,n+1,d → Xg,n,d.
This yields

(23) [Xg,n,d] ∩ chk(Eg,n,d) = π∗







∑

r+l=k+1
r,l≥0

Br
r!

chl(ev
∗
n+1(E)) · Ψ(r)







where

Ψ(r) = ψrn+1 ∩ [Xg,n+1,d]−
n∑

i=1

(σi)∗
(
ψr−1
i ∩ [Xg,n,d]

)

+
1

2
j∗







∑

a+b=r−2
a,b≥0

(−1)aψa+ψ
b
− ∩ [Z̃g,n+1,d]






.

Here σi : Xg,n,d → Xg,n+1,d is the section of the universal family defined by the ith
marked point, Zg,n+1,d is the locus of virtual codimension two formed by nodes of

the fibers of π, Z̃g,n+1,d is its double cover given by a choice of one of the branches of

the curve at the node, [Z̃g,n+1,d] is the virtual fundamental class (which is described

explicitly in note (iii) below), j : Z̃g,n+1,d → Xg,n+1,d is the natural map, ψ+ and

ψ− are the first Chern classes of the bundles L+ and L− over Z̃g,n+1,d formed
by the cotangent lines at the nodes, and the K-theoretic push-forward Eg,n,d =
π∗ ev∗

n+1(E) is defined as follows.
A bundle E onX can be represented as the quotient A/B of two concave bundles.

For this, pick a positive line bundle L and let the exact sequence 0 → Ker →
H0(X;E ⊗ LN ) ⊗ L−N → E → 0 take on the role of 0 → B → A→ E → 0. Then
H0(Σ; f∗A) and H0(Σ; f∗B) vanish for sufficiently large N and any non-constant
f : Σ → X so that the following sequence is exact:

0 → H0(Σ; f∗E) → H1(Σ; f∗B) → H1(Σ; f∗A) → H1(Σ; f∗E) → 0.
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This construction applied to a universal stable map of degree d 6= 0 3 yields a
locally free resolution 0 → R1π∗(ev

∗B) → R1π∗(ev
∗A) → 0 for R0π∗(ev

∗E) ⊖
R1π∗(ev

∗E). By definition,

(24) Eg,n,d := [R1π∗(ev
∗B)] ⊖ [R1π∗(ev

∗A)] ∈ K0(Xg,n,d).

In fact this definition is an example of a general construction applicable to families
of nodal curves, or even more generally — to local complete intersection morphisms.

A map p : Y → B is a called local complete intersection (l.c.i.) morphism if for
some (and hence for any) factorization p = q ◦ i with i : Y → P a closed embedding
and q : P → B submersion, i is in fact a regular embedding. The latter means that
the normal sheaf NY/P is locally free, and therefore the relative tangent bundle

Tp := [i∗TP/B ] − [NY/P ] ∈ K0(Y ) is well-defined. According to [1], for any bundle
V on Y , and any proper l.c.i. morphism p : Y → B, there exists a resolution of
R•p∗(V ), i.e. a complex 0 → A0 → . . . → AN → 0 of vector bundles on B with
cohomology sheaves equal to R•p∗V . Moreover, the K-theoretic push-forward p∗V
defined to be the element [A0]− [A1] + . . .+ (−1)N [AN ] ∈ K0(B) does not depend
on the choice of a resolution.

According to [7], the Grothendieck–Riemann–Roch formula

(25) ch(p∗V ) = p∗(ch(V ) · TdTp),

holds true for any proper l.c.i. morphism which admits the above factorization
p = q ◦ i with proper q.

To extend the Grothendieck–Riemann–Roch formula (25) to the orbispace /
orbibundle situation, one lifts the orbibundle V to a G-equivariant bundle over a
space Y ′ fibered over Y by an almost free action of the algebraic Lie group G,
and applies (25) G-equivariantly. More concretely, one can pick a line orbibundle
on Y = Xg,n+1,d very ample on each curve of the universal (g, n, d)-family (e.g.
see [16] where a suitable construction is explained in terms of Hilbert schemes
of projective curves). Then spaces of global sections over the curves form a vector
orbibundle W over B = Xg,n,d. Take B′ to be the total space of the principal frame
bundle associated with this vector bundle. The universal family of stable maps lifts
naturally to form G = GLdimW -equivariant families p′ : Y ′ → B′ and ev : Y ′ → X
of nodal curves and their stable maps. The map p′ is an l.c.i. morphism (properly
factorizable through projectivization of W ∗ lifted to B′). The classifying space BG
admits algebraic finite-dimensional approximations BGN . The corresponding Y ′−
and B′− bundles over BGN form finite-dimensional approximations Y ′

N and B′
N to

the corresponding homotopy quotients Y ′
G = Y ′×G EG and B′

G = B′ ×GEG. The
orbibundle version of (25) is obtained by applying (25) to the properly factorizable
l.c.i. morphisms p′N : Y ′

N → B′
N (cf. [15]).

Applying (25) as directed, we find that

ch(Eg,n,d) = ch(π∗ ev∗
n+1E)

= π∗(ch(ev∗
n+1 E) · Td∨ Ωπ)(26)

where Ωπ is the sheaf of relative differentials of π : Xg,n+1,d → Xg,n,d and Td∨ is
the dual Todd class.

To derive (23) from (26) we follow Mumford [36] and Faber–Pandharipande [16].
We begin by expressing the sheaf Ωπ of relative differentials in terms of universal

3When d = 0, H0(Σ; f∗A) and H0(Σ; f∗B) are non-zero but have constant rank too, so that
the construction of Eg,n,d easily extends to this case as well.
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cotangent lines. Assume first that Xg,n,d, Xg,n+1,d, and Zg,n+1,d are smooth and of
the expected dimension, and that the image π(Zg,n+1,d) of the nodal locus forms a
divisor with normal crossings in Xg,n,d. Then there are exact sequences of sheaves
on Xg,n+1,d

0 → Ωπ → ωπ → OZg,n+1,d
→ 0

and

0 → ωπ → Ln+1 → ⊕ni=1ODi
→ 0,

where ωπ is the relative dualizing sheaf of the universal family π : Xg,n+1,d → Xg,n,d
and Di is the divisor σi(Xg,n,d). Thus

Ωπ = Ln+1 −
n∑

i=1

ODi
−OZg,n+1,d

in K0(Xg,n+1,d), and so

(27) Td∨ (Ωπ) = Td∨ (Ln+1) ·
(

n∏

i=1

Td∨ (−ODi
)

)

·Td∨
(
−OZg,n+1,d

)

The class c1(L) = ψ has zero restrictions to the pairwise disjoint strata Di =
σi(Xg,n,d) and Zg,n+1,d. This translates the multiplicative property of the dual
Todd class Td∨(·) to the additive property of Td∨(·) − 1:

Td(T ) = Td∨(T ∗) = 1 + [Td∨(O(L)) − 1] +
∑

[
1

Td∨(ODi
)
− 1] + [

1

Td∨(OZ)
− 1].

The first two terms yield

Td∨(O(L)) =
ψ

expψ − 1
=
∑

r≥0

Br
r!
ψr .

Using σ∗
i (−Di) = ψi and the exact sequence 0 → O(−Di) → O → ODi

→ 0, we
find

1

Td∨(ODi
)
− 1 = Td(O(−Di)) − 1 =

∑

r≥1

Br
r!

(−Di)r = −(σi)∗
∑

r≥1

Br
r!
ψr−1
i .

The codimension-2 summand in (28), supported in the neighborhood of Zg,n+1,d,
is processed using the inclusion-exclusion formula for the bi-graded Poincaré poly-
nomial of C[x, y]/(xy):

1 − uv

(1 − u)(1 − v)
=

1

1 − u
+

1

1 − v
− 1.

The pull-back of the normal bundle to the double cover Z̃g,n+1,d is L−1
+ ⊕ L−1

− . In

the total space of this bundle, Z̃g,n+1,d is the normal crossing of the divisors D±

with the conormal bundles L±. We see from the Koszul complex

0 → O(L+ ⊗ L−) → O(L+) ⊕O(L−) → O → OZg,n+1,d
→ 0

that in the neighborhood of Z̃g,n+1,d

1

Td∨(OZg,n+1,d
)
− 1 =

1 − e−D+−D−

D+ +D−

D+

1 − e−D+

D−

1 − e−D−
− 1 =

D+D−

D+ +D−
(

1

1 − e−D+
+

1

1 − e−D−
− 1 − 1

D+
− 1

D−
) =
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D+D−

D+ +D−
(

1

D+
[

D+

1 − e−D+
− D+

2
− 1] +

1

D−
[

D−

1 − e−D−
− D−

2
− 1]) =

1

2
j∗[
∑

r≥2

Br
r!

ψr−1
+ + ψr−1

−

ψ+ + ψ−
] =

1

2
j∗[
∑

r≥2

Br
r!

∑

a+b=r−2

(−1)aψa+ψ
b
−].

Combining the formulas for Td∨ (Ωπ) with (26) we arrive at (23).

In the general case, where Xg,n,d, Xg,n+1,d, and Zg,n+1,d need not be smooth
and π(Zg,n+1,d) need not be a divisor with normal crossings, this argument remains
“virtually correct”: we can find a flat family π̃ : C → M of pre-stable curves and
an embedding Xg,n,d → M such that

• the family C → M restricts to the universal family over Xg,n,d:

Xg,n+1,d
- C

Xg,n,d

π

?

- M ;

π̃

?

• the bundle ev∗
n+1(E) over Xg,n+1,d is the pull-back of a bundle over C;

• C and M are smooth;
• the locus Z of nodes of the fibers of π̃ is smooth, and π̃(Z) ⊂ M is a divisor

with normal crossings;
• there is a double cover Z̃ → Z corresponding to the choice of one of the

branches of the curve at the node, and line bundles L+ and L− over Z̃ with
fibers given by the cotangent lines at the node;

• the pull-back to the double cover Z̃ of the normal bundleNZ/C is isomorphic
to L+ ⊕ L−.

Such a family π̃ : C → M was constructed in [16]. Since our argument in the
smooth case used only the latter four properties above, it also proves the analogous
statement for the family π̃ : C → M. We recover (23) by capping the result for
π̃ : C → M with the virtual fundamental class [Xg,n,d].

In deriving Theorem 1 from (23), we will need also the following facts.

(i) The comparison formula for cotangent line classes:

ψi − π∗(ψi) = Di.

(ii) The naturality of the virtual fundamental class under the flat morphism π:

π∗[Xg,n,d] = [Xg,n+1,d].

(iii) The composition rule: recall that the double cover Z̃g,n+1,d of the nodal
locus coincides with the total range of the gluing maps

(28) Xg−1,n+•+◦ ×X×X X0,1+•+◦,0
γirr−−→ Z̃g,n+1,d

and

(29) Xg+,n++•,d+ ×X X0,1+•+◦,0 ×X Xg−,n−+◦,d−
γred−−−→ Z̃g,n+1,d,

where g+ + g− = g, n+ + n− = n, and d+ + d− = d. The composition rule
says that images of the virtual fundamental classes under the gluing maps
add up to the virtual fundamental class [Z̃g,n+1,d].
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Properties (ii) and (iii) are part of the axioms in [8] proved in [5], and (i) is well
known too — see for instance [39].

Next we need similar results about the elements Eg,n,d ∈ K0(Xg,n,d):

(iv)
π∗Eg,n,d = Eg,n+1,d.

(v)
γ∗irr j

∗Eg,n+1,d = pr∗Eg−1,n+•+◦,d − ev∗
∆ E

where γirr is the gluing map (28), pr is the projection to the first factor
of the fiber product on the LHS of (28), and ev∆ = ev• = ev◦ denotes
evaluation at the point of gluing.

(vi)

γ∗red j
∗Eg,n+1,d = pr∗+ Eg+,n++•,d+ + pr∗−Eg−,n−+◦,d− − ev∗

∆ E,

where γred is the gluing map (29), pr± are projections to the first and last
factors of the fiber product on the LHS of (29), and ev∆ is as above.

In view of our construction (24) of Eg,n,d and its resolution by vector bundles
on Xg,n,d, it suffices to verify these properties either when R0π∗ ev∗

n+1E = 0 and

Eg,n,d = R1π∗ ev∗
n+1 E is a vector bundle, or when d = 0. In each case they are

straightforward consequences of Serre duality, which identifies H1(Σ, f∗E) with
f∗E-valued meromorphic differential forms on Σ allowed poles only at the nodes
subject to the condition that the sum of residues at each node is zero. It is this
residue-matching condition which gives rise to the factors ev∗

∆ E above.
Finally, we will need three integrals over low-genus moduli spaces. Introduce

correlator notation for Gromov–Witten invariants: for polynomials in ψ

ai(ψ) = ai0 + ai1ψ + . . . , i = 1, . . . , n,

with coefficients in H∗(X; Λ) and an element β ∈ H∗(Xg,n,d; Λ), define

〈〈
a1(ψ), . . . , an(ψ); β

〉〉

g,n,d
:=

∫

[Xg,n,d]





i=n∧

i=1

∑

j≥0

ev∗
i (a

i
j)ψ

j
i



 ∧ β

Using this notation,

(vii)

〈〈
t(ψ), t(ψ), chk+1(E); c(E0,3,0)

〉〉

0,3,0
=

∫

X

t0 ∧ t0 ∧ chk+1(E) ∧ c(E);

(viii)
〈〈

chk(E)ψ; c(E1,1,0)
〉〉

1,1,0
=

1

24

∫

X

chk(E) ∧ e(X);

(ix)

〈〈
chk+1(E); c(E1,1,0)

〉〉

1,1,0
=

1

24

∫

X

chk+1(E) ∧ e(X) ∧
∑

j≥1

sj chj−1(E)

− 1

24

∫

X

chk+1(E) ∧ cD−1(TX)

The equality (vii) is obvious since X0,3,0 = X and [X0,3,0] is the usual fundamental
class of X; (viii) and (ix) follow from the well-known facts

• X1,1,0 = X ×M1,1.
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• [X1,1,0] is the cap product of the fundamental class of X × M1,1 with
e(p∗1TX ⊗ p∗2H−1). Here p1 and p2 are the projections to the first and
second factors of X × M1,1 respectively and H is the Hodge bundle over

M1,1.
• E1,1,0 = p∗1E ⊗ (1 ⊖ p∗2H−1);

• c1(H) = ψ1 on M1,1.
•
∫

[M1,1]
ψ1 = 1/24.

Using (23) and the properties (i–ix) we now derive Theorem 1′. At s = (0, 0, . . .)
Theorem 1′ holds trivially, so it suffices to prove the infinitesimal version

(30)
∂

∂sk
Ds =







∑

2m+r=k+1
r,m≥0

B2m

(2m)!
(chr(E)z2m−1 )̂







Ds

+

(
1
24

∫

X cD−1(X) ∧ chk+1(E) + 1
48

∫

X e(X) ∧ chk(E)
− 1

24

∫

X e(X) ∧ chk+1(E) ∧ (
∑

l sl+1 chl(E))

)

Ds

Here the first two exceptional terms come from the factors on the LHS of (7); in
particular the second one is due to

(

sdet
√

c(E)
)

= exp
(

str ln
√

c(E)
)

= exp





∫

X

e(X) ∧ 1

2

∑

j≥0

sj chj(E)



 .

The third exceptional term is the cocycle value

C




B2

2

∑

l≥0

sl+1(chl(E)z)̂ ,

(
chk+1(E)

z

)
ˆ



 = − 1

24
str



chk+1(E) ·
∑

l≥0

sl+1 chl(E)





which arises from commuting the derivative of the 1
z terms on the RHS in (7) past

the terms involving z.
In the above correlator notation,

Ds = exp




∑

g≥0

∑

n≥0

∑

d∈H2(X;Z)

~g−1Qd

n!

〈〈
t(ψ), . . . , t(ψ); c(Eg,n,d)

〉〉

g,n,d





and

(31) D−1
s

∂

∂sk
Ds =

∑

g,n,d

~g−1Qd

n!

〈〈
t(ψ), . . . , t(ψ); chk(Eg,n,d) c(Eg,n,d)

〉〉

g,n,d

+
∑

g,n,d

~g−1Qd

(n− 1)!

〈〈

t(ψ), . . . , t(ψ),
∂t

∂sk
; c(Eg,n,d)

〉〉

g,n,d

.

We apply our expression (23) for [Xg,n,d]∩ chk(Eg,n,d) and compare the result with
(30) by extracting terms involving the same Bernoulli numbers.

We begin with B0 = 1. The relevant part of (31) is

(32)
∑

g,n,d

~g−1Qd

n!

〈〈
t(ψ), . . . , t(ψ); π∗

[
B0 ev∗

n+1 chk+1(E)
]
c(Eg,n,d)

〉〉

g,n,d
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We compute
〈〈
t(ψ), . . . , t(ψ); π∗

[
B0 ev∗

n+1 chk+1(E)
]
c(Eg,n,d)

〉〉

g,n,d
by pulling back

to Xg,n+1,d via π. Using the comparison formula (i) and the naturality (iv) of
c(Eg,n,d) under π∗, we find that

〈〈
t(ψ), . . . , t(ψ); π∗

[
ev∗
n+1 chk+1(E)

]
c(Eg,n,d)

〉〉

g,n,d
=

−
i=n∑

i=1

〈〈

t(ψ), . . . , t(ψ)
︸ ︷︷ ︸

i−1

, chk+1(E)

[
t(ψ)

ψ

]

+

, t(ψ), . . . , t(ψ)
︸ ︷︷ ︸

n−i

; c(Eg,n,d)

〉〉

g,n,d

+
〈〈
t(ψ), . . . , t(ψ), chk+1(E); c(Eg,n+1,d)

〉〉

g,n+1,d
.

Thus (32) becomes

(33) −
∑

g,n,d

~g−1Qd

(n− 1)!

〈〈

t(ψ), . . . , t(ψ), chk+1(E)

[
t(ψ) − ψ

ψ

]

+

; c(Eg,n,d)

〉〉

g,n,d

− 1

2~

〈〈
t(ψ), t(ψ), chk+1(E); c(E0,3,0)

〉〉

0,3,0
−
〈〈

chk+1(E); c(E1,1,0)
〉〉

1,1,0
.

Here the exceptional terms arise from the fact that the moduli spaces X0,2,0 and
X1,0,0 are empty and therefore X0,3,0 and X1,1,0 cannot be interpreted as universal
curves.

The first two summands in (33) add up to D−1
s (chk+1(E)/z)̂ Ds. The quadratic

Hamiltonian corresponding to chk+1(E)/z has pq- and q2-terms but no p2-terms.
Quantization of the pq-terms yields the linear vector field associated to the linear
map q(z) 7→ −[chk+1(E)q(z)/z]+, whilst the q2-term −(chk+1(E)q0, q0)/2 matches
the second summand in (33) due to (vii) and (6). Evaluating the third summand
using (ix) we conclude that the terms in (31) involving B0 can be written as

(34) D−1
s





(
chk+1(E)

z

)
ˆ+ 1

24

∫

X
cD−1(X) ∧ chk+1(E)

− 1
24

∫

X
e(X) ∧ chk+1(E) ∧

(
∑

j sj chj−1(E)
)



Ds.

The part of (31) involving B1 = −1
2

is

∑

g,n,d

~g−1Qd

n!

〈〈
t(ψ), . . . , t(ψ); π∗

[

B1 ev∗
n+1 chk(E)

(

ψn+1 −
i=n∑

i=1

Di

)]

c(Eg,n,d)
〉〉

g,n,d

Processing this as above and using the fact that σ∗
i ψn+1 = 0 we find that it is equal

to

1

2

∑

g,n,d

~g−1Qd

(n− 1)!

〈〈
t(ψ), . . . , t(ψ), chk(E)(t(ψ) − ψ); c(Eg,n,d)

〉〉

g,n,d

+
1

2

〈〈
chk(E)ψ; c(E1,1,0)

〉〉

1,1,0
.

In view of (viii) and the twisted dilaton shift (6), this coincides with

(35) −
∑

g,n,d

~g−1Qd

(n− 1)!

〈〈
t(ψ), . . . , t(ψ),

∂t

∂sk
; c(Eg,n,d)

〉〉

g,n,d
+

1

48

∫

X

e(X) ∧ chk(E).
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Finally, it remains to check the equality of the B2m-terms with m > 0. These
split into three parts, corresponding to the decomposition (from (23))

Ψ(2m) = ψ2m
n+1 ∩ [Xg,n+1,d] −

n∑

i=1

(σi)∗
(
ψ2m−1
i ∩ [Xg,n,d]

)

+
1

2
j∗







∑

a+b=2m−2
a,b≥0

(−1)aψa+ψ
b
− ∩ [Z̃g,n+1,d]







of Ψ(2m) as the sum of a term supported in the bulk of Xg,n+1,d, a term supported
on the divisors Di, and a term supported on the singular locus Zg,n+1,d. We will
call the three parts the codimension-0, codimension-1, and codimension-2 terms
respectively. Processing the codimension-0 and codimension-1 terms as before, we
find that they contribute
(36)

−
∑

g,n,d

~g−1Qd

(n− 1)!

〈〈

t(ψ), . . . , t(ψ),
B2m

(2m)!
chk+1−2m(E)ψ2m−1(t(ψ)−ψ); c(Eg,n,d)

〉〉

g,n,d

.

We can analyze the codimension-2 terms using the composition laws (iii), (v), and
(vi); they yield

(37)
∑

g1,n1,d1
g2,n2,d2

~g1+g2−1Qd1+d2

n1!n2!

B2m

(2m)!

∑

a+b=2m−2
a,b≥0

(−1)agαβ

〈〈

t(ψ), . . . , t(ψ), chk+1−2m(E)φαψ
a;

c(Eg1,n1+1,d1)
√

c
(
ev∗
n1+1 E

)

〉〉

g1,n1+1,d1

×
〈〈

t(ψ), . . . , t(ψ), φβψ
b;

c(Eg2,n2+1,d2)
√

c
(
ev∗
n2+1 E

)

〉〉

g2,n2+1,d2

+
∑

g,n,d

~g−1Qd

n!

B2m

(2m)!

∑

a+b=2m−2
a,b≥0

(−1)agαβ

〈〈

t(ψ), . . . , t(ψ), chk+1−2m(E)φαψ
a, φβψ

b;
c(Eg−1,n+2,d)

√

c
(
ev∗
n+1 E

)
√

c
(
ev∗
n+2E

)

〉〉

g−1,n+2,d

where {φµ} is a basis for H∗(X), gµν = (φµ, φν), and gµν is the (µ, ν) entry of
the matrix inverse to that with (µ, ν) entry gµν . We use the summation convention
here, summing over the repeated indices α and β. Equations (36) and (37) together
add up to

(38) D−1
s

(
B2m

(2m)!

(
chk+1−2m(E) z2m−1

)ˆ
)

Ds.

Indeed, the quadratic Hamiltonian corresponding to chk+1−2m(E) z2m−1 contains
pq- and p2-terms but no q2-terms. Quantization of the pq-terms gives the linear
vector field associated to the linear map q(z) 7→ − chk+1−2m(E)z2m−1q(z); this
matches with (36). Quantization of the p2-terms yields a bivector field which when
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applied to Ds brings down (37). In particular the factors of c(ev∗
∆(E)) in (37),

which arise from the matching condition at the node in (v) and (vi) and which we
have split up here into pairs of square roots, are absorbed by the difference between
derivatives in t and derivatives in q coming from the twisted dilaton shift (6).

Combining (34), (35), and (38) with (30) and (31) yields Theorem 1′. The proof
of Theorem 1 is now complete.

Appendix 2. Descendants and ancestors

In this Appendix we will establish part (i) of Proposition 1 in Section 6, which
describes properties of the genus-zero descendant potential F0

X in terms of the
geometry of the symplectic space (H,Ω). In fact we will do more: we will derive the
Proposition from a relationship between gravitational descendants of any genus and
the corresponding cohomology classes pulled back from Deligne–Mumford spaces,
which we call ancestors4, expressed in terms of the quantization formalism of Section
2. The theorem in question, which is a reformulation of a result of Kontsevich and
Manin [32], has been announced in [25]. We recall the formulation and furnish a
proof below.

Consider the morphism Xg,m+l,d → Mg,m given by forgetting the map and
the last l marked points and contracting any unstable components of the resulting
marked curve. Denote by ψ̄m,l;i the pull-back from Deligne–Mumford space Mg,m

of the first Chern class of the ith universal cotangent line bundle. This differs from
the descendant class ψi on Xg,m+l,d . Following [25], introduce the genus-g ancestor
potential

(39) F̄g
X(t̄0, t̄1, . . . ; τ ) :=

∑

d,m,l

Qd

m!l!

∫

[Xg,m+l,d]

m∧

i=1




∑

k≥0

(ev∗
i t̄k) ψ̄

k
m,l;i





m+l∧

i=m+1

ev∗
i τ,

which is a formal function of the cohomology classes t̄0, t̄1, . . . ∈ H and τ ∈ H . The
total ancestor potential is defined as

Aτ (t̄0, t̄1, . . .) = exp




∑

g≥0

~g−1F̄g
X(t̄0, t̄1, . . . ; τ )



 .

This can be regarded as a formal function on the space of cohomology-valued poly-
nomials t̄(z) = t̄0 + t̄1z + . . . which depends on the parameter τ . We regard it as
an asymptotic element of the Fock space, depending on τ ∈ H , via the dilaton shift
q(z) = t̄(z) − z.

We will use the abbreviated correlator notation
〈〈
a1(ψ, ψ̄), . . . , am(ψ, ψ̄)

〉〉

g,m
(τ ) :=

∑

l,d

Qd

l!

〈〈
a1(ψ, ψ̄), . . . , am(ψ, ψ̄), τ, . . . , τ ; 1

〉〉

g,m+l,d

for Taylor series in τ with coefficients possibly mixing descendant and ancestor
classes, so that for instance

F̄g
X(t̄0, t̄1, . . . ; τ ) =

∑

m

1

m!

〈〈
t̄(ψ̄), . . . , t̄(ψ̄)

〉〉

g,m
(τ ).

4We are thankful to E. Getzler for teaching us this relationship.
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Introduce the operator series Sτ (z
−1) = 1 + S1z

−1 + S2z
−2 + . . . acting on the

space H = H((z−1)) and defined in terms of genus-zero descendants by

(40)
(
Sτ (z

−1
)
u, v) := (u, v) +

〈〈

u

z − ψ
, v

〉〉

0,2

(τ ),

where we expand 1/(z − ψ) as a power series in 1/z. The series Sτ depends on the
parameter τ ∈ H . According to [21, 23] it satisfies the identity S∗

τ (−z−1)Sτ (z
−1) =

1 and consequently defines a symplectic transformation of (H,Ω). We denote the

quantization exp
(
(lnS−1

τ )̂
)

of the inverse of this symplectic transformation by Ŝ−1
τ .

The action of the operator Ŝ−1
τ on an element G of the Fock space is explicitly

described by the formula

(Ŝ−1
τ G)(q) = e〈〈q(ψ),q(ψ)〉〉0,2(τ)/2~G([Sτq]+)

where [Sτq]+ is the power series truncation of Sτ (z
−1)q(z). This is essentially

an instance of Proposition 5.3 in [25], which similarly describes the action on the

Fock space of the operators exp ǫÂ, where A is an operator power series in 1/z.
The quadratic Hamiltonian corresponding to such A has no p2-terms. Thie reduces
computation of (exp ǫÂ)G to solving the first order linear PDE df/dǫ = Âf, f |ǫ=0 =
G, which can be done by the method of characteristics. The pq-terms give rise to the
linear change of variables q 7→ [exp(ǫA)q]+. To verify that in the case ǫA = − lnSτ ,
the exponential factor in the above formula agrees with the one in [25], Proposition
5.3, one can use the WDVV-like identity

〈〈
q(ψ), 1,q(ψ)

〉〉

0,3
(τ ) =

〈〈
q(ψ), 1, φα

〉〉

0,3
(τ ) gαβ

〈〈
φβ, 1,q(ψ)

〉〉

0,3
(τ )

(where gαβ is as in (37) and we use the summation convention) together with the
string equation. We leave some details here to the reader.

Let F 1(τ ) :=
〈〈 〉〉

1,0
(τ ) = F1

X(τ, 0, 0, . . .) denote the genus-one non-descendant

Gromov–Witten potential of X. Recall that the descendant potential DX is iden-
tified with an asymptotic element of the Fock space via the dilaton shift q(z) =
t(z) − z.

Theorem. DX = eF
1(τ)Ŝ−1

τ Aτ .

Proof. Let L be one of the universal cotangent line bundles over Xg,m+l,d and L̄ be

its counterpart pulled back from Mg,m and corresponding to the marked point with
the same index (let it be 1). Let ψ = c1(L) and ψ̄ = c1(L̄). There is a section of
Hom(L̄, L) which is regular outside the virtual divisor D consisting of stable maps
such that the first marked point 1 is situated on a component of the curve which
gets contracted by the map Xg,m+l,d → Mg,m. It is easy to see that D is the total
range of the gluing maps

X0,1+•+l′ ,d′ ×X Xg,m−1+◦+l′′ ,d′′ → Xg,m+l,d

over all splittings l′ + l′′ = l, d′+d′′ = d. At a generic point of D the virtual normal
bundle to D is canonically identified with Hom(L̄, L). This implies that ψ − ψ̄ is
virtually Poincaré-dual to D: [Xg,m+l,d ] ∩ (ψ − ψ̄) = [D]. Thus

〈〈
uψa+1ψ̄b, . . .

〉〉

g,m
(τ ) =

〈〈
uψaψ̄b+1 , . . .

〉〉

g,m
(τ ) +

〈〈
uψa, φα

〉〉

0,2
(τ ) gαβ

〈〈
φβψ̄

b, . . .
〉〉

g,m
(τ ),
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where “. . .” stands for the descendant and/or ancestor content of the other marked
points (to be the same in all three places). Applying this identity inductively to
express descendants in terms of ancestors we conclude that the descendant corre-
lators

〈〈
t(ψ), . . . , t(ψ)

〉〉

g,m
(τ ) are obtained from the corresponding ancestor corre-

lators
〈〈
t̄(ψ̄), . . . , t̄(ψ̄)

〉〉

g,m
(τ ) by the substitution t̄(z) = [Sτ (z

−1)t(z)]+. This is

essentially the result from [32].
Let us compare this conclusion with the statement of the theorem. Noting the

presence of the similar change q 7→ [Sτq]+ in the explicit description of the operator

Ŝ−1
τ we should also observe that q(z) and t(z) are not the same: q(z) = t(z) − z.

This gives rise to a discrepancy of [z − Sτz]+. Since

([z − Sτz]+, v) =



−
〈〈

z1

z − ψ
, v

〉〉

0,2

(τ )





+

= −
〈〈
1, v, τ

〉〉

0,3,0

= −(τ, v)

we find that the discrepancy is equal to −τ . Thus the change q 7→ [Sτq]+ is
equivalent to the change

t 7→ t̄ = [Sτ t]+ − τ = [Sτ (t − τ )]+.

By Taylor’s formula, we have

Fg
X(t) =

∞∑

m=0

1

m!

〈〈
t(ψ), . . . , t(ψ)

〉〉

g,m
(0) =

∞∑

m=0

1

m!

〈〈
t(ψ) − τ, . . . , t(ψ) − τ

〉〉

g,m
(τ ).

We conclude that for g > 1 the descendant potentials Fg
X (which do not depend

on τ ) are obtained from the ancestor potentials F̄g
X (which do depend on τ ) by the

substitution q(z) 7→ [Sτ (z
−1)q(z)]+. In order to make the same true for g = 0 and

g = 1 we have to take account of the terms corresponding to the unstable indices
(g,m) = (0, 0), (0, 1), (0, 2), and (1, 0) which are missing from the ancestor poten-

tials. The first three of them give rise to the factor exp
(〈〈

q(ψ),q(ψ)
〉〉

0,2
(τ )/2~

)

:

the equality

1

2

〈〈
t(ψ) − ψ, t(ψ) − ψ

〉〉

0,2
(τ ) =

〈〈 〉〉

0,0
(τ ) +

〈〈
t(ψ) − τ

〉〉

0,1
(τ ) +

1

2

〈〈
t(ψ) − τ, t(ψ) − τ

〉〉

0,2
(τ )

follows easily from the dilaton equation
〈〈
ψ, . . .

〉〉

g,n+1,d
= (2g − 2 + n)

〈〈
. . .
〉〉

g,n,d

applied with g = 0. Finally, the missing summand
〈〈 〉〉

1,0
(τ ) coincides with F 1(τ ).

The Theorem follows. �

Passing to the quasi-classical limit ~ → 0 we obtain the following result.

Corollary. The Lagrangian sections LX and L̄τ which represent respectively the
differentials of the genus-zero descendant potential F0

X and genus-zero ancestor
potential F̄0

X(. . . ; τ ) are related by the symplectic transformation Sτ :

L̄τ = SτLX .
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Finally, we derive part (i) of Proposition 1. When q(z) ∈ zH+, so that t̄0 = 0,
the genus-zero ancestor potential F̄0

X(. . . ; τ ) has identically zero 2-jet at q(z). This

follows from the fact that dimM0,m+2 < m. Thus

(a) the cone L̄τ contains the isotropic subspace zH+;
(b) at any point q̄ ∈ zH+ the tangent space L to L̄τ at q̄ is equal to H+.

Applying the symplectic transformation S−1
τ we see that the tangent space Lf to L

at f = S−1
τ q̄ meets L along zLf provided that q̄ ∈ zH+. The condition Sτ f ∈ zH+

on f = (p,q) ∈ L is equivalent to the system of equations
〈〈
1,q(ψ), v

〉〉

0,3
(τ ) = 0 for all v ∈ H .

In other words, τ must be a critical point of
〈〈
1,q(ψ)

〉〉

0,2
(τ ) considered as a function

of τ ∈ H (depending on the parameter q ∈ H+). When q(z) = q0 − z, the function
turns into (q0, τ )− (τ, τ )/2 and has the unique nondegenerate critical point τ = q0.
This guarantees existence of a unique critical point τ (q) in a formal neighborhood
of q = −z. The result follows.
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