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Abstract. We classify singularities of multiple-valued solutions of higher order sys-

tems of partial differential equations in the case when projections of the correspond-

ing integral manifolds of the Cartan distribution in the jet space to the space of
independent variables have Whitney singularities.

§0 Introduction

A propagating wave front of geometrical optics, initially non-singular, can be-
come singular. This property of geometrical optics can be interpreted as that of
solutions of Hamilton – Jacobi equations to be multiple-valued even if the initial
data of the Cauchy problem are single-valued. The fronts are in fact levels of such
a solution, the initial front may be viewed as a source of the light propagation, and
if a few different rays from the source deliver light to a given target point, their
optical lengths are exactly the few values of the solution at this point.

A systematic study of ramifications of solutions of Hamilton – Jacobi equations
by means of singularity theory was begun by V.Arnold in 1972 and led him to a
remarkable theory [1], [4] of singularities of wave fronts and caustics and to the
discovery of their relations with the discriminants of reflection groups.

The success of Arnold’s approach created for successors a good pattern to fol-
low. The approach is based on the fact that in geometrical optics the differential of
a solution of a Hamilton-Jacobi equation describes a non-singular submanifold in
the cotangent bundle of the domain. It is in fact a Lagrangian submanifold of the
cotangent bundle located within the hypersurface given by the Hamilton – Jacobi
equation, and the solution ramifies exactly where the projection of the submanifold
to the domain degenerates. The idea now is to forget about the Hamilton – Ja-
cobi equation and to classify typical projections of Lagrangian submanifolds from
the cotangent bundle to the base. An answer to this problem would also describe
singularities of solutions of generic Hamilton – Jacobi equations (since a hypersur-
face containing the Lagrangian submanifold can be always perturbed along with
it) while the classification of singularities for a given Hamilton – Jacobi equation
constitutes a separate problem.

In the general context of partial differential systems Hamilton – Jacobi equations
form a special class of 1-st order PDEs on one unknown function. A more general
problem — classification of singularities of multiple-valued vector-solutions for sys-
tems of the 1-st order PDEs — was considered by V.Lychagin [ 12]. Following to
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the pattern above one should interpret partial differential equations as algebraic
relations between functions and their derivatives in a jet space of vector-functions.
The jet spaces bear canonical Cartan distributions expressing the fact that the vari-
ables standing for derivatives of functions are really the derivatives of the variables
standing for the functions themselves. A (multiple-valued, or generalized) solution
of a PDE system is an integral submanifold of the Cartan distribution in the jet
space, assumed to be non-singular and located on the submanifold determined by
the PDE system in question. Bearing in mind applications to generic PDE systems
one drops the system itself and simply classifies the singularities of multiple-valued
(vector-)functions as those of projections of such integral submanifolds from the jet
space to the base.

It is not true in general that generic phenomena for projections of integral man-
ifolds are the same as for generic mappings of manifolds of equal dimensions. How-
ever, if a stable singularity of differential mappings can be realized as a projection of
an integral submanifold then perturbations of the integral submanifold (within the
class of integral submanifolds) realize the same singularity type of the projection
to the base. It turns out that this idea applies pretty well to so called Whitney
singularities, that is generic maps R

n → R
n with the differential of corank 6 1.

Their classification form a discrete series, n = 1, 2, 3, . . . (fold, cusp, . . . ) and they
all can be realized by integral submanifolds.

It is where the idea of Lychagin’s paper comes from. He fixes a Whitney type
germ of the projection to the base and classifies generic integral embeddings of the
projected manifold into the 1-jet space of vector-functions over the given projection
to the base. The classification turns out to be discrete in the case where the number
of independent variables of the vector-functions in question does not exceed their
vector dimension.

Later [ 6] I interpreted the result and the normal forms of the singularities
geometrically. Singularities (that is ramification) of multiple-valued functions are
better displayed by their graphs — multiple-valued “sections” of the 0-jet bundle.
The graphs of Lychagin’s singularities turn out to be isomorphic to so called open
swallowtails — the strata of the discriminants in spaces of polynomials in one
variable where the polynomial has a root of multiplicity exceeding half of its degree.
These varieties first arose probably in Hilbert’s invariant theory of binary forms and
then occurred in various singularity problems ([2], [ 7]) in particular in the role of
Lagrangian varieties in geometrical optics on manifolds with boundary ([3],[ 8]).

The purpose of the present paper is to extend this geometrical approach to the
general case of systems of higher order PDE. Following V.Arnold we begin with
a non-singular N -dimensional integral submanifold X of the Cartan distribution
in the m-jet space of d-dimensional vector-functions of N variables, and “forget”
the differential equations (which are considered to be generic). Then following
V.Lychagin we assume the projection of the integral submanifold to the base to
be Whitnean, of index n in the classification of corank-1 singularities of differen-
tial maps (see §1). The idea of our geometrical approach is based on construction
of universal varieties for Whitney maps. This means that we begin with study-
ing arbitrary “m times differentiable” multiple-valued scalar functions with fixed
projection of the corresponding integral submanifold to the base. All such func-
tions lifted to X generate there a subalgebra in the algebra of regular functions.
This subalgebra can be viewed as the algebra of regular functions on some variety
Γn

m parametrized by X. By the very construction, this variety has the universal
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property that whenever X is embedded (over the given projection to the base) into
an m-jet space as an integral submanifold of the Cartan distribution, its map to
the 0-jet space onto the graph of the corresponding multiple-values section factors
through Γn

m. In particular if the embedded dimension of Γn
m does not exceed the

dimension N + d of the 0-jet space the graphs should be, generically, isomorphic to
Γn

m. Studying further the universal varieties of Whitnean mappings we will show
that they are straightforward “higher derivative” generalizations of open swallow-
tails and that their position in the 0-jet space can be brought to a normal form by
suitable equivalence transformations.

In order to describe here the normal forms we have to introduce some discrimi-
nants in spaces of polynomials with multiple critical points.

Let us consider at first the space of polynomials in one variable, x, of degree
m(n + 1) + 1 whose derivative has n + 1 roots of multiplicity m. Such polynomials
can be written in the form (we fix the 1-st coefficient and reduce the root sum to
0)

∫ x

0

(yn+1 + q1y
n−1 + · · ·+ qn)m dy + u

where (q1, . . . , qn, u) are arbitrary coefficients. Let ∆n
m−1 denote the discriminant

in this polynomial space that is the hypersurface of polynomials with multiple
roots (the multiplicity jumps automatically to m+1 so that only ∆n

0 is the usual
swallowtail — the discriminant in the space of all polynomials of degree n+2). This
hypersurface can be considered as the graph of a multiple-valued (in fact n + 1-
valued) scalar function u of n independent variables q. The graphs with n = 2 are
shown in Figure 1. It displays a series of 3-valued functions with growing “number
of derivatives” to be well-defined (topologically the surfaces alternate between the
first two). These functions will serve us as normal forms in the “higher derivative”
generalization of Arnold’s scalar problem.

In order to describe normal forms in “higher Lychagin’s problem” let us consider
the space of polynomials of degree m(n + 1) + n with the property that their n-th
derivative has n + 1 roots of multiplicity m:

∫ x

0

dyn

∫ yn

0

· · ·

∫ y2

0

(yn+1
1 + · · ·+ qn)m dy1

+u1x
n−1 + · · · + un

where now the arbitrary coefficients are (q1, . . . , qn, u1, . . . , un). In the discriminant
of this polynomial space let us consider the closed stratum, denoted Γn

m, of the
polynomials with a root of multiplicity > n (it automatically jumps to n + m at
least). This stratum is an n-dimensional variety in the 2n-dimensional space and
can be considered as the graph of the n+1-valued vector-function (u1, . . . , un) of n
independent variables q. One can check that this vector-function is the gradient of
the scalar function described by the graph ∆n

m in the previous paragraph. On one
hand this shows that Figure 1 accumulates information on these vector-functions as
well. On the other hand this means that Γn

m have Lagrangian embeddings into T ∗
R

n

and explains that “strange” circumstance that in fact they have already occurred
in the Lagrangian role in a paper by V.Zakalyukin [ 16] (this paper contains a
generalization of [ 8] where Lagrangian open swallowtails Γn

1 arose).
In the following formulation of our main theorem we call standard the germs

at the origin of the multiple-valued (vector-)functions described above in terms of
discriminants in the polynomial spaces.
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Theorem.
1(scalar problem) A germ of a multiple-valued function at a point where the

projection of its m-jet extension to the space of independent variables has a Whitney
singularity of index n is equivalent to the standard one with the graph ∆n

m−1.
2(vector problem) A germ of a generic multiple-valued m times differentiable d-

dimensional vector-function at a generic point among those where the projection
of its m-jet extension has the Whitney singularity of index n is equivalent to the
standard one with the graph Γn

m provided that n 6 d.

The equivalence of multiple-valued functions in this theorem involves composi-
tions of the following operations:

In the scalar case — change of independent variables, addition of new indepen-
dent variables on which the function does not depend explicitly, reversal of the
function’s sign and addition with a single-valued regular [Afunction of independent
variables.

In the vector case — change of independent variables, addition of new indepen-
dent variables, addition of new dependent variables (that is additional zero com-
ponents to the vector-function) and fiberwise-affine changes of dependent variables
with coefficients which are regular functions of independent variables.

The proof of the theorem is given in §5 after more detailed definitions given in
§1 and §2 and some preliminary results of §3 and §4 which also contain important
extra information on the normal forms and universal varieties. In particular we will
see that k-jet extensions of Γn

m with 0 < k < m are equivalent as multiple-valued
vector-functions to Γn

m−k.
The main theorem equally holds in smooth, real-analytic and complex-analytic

categories. We prefer to work in the real-analytic set-up. The complex case differs
only by notations. The only point where we use analyticity is our elementary proof
of the main technical lemma (the versality theorem for fractional forms). A proof
of this lemma in the smooth case can be found in the literature [ 10].

§1 Whitney singularities

In the space R
n+1 with coordinates x, q1, . . . , qn, let us consider a hypersurface

given by the equation Fn = 0 where

Fn(x, q) = xn+1 + q1x
n−1 + · · ·+ qn−1x + qn.

The hypersurface is isomorphic to R
n. Its projection (x, q) 7→ q to the space R

n

with coordinates q1, . . . , qn is called Whitney mapping (see Figure 2 where n = 2).
At the origin the Whitney mapping has a corank-1 singularity that is its differential
degenerates and has rank next to the maximal one.

The Whitney mappings serve as normal forms for generic corank-1 singularities
of differential maps R

n → R
n. Two germs of such maps are called (left-right)

equivalent if they can be transformed into one another by suitable germs of diffeo-
morphisms in the source and target spaces.

Theorem (B.Morin [ 13], [ 9], [4]). A germ of a generic differential map between
manifolds of the same dimension at any point of corank 1 is equivalent to the germ
at the origin of a Whitney map or its suspension.

By the suspension of a map we mean its cartesian product with the identity map
R

k → R
k. In particular, the theorem implies that the Whitney mapping to R

n near
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any point is locally equivalent to such a suspension of one of the Whitney mappings
to R

n−k near the origin.

§2 Cartan distributions

Let Jk(n, d) denote the k-jet space of sections of a bundle over R
n with the fiber

R
d. We will usually assume that the bundle is provided with an affine structure.

Introducing coordinates (q1, . . . , qn) on the base and (affine) coordinates (p1, . . . , pd)
on the fiber induces a coordinate system (qj , p

α
i ) on Jm(n, d) where j = 1, . . . , n,

i = 1, . . . , d, and α = (α1, . . . , αn), αj > 0, is a multi-index of degree |α| = α1 +
· · ·+ αn 6 m. Here pα

i stands for the partial derivative

∂|α|pi

∂qα1

1 . . . ∂qαn
n

so that pi = p0,...,0
i .

The k-jet spaces form the tower of affine bundles,

R
n ← J0(n, d)← · · · ← Jm(n, d)← · · ·

where the arrows mean “forgetting the highest derivatives”.
Given a section p = p(q) of the bundle J0(n, d), its m-jet extension is defined by

putting pα
i = ∂|α|pi(q)/∂qα. It is a section of the bundle Jm(n, d) integral to the

Cartan distribution. The latter is given by the coordinate formulas

dpα
i =

∑

j

p
α+1j

i dqj , |α| < m, i = 1, . . . , d.

Vice versa, an integral section of the Cartan distribution on Jm(n, d) is the m-jet
extension of its projection to J0(n, d).

Definition. A multiple-valued m times differentiable vector-function on R
n is

an integral n-dimensional submanifold X of the Cartan distribution on Jm(n, d)
transversal to the fibers of the projection Jm(n, d) → R

n almost everywhere. The
graph of the multiple-valued function is the image X(0) of X under the projection
Jm(n, d)→ J0(n, d) while the images X(k) in Jk(n, d), k = 0, . . . ,m are called k-jet
extensions of the function.

According to this definition a multiple-valued function is locally just a vector-
function (section) almost everywhere. It can be recovered by its graph as the closure
of the union of the m-jet extensions of its single-valued branches.

Two (germs of) multiple-valued functions are called equivalent if their graphs
can be transformed into one another by (the germ of) a diffeomorphism of the
space J0(n, d) preserving fibers of the projection to the base R

n and affine on each
fiber. Such a diffeomorphism lifts canonically to a fiberwise-affine diffeomorphism
of Jm(n, d) preserving the Cartan distribution and transforming the corresponding
integral submanifolds into one another (so that the reader can reformulate the
definition of equivalence in terms of the integral submanifolds only).

§3 Lagrangian models

Now we introduce and study the varieties that will serve as normal forms for
graphs of multiple - valued functions (solutions of PDE). However it is convenient
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to describe these varieties as Lagrangian or Legendrian ones with respect to the
symplectic or contact structure in the ambient space which seems to have little to
do with the PDE in question.

Let (q1, . . . , qn, p1, . . . , pn (, and may be u)) be Darboux coordinates in the stan-
dard symplectic (respectively contact) space R

2n(+1). This means that the sym-
plectic (contact) structure is given by the formula

dp1 ∧ dq1 + · · ·+ dpn ∧ dqn

(du = p1dq1 + · · · + pndqn).

A subset L ⊂ R
2n(+1) which is (diffeomorphic to) an algebraic variety is called

Lagrangian (respectively Legendrian) if 1) each irreducible component of L has
dimension n and 2) it is isotropic (integral to the contact structure, respectively) at
every non-singular point. “Forgetting u”, obviously, projects Legendrian varieties
to Lagrangian ones unless all the fibers are positive - dimensional.

Let G(x, q) be a family of functions of x parametrized by q. One call G generating
family of the Lagrangian (Legendrian) variety L if

L = {(q, p (, u))| ∃x :
∂G

∂x
(x, q) = 0, p =

∂G

∂q
(x, q) (, and u = G(x, q))}.

Definition. We denote Γn
m the Legendrian variety in R

2n+1 = J1
R

n = R×T ∗
R

n

generated by the family of functions in one variable, x :

Gm,n(x, q) =

∫ x

0

Fm+1
n (y, q)dy.

We will see soon that it projects isomorphically onto a Lagrangian variety in R
2n =

T ∗
R

n. Therefore we may keep the same notation Γn
m for the Lagrangian variety

determined by the generating family G.
Our objective now is to describe the algebra OΓn

m
of regular functions on the

variety Γn
m. Let us notice at first that Γn

m has a non-singular normalization R
n,

namely it is parametrized by the variables (x, q1, . . . , qn−1), and the composition
R

n → T ∗
R

n → R
n of the parametrization map with the projection map (p, q) 7→

q = (q1, . . . qn) is exactly the canonical Whitney mapping. The algebra ORn =
R{x, q1, . . . , qn−1} of regular functions on the parametrizing space can be viewed as
a module over the algebra R{q} of regular functions on the target space, and for the
Whitney mapping this module is free of rank n+1 with generators (1, x, x2 , . . . , xn).
This follows from the Weierstrass preparation theorem which says that any function
φ(x, q) can be represented in the form

φ(x, q) = H(x, q)Fn(x, q) + Q1(q)x
n + · · ·+ Qn(q).

Theorem 1. 1) The algebra OΓn
m

is the subalgebra in ORn of all functions of the
form

∫ x

0

Φ(y, q)Fm
n (y, q)dy + Q(q) (mod Fn).

2) OΓn
m

is a free ORn-module of rank n + 1 with generators (1, p1, . . . , pn) where

pj =
∂Gm,n

∂qj

∼

∫ x

yn−jFm
n (y, q)dy.
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Proof. At first, functions of the form
∫

ΦFm
n dy +Q (mod Fn) form a subalgebra in

ORn . This is proved by “integration by parts”:

∂

∂x
(

∫ x

Φ1F
m
n dy)(

∫ x

Φ2F
m
n dy)

is divisible by Fm
n .

On the other hand, this subalgebra obviously contains all qi, pj and
u =

∫

Fm+1
n dy and therefore contains the algebraOΓn

m
generated by these functions.

Thus it suffices to prove that any function of the form
∫

ΦFm
n dy + Q (mod Fn)

belongs to the submodule generated by (1, p1, . . . , pn).

Lemma. For any function Φ(x, q) the product ΦFm
n can be represented in the form

Φ(x, q)Fm
n (x, q) =

∂

∂x
(H(x, q)Fm+1

n (x, q)) +
n

∑

1

Qj(q)x
n−jFm

n (x, q).

We delay the proof of this lemma till the end of this section.
Integrating this representation gives rise to

∫ x

0

Φ(y, q)Fm
n (y, q)dy modFn(x, q)

= −H(0, q)Fm+1
n (0, q) +

1

m + 1

n
∑

j=1

Qj(q)pj .

Corollary 1. The Lagrangian and Legendrian varieties generated by the family
Gm,n are isomorphic.

Now we will treat the Lagrangian variety Γn
m as the graph of the differential

of an (n + 1)-valued function of the variables (q1, . . . , qn). This function, denoted
Um,n = Um,n(q), is given by its graph — a hypersurface in J0

R
n = R

n × R.
This hypersurface, denoted ∆n

m, is obtained from Legendrian Γn
m by projecting

(q, p, u) 7→ (q, u). It can be interpreted as the discriminant in a suitable space of
polynomials, namely the polynomials of degree (n + 1)(m + 1) + 1 in one variable,
x, whose all extrema have orders multiple to m+1 (and with additional restrictions
that the top coefficient is fixed and the next one equals 0 (see Figure 1).

Corollary 2. The multiple-valued function Um,n is differentiable m + 1 times.

By definition, this means that all the partial derivatives of all branches of this
function extend to functions regular on the normalization R

n of the graph ∆n
m.

For first derivatives this is true by the very definition of ∆n
m since they extend to

(p1, . . . , pn).

Proof. Induction by the order of derivatives and the formula

∂

∂qj

|Fn=0

∫ x

ΦF k
n dy = −

xn−j

F ′
n

ΦF k
n +

+
∂

∂qj

∫ x

ΦF k
n dy = (mod Fn)

∫ x

ΨF k−1
n dy.
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Corollary 3. The differential of the multiple-valued function Um,n considered as
a multiple-valued vector-function p = p(q) given by its graph — Lagrangian Γn

m, is
m times differentiable.

Let us consider now the k-jet extension of the function Um,n. Its graph — a
variety in the k-jet space of functions on R

n, has the algebra of regular functions
generated by q’s, u and all its partial derivatives of orders 6 k. These algebras with
k = 0, . . . ,m + 1 form a tower

O(0) ⊂ O(1) ⊂ · · · ⊂ O(m+1) ⊆ ORn .

Corollary 4. The k-jet extension varieties of ∆n
m are isomorphic to Γn

r with r =
m+1−k for k = 1, . . . ,m+1. In particular the tower of the jet extension varieties
coincides with

∆n
m ← Γn

m ← Γn
m−1 ← · · · ← Γn

1 ← Γn
0 = R

n.

Remark. Notice that the m + 1-jet extension variety is the non-singular normal-
ization of all the preceeding varieties in this tower. The m-jet extension variety is
exactly the “open swallowtail” that has been studied in [ 6], [ 7], [ 8] in connection
with geometrical optics of diffraction and Lychagin’s singular solutions of the 1-st
order PDE.

Proof. From the inductive proof of Corollary 3 one can see that all partial deriva-
tives of Um,n up to order k = m + 1 − r belong to the algebra of regular functions
on Γn

r . On the other hand the derivatives ∂k Um,n/∂qk−1
n ∂qj are proportional to

∫ x

yn−jF r
n dy , j = 1, . . . , n

and thus generate the algebra of regular functions on Γn
r as R{q}-module.

Proof of the lemma. Our proof is based on an interpretation of the lemma as the
infinitesimal versality condition for fractional forms on a line. Let us consider the
differential form

xn+1 (dx)α , α = 1/(m + 1).

We claim that the family of such forms

Fn(x, q) (dx)α

is its miniversal unfolding. By definition this means that another family, say

(Fn + ǫΦ) (dx)α,

can be induced from a family fiberwise equivalent to the first one.
Linearizing in ǫ we find that any Φ(dx)α can be represented as Lie derivative of

Fn(dx)α along a vector field of the form

H(x, q)
∂

∂x
+ Q1(q)

∂

∂q1
+ · · ·+ Qn(q)

∂

∂qn

.
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Multiplying this relation by Fm
n we come to the statement of the lemma:

(m + 1)ΦFm
n dx = dx (HFm+1

n ) +
∑

Qj ∂Fm+1
n /∂qj .

Our claim can be justified by the references [ 10], [ 11], [ 12] to more general
versality theorems. For the sake of completeness we reproduce here our original
proof [ 8] that works exactly for α = 1/(m + 1) in the complex or real-analytic
categories. It consists in reducing the versality statement for fractional forms to
the well-known versality theorem for functions [ 9], [4]. Let us consider the following
family of functions in one variable:

∫ x

(Fn + ǫΦ)m+1 dy.

It is an unfolding of the function xD+1/(D + 1) with D = (n + 1)(m + 1). By the
versality theorem for function’s singularities this unfolding can be induced from a
family equivalent to

xD+1/(D + 1) + λ1x
D−1/(D − 1) + · · ·+ λD−1x

=

∫ x

(yD + · · ·+ λD−1)dy.

The crucial observation is that the original family consists of the functions whose
all extrema have orders multiple to m + 1, and this property is invariant under
changes of the variable. Therefore the family is actually equivalent to one induced
from the subfamily of those polynomials of degree D +1 whose extrema satisfy this
condition. In the analytic case this subfamily is non-singular and coincides with

∫ x

Fm+1
n dy.

Passing to differentials of functions (and taking m + 1-st root) completes the
proof.

§4 Universal varieties

Our objective now is to study germs of multiple-valued functions at the points
where the projection X → R

n of the integral submanifold to the base has a Whitney
singularity. This means that in suitable local coordinate systems on X and R

n the
projection is given by the standard formulas

(x, q1 , . . . , qn−1) 7→ (q1, . . . , qn−1, qn = −(xn+1 + · · ·+ qn−1x)).

Thus it makes sense to talk about subalgebrasOΓn
k

in the algebra of germs of regular
functions on X at such a point.

The embedded dimension of Γn
m equals 2n. In the algebraic tangent 2n - dimen-

sional space to Γn
m at the origin there is a complete flag

T 0 ⊂ T 1 ⊂ · · · ⊂ T 2n

intrinsically related to Γn
m. In the canonical coordinates (q,p) of the Lagrangian

model for Γn
m the subspace T k is given by the equations

p1 = · · · = p2n−k = 0 for k > n

p1 = · · · = pn = qn = · · · = qk+1 = 0 for k < n.
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Theorem 2. The correspondence between multiple-valued functions and their
graphs transforms germs of multiple - valued functions X →֒ Jm(n, d) with Whit-
nean projection to the base to germs of mappings Γn

m → J0(n, d) with non - degen-
erate restriction of its differential to the subspace Tn+1.

Remark. This theorem displays the universal role that Γn
m plays for the multiple-

valued vector-functions in question.

Proof of the theorem.

Lemma 1. Let pα
i (x, q1, . . . , qn−1) be the pullback to X of the coordinate function

pα
i on the jet space Jm(n, d). Then

pα
i (x, q) =

∂|α|

∂qα

[

Qi(q) +

∫ x

0

∂p
(0,...,0,m)
i

∂x
(y, q)

Fm
n (y, q)

m!
dy

]

where Qi are some regular functions of q.

Proof. From the Cartan relation dpα = · · ·+ pα+1ndqn we have

pβF ′ = −(pβ−1n)′, pβ−1nF ′ = −(pβ−2n)′, . . .

For k 6 βn integration by parts gives:

1

k!

∫ x

0

(pβ)′F k dy =

= pβ F k

k!

∣

∣

∣

∣

x

0

−
1

(k − 1)!

∫ x

0

pβF ′F k−1 dy

= pβ F k

k!

∣

∣

∣

∣

x

0

+
1

(k − 1)!

∫ x

0

(pβ−1n)′F k−1 dy

= pβ F k

k!

∣

∣

∣

∣

x

0

+ pβ−1n
F k−1

(k − 1)!

∣

∣

∣

∣

x

0

−
1

(k − 2)!

∫ x

0

pβ−1nF ′F k−2 dy

= · · ·

=
k

∑

s=0

pβ−sn
F k−s

(k − s)!

∣

∣

∣

∣

∣

x

0

.

This implies

pα
i (x, q) =

k
∑

s=0

pα+sn

i (0, q)
qs
n

s!
+

1

k!

∫ x

0

∂pα+kn

i

∂x
(y, q)F k

n (y, q)dy .

In particular

p(0,...,0) = Q(q) +

∫ x

0

(p(0,...,0,m))′
Fm

m!
dy

where Q is regular. From the Cartan relations and F (x, q) = 0 we get

pα+1j =
∂pα

∂qj

−
xn−j

F ′

∂pα

∂x
.
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(Here we consider pα as a function of the variables (x, q1, . . . , qn−1, qn) constrained
by F (x, q) = 0 only after the partial derivatives are calculated.) Applying this
inductively we obtain

pα =
∂|α|

∂qα
(Q(q) +

∫ x

0

(p(0,m))′
Fm

m!
dy)

since the ‘second term’, involving the derivative in x, disappears due to the con-
straint.

Corollary 1. Let X ⊂ Jm(n, d) be a germ of a multiple-valued function with the
Whitney singularity of the projection to the base. Then regular functions on its
(m− k)-jet extension X(m−k), (k = 0, . . . ,m), form a subalgebra in OΓn

k
.

Corollary 2. The tower

X = X(m) → · · · → X(0) → R
n

of jet extensions of a multiple-valued function germ at a point with the Whitney
projection to the base is the image of the tower

Γn
0 → · · · → Γn

m → R
n

under a suitable tower mapping to

Jm(n, d)→ · · · → J0(n, d)→ R
n .

Corollary 3. The map germ X → X(0) from an integral submanifold to the graph
factors through the normalization map X = R

n → Γn
m provided that the projection

X → R
n to the base is Whitnean. In particular the graph is the image of a suitable

map Γn
m → J )(n, d).

Once we found graphs of our multiple-valued functions to be images of Γn
m we

can try to reformulate all properties of the functions in terms of the graphs only
and avoid mentioning integral submanifolds. At first we may assume Γn

m to be
embedded into a bigger bundle, say J0(n, d+n), and then projected onto the graph
in J0(n, d) along an affine subbundle. For any such a subbundle (or better to say
for any embedding Γn

m →֒ J0(n, d + n) over the standard projection Γn
m → R

n) the
image of Γn

m in J0(n, d) can be considered as a graph and recovers some integral X
in Jm(n, d) (since smooth functions of m times differentiable functions are m times
differentiable) but this X can happen to be singular.

Lemma 2. The integral variety X is singular if and only if

(p
(0,...,0,m)
i )′(0, 0) = 0, i = 1, . . . , d.

Proof. The integral variety X is the image of the non-singular integral submanifold
in Jm(n, d+n) under a suitable projection. X is singular if and only if the projection
has degenerate differential at the origin. The differential of the Whitney mapping at

11



the origin has one-dimensional kernel generated by ∂/∂x. Therefore the criticality
condition is ∂pα

i /∂x = 0 at the origin for all i and α. From Lemma 1 we have

∂

∂x

∣

∣

∣

∣

(0,0)

pα =
∂|α|

∂qα

∣

∣

∣

∣

(0,0)

(p(0,m))′
Fm

m!

since ∂qn/∂x = 0 at the origin. Therefore for |αn| < m the derivatives vanish
automatically and the only criticality condition left is that with α = (0, . . . , 0,m).

The criticality condition of Lemma 2 can be reformulated geometrically as the
property of the subspace Tn+1 to have non-trivial intersection with the fiber of the
projection J0(n, d + n)→ J0(n, d). This completes the proof of Theorem 2.

§5 Bringing to normal forms

Let us consider a multiple-valued vector-function given by its integral subman-
ifold X ⊂ Jm(n, d) with d > n at a point where the projection X → R

n has
Whitney singularity of “degree” n. The graph of this vector-function is locally the
image of a map Γn

m → J0(n, d). According to Theorem 2, perturbing the map
locally we also perturb the integral submanifold X. Since 2n 6 n + d a generic
perturbation has non-degenerate differential T 2n → R

n+d. Therefore the graph of
such a perturbation is locally isomorphic to Γn

m.
In order to normalize the position of the graph with respect to a coordinate

system on the bundle J0(n, d) → R
n we first normalize the Whitney map X →

R
n and then invoke the 2-nd part of Theorem 1. According to it the coordinate

functions (q1, . . . , qn, P1, . . . , Pd) on J0(n, d) can be expressed through the canonical
coordinates (q1, . . . , qn, p1, . . . , pn) of the Lagrangian model as linear combinations

Pi = Ai1(q)p1 + · · · + Ain(q)pn + Qi(q)

where the d× n-matrix (Aij) has rank n at the origin. This means that a suitable
affine automorphism of the bundle (q, P ) 7→ q brings the coordinate system to the
normal form

P1 = p1, . . . , Pn = pn, Pn+1 = · · · = Pd = 0.

Let us now consider the case d = 1 of scalar multiple-valued functions. What we
have learned is that in a suitable coordinate system (q1, . . . , qn, u) on J0(n, 1) the
multiple-valued function u = u(q) is the function of critical values in the following
family of functions of one variable, x,:

∫ x

0

φ(y, q)Fm
n (y, q)dy + Q(q)

where φ(0, 0) 6= 0 according to Lemma 2. Changing the sign of u if necessary we
may assume φ to be positive.

Now we invoke the versality theorem for fractional forms in order to bring the
family of 1-forms φFm

n dx to the normal form Fm
n dx by a fibered change of the

variable x and parameters q. Since the potential of a 1-form and its critical values
are uniquely determined by the form up to a constant summand, the same change
of variables brings the multiple-valued function u to the required normal form plus
a regular function of the parameters q. Thus in order to normalize the singularity
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we have not even used linear transformations of the “dependent variable” u but
only change of its sign, changes of “independent variables” q and subtraction of a
regular function.

In the end let us consider the more general case where the number N of inde-
pendent variables exceeds the index n of the Whitney singularity. This means that
the projection XN → R

N has (a suspension of) the Whitney singularity along an
N − n-dimensional submanifold Y ⊂ R

N . Fibering R
N over Y we may consider

Y as a space of additional parameters. Bringing the multiple-valued functions to
the normal forms is based now on the obvious observation that all our previous
constructions bear such a dependence on additional parameters.

In particular our perturbation - to - a - general - position argument still works at
generic points of Y and completes the proof. Notice that for d > n “non-generic”
points form a subset of codimension one in Y and classification of the degeneracies
of multiple-valued vector-functions near such points remains an open problem.

I am thankful to V.I.Arnold who pointed to me some recent papers [5],[14],[15]
on singularities in PDE.
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