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Abstract. K-theoretic Gromov-Witten (GW) invariants of a com-
pact Kähler manifold X are defined as super-dimensions of sheaf
cohomology of interesting bundles over moduli spaces of n-pointed
holomorphic curves in X. In this paper, we introduce K-theoretic
GW-invariants cognizant of the Sn-module structure on the sheaf
cohomology, induced by renumbering of the marked points, and
compute some of these invariants for X = pt.

Preface

In Fall 2014, I gave a talk on the subject of permutation-equivariant
quantum K-theory and its relations to mirror symmetry at The Legacy

of Vladimir Arnold conference in Toronto. Explaining afterwards why
the work had not been published yet, I received a piece of good advice
from Anatoly Vershik, who suggested that one should publish not a
whole theory, but small portions of it.
The present paper begins a series of such portions. Each one is sup-

posed to have its own punch-line, and be reasonably self-contained, or
at least readable separately from the others. Yet, they are chapters
of the same story, follow a single plan, and are meant to be contin-

ued. One of our intentions is to identify the right place for toric q-
hypergeometric functions among genus-0 K-theoretic Gromov–Witten
invariants. Another one is to elucidate the role of finite-difference oper-
ators. In particular, we will see that the q-exponential function is even
more prominent in quantum K-theory then the ordinary exponential
function is in quantum cohomology. As a remote goal, we would like
the q-analogues of the Witten–Kontsevich tau-function to arise from
K-theory of the Deligne–Mumford quotients Mg,n/Sn.

This material is based upon work supported by the National Science Foundation
under grants DMS-1007164 and DMS-1611839, and by the IBS Center for Geometry
and Physics, POSTECH, Korea.
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This and several forthcoming chapters are based on the lectures I
gave in June-July 2015 at the IBS Center for Geometry and Physics at
POSTECH, Korea. I’d like to thank the Center’s director Yong-Geun
Oh and his staff for their hospitality and for creating an ideal working
environment.

Sn-equivariant correlators

Let X be a compact Kähler manifold, a target space of GW-theory,
Xg,n,d denote the moduli space of degree-d stable maps to X of nodal
compact connected n-pointed curves of arithmetical genus g, evi :
Xg,n,d → X the evaluation map at the ith marked point, Li the line
bundle over Xg,n,d formed by the cotangent lines to the curves at the
ith marked point. Given elements φi ∈ K0(X) and integers ki ∈ Z,
i = 1, . . . , n, one defines a K-theoretic GW-invariant of X as the holo-
morphic Euler characteristic

〈φ1L
k1 , . . . , φnL

kn〉g,n,d := χ
(
Xg,n,d;O

virt
g,n,d ⊗

∏n
i=1 L

ki
i ev∗i (φi)

)
.

Here Ovirt
g,n,d is the virtual structure sheaf introduced by Y.-P. Lee [3]

as the K-theoretic counterpart of virtual fundamental cycles in the
cohomological theory of GW-invariants. The above “correlators” can
be extended poly-linearly to the space of Laurent polynomials

t(q) =
∑

m∈Z

tmq
m, tm =

∑

α

tm,αφα

(here {φα} is a basis in K0(X)⊗Q, and tk,α are formal variables), and
thereby encode the values of all individual correlators by the totally
symmetric degree-n polynomial 〈t(L), . . . , t(L)〉g,n,d.
Our aim is to enrich this information using the action of Sn by per-

mutations of the marked points. Namely, since the marked points are
numbered, their renumbering on a given stable map produces a new
stable map, and hence this operation induces an automorphism of the
moduli space: Xg,n,d → Xg,n,d. In fact the automorphism is relative
over Xg,0,d (here we have in mind the map ft : Xg,n,d → Xg,0,d defined
by forgetting the marked point). The map ft respects the construction
[3] of virtual structure sheaves:

Ovirt
g,n,d = ft∗ Ovirt

g,0,d.

Therefore, as long as the inputs t(q) in all seats of the correlator are the
same, the corresponding sheaf cohomology, and hence their alternated
sum, carries a well-defined structure of a virtual Sn-module. Let us
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introduce for this Sn-module the notation

[t(L), . . . , t(L)]g,n,d :=
∑

(−1)mHm(Xg,n,d;O
virt
g,n,d⊗

n∏

i=1

(
∑

k∈Z

ev∗i (tk)L
k
i )).

Thus defined GW-invariants with values in the representation ring of
Sn lack two features required by the standard combinatorial framework
of GW-theory: they are not poly-linear, and they take incomparable
values for different values of n. We handle both difficulties by employ-
ing Schur–Weyl reciprocity.
Let Λ be a λ-algebra, by which we will understand an algebra over

Q equipped with abstract Adams operations Ψm, m = 1, 2, . . . , i.e.
ring homoorphisms Λ → Λ satisfying ΨrΨs = Ψrs and Ψ1 = id. 1

The following construction of correlators has direct topological meaning
when Λ = K0(Y ) ⊗ Q, the K-ring of some space Y equipped with
the natural Adams operations, but it can be extended to arbitrary
λ-algebras.
On the role of inputs we take Laurent polynomials t =

∑
m∈Z tmq

m

with vector coefficients tk ∈ K0(X) ⊗ Λ. Given several such inputs
t(1), . . . t(s), we define correlators of permutation-equivariant quantum
K-theory with several groups of sizes k1+· · ·+ks = n of identical inputs
(and hence symmetric with respect to the subgroup H = Sk1×· · ·×Sks

of Sn), and taking values in Λ:

〈t(1), . . . , t(1); . . . ; t(s), . . . , t(s)〉Hg,n,d :=

(π : (Xg,n,d × Y )/H → Y )
∗

(
Ovirt

g,n,d ⊗
s∏

a=1

ka∏

i=1

(
∑

m∈Z

ev∗i (t
(a)
m )Lm

i

))

where π∗ is the K-theoretic push-forward along the indicated projection
map π. Note that the sheaf on the right lives naturally onXg,n,d×Y and
is H-invariant (where the action on Y is meant to be trivial). Taking
the quotient, by definition, extracts H-invariants from the K-theoretic
push-forward to Y .

Example 1. GLN -equivariant K-theory. Take Λ to be the algebra
of symmetric functions in N variables x1, . . . , xN with the Adams op-
erations Ψr(xi) = xr

i . It can be viewed as (a subring in) Repr GLN =
K0(BGLN(C)), the representation ring of GLN(C), by considering xi

1One usually defines λ-algebras in terms of axiomatic exterior power operation.
For us the Adams operations will be more important. The difference disappears
over Q. The reason is that Newton polynomials are expressed as polynomials with
integer coefficients in terms of elementary symmetric functions, but the inverse
formulas involve fractions.
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to be the eigenvalues of diagonal matrices in the vector representation
CN . Respectively, K0(X) ⊗ Λ can be interpreted as GLN -equivariant
K-ring of X equipped with the trivial GLN -action. Let t be a legiti-
mate input of the ordinary quantum K-theory, i.e. Laurent polynomial
L with coefficients from K0(X), and ν ∈ Λ. Then

〈νt, . . . , νt〉Sn

g,n,d =
1

n!

∑

h∈Sn

trh[t, . . . , t]g,n,d

∞∏

r=1

Ψr(ν)lr(h),

where lr(h) denotes the number of cycles of length r in the permutation
h. Indeed, if ν in the correlator stands for a GLN -module attached
at each marked point, then [νt, . . . , νt]g,n,d = [t, . . . t]g,n,d ⊗ ν⊗n. The
second factor here is a GLN(C)× Sn-module. For a diagonal matrix x
and a permutation h, we have

tr(x,h) ν
⊗n = trx

∞∏

r=1

Ψr(ν)lr(h).

Indeed, due to the universality of Adams operations, it suffices to check
this for ν = CN , the vector representation, which is straightforward:

tr(x,h)(C
N)⊗n =

∞∏

r=1

ν lr(h)
r (x),

where νr(x) = xr
1 + · · ·+ xr

N = Ψr(ν1) is the rth Newton polynomial.

Example 2: Schur–Weyl’s reciprocity. According to Schur–Weyl’s
reciprocity, the GLN × Sn-character of (C

N)⊗n has the form:
∞∏

r=1

ν lr(h)
r (x) =

∑

△

w△(h)s△(x),

where s△ is the Schur polynomial, the character of the irreducibleGLN -
module with the highest weight determined by the partition (or the
Young diagram) △, and w△ is the character of the irreducible Sn-
module corresponding to the same Young diagram. The diagrams here
consist of n cells and have no more than N rows. The Schur polyno-
mials s△ form a real orthonormal basis in the space of all symmetric
polynomials of degree n (in N variables). Therefore, using the notation
(·, ·) for pairing of representations (or characters), we have:

(〈t(L), . . . , t(L)〉Sn

g,n,d, s∇) =
1

n!

∑

h∈Sn

trh[t(L), . . . , t(L)]g,n,dw∇(h),

that is, equal to the multiplicity of the irreducible Sn-module ∇ in the
Sn-module of our interest.
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Example 3: N → ∞. In this limit, Λ becomes the abstract alge-
bra of symmetric functions Q[[ν1, ν2, . . . ]] with the Adams operations
Ψr(νm) = νrm. This example captures the entire information about
[t, . . . , t]g,n,d as Sn-modules for all n simultaneously.

Example 4: Symmetrized quantum K-theory. Taking in Example 1
N = 1, we obtain Λ = Q[x] with Ψr(x) = xr. This choice corresponds
extracting Sn invariants from sheaf cohomology:

[xt, . . . , xt]g,n,d = [t, . . . , t]Sn

g,n,dx
n.

Indeed, the action of Sn on GL1-module (C1)⊗n is trivial. We will refer
to this important special case of permutation-equivariant quantum K-
theory as permutation-invariant or symmetrized.

Example 5: The permutation-equivariant binomial formula. Re-
turning to the definition of permutation-equivariant correlators, we
can see that they possess permutation-equivariant version of poly-
additivity. For instance,

〈t′ + t′′, . . . , t′ + t′′〉Sn

g,n,d =
∑

k+l=n

〈t′, . . . t′, t′′, . . . t′′〉Sk×Sl

g,n,d .

Using the bracket notation 〈. . .〉 for the sheaf cohomology on Xg,n,d×Y
(i.e. before taking Sn-invariants), we have the following equality of Sn-
modules:

〈t′ + t′′, . . . , t′ + t′′〉g,n,d =
∑

k+l=n

IndSn

Sk×Sl
〈t′, . . . , t′, t′′, . . . , t′′〉g,n,d,

where IndG
H denotes the operation of inducing a G-module from an

H-module. Extracting Sn-invariants on both sides proves the claim.
Indeed, due to the reciprocity between inducing and restricting, for
anyH-module V , we have (IndG

H V )G = V H , since restricting the trivial
G-module to H yields the trivial H-module.

Finally introduce the genus-g descendent potentials of permutation-
equivariant quantum K-theory:

Fg =
∑

d,n

Qd〈t(L), . . . , t(L)〉Sn

g,n,d.

Here Qd is, as usual, the monomial representing the degree d ∈ H2(X)
in the Novikov ring. Note that the customary in Taylor’s formulas divi-
sion by n! is replaced by extracting Sn-invariants. The potential is a for-
mal function on the space of Laurent polynomials in q with coefficients
in K0(X)⊗Λ. We assume that λ-algebra Λ is extended to power series
in Novikov’s variables (e.g. one could take Λ = Q[[ν1, ν2, . . . ]] [[Q]])
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and the Adams operations are extended by Ψr(Qd) = Qrd. We will
refer to Λ as Newton-Novikov’s ring.
Remark. I am thankful to A. Polishchuk, who pointed out to me

that in a related context of modular operads, an equivalent formalism
of encoding permutation-equivarint information using the algebra of
symmetric functions [4] was used by E. Getzler and M. Kapranov [1].

The small J-function of the point

In this section, we use an explicit description of Deligne–Mumford
spaces M0,n in terms of Veronese curves to compute the “small” J-
function in the permutation-equivariant quantum K-theory of X = pt.

Theorem. For ν ∈ Λ, put

Jpt(ν) := 1− q + ν +
∑

n≥2

〈ν, . . . , ν,
1

1− qL
〉Sn

0,n+1.

Then

Jpt = (1− q)e
∑

k>0
Ψk(ν)/k(1−qk).

Proof. We refer to the paper [2] by M. Kapranov for details of
the description of M0,n+1 in terms of Veronese curves in CP n−2, i.e.
generic rational curves of degree equal to the dimension of the ambi-
ent projective space. They are all isomorphic to the model Veronese
curve (u : v) 7→ (un−2 : un−3v : · · · : uvn−3 : vn−2) under the action
of PGL2(C) × PGLn−1(C) by reparameterizations and projective au-
tomorphisms, and form a family of dimension (n + 1)(n − 3). The
moduli space M0,n+1 is identified with a suitable closure of the space
of Veronese curves passing through a fixed generic configuration of n
points p1, . . . , pn ∈ CP n−2. According to [2], the closure can be taken in
the Chow scheme of algebraic cycles (or in the suitable Hilbert scheme).
Moreover, M0,n+1 is obtained explicitly by a certain succession of blow-
ups of CP n−2 centered at all subspaces passing through the n points.
The rational map, inverse to the projection π : M0,n+1 → CP n−2,
can be described this way: for a generic p ∈ CP n−2, there is a unique
Veronese curve passing through (p1, . . . , pn, p). (Example: a unique
conic through 5 generic points on the plane.)
The forgetful map ftn+2 : M0,n+2 → M0,n+1 can be described as

follows (see Figure 1). Veronese curves of degree n−1 in CP n−1 passing
through fixed generic points p1, . . . , pn, pn+1 can be projected from pn+1

to CP n−1, to become Veronese curves of degree n− 2 passing through
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the projections p̃1, . . . , p̃n of p1, . . . , pn. According to [2], this projection
survives the passage to the Chow closure.

1
p

n
p

1
p

CP
n−1

Figure 1. Veronese curves, n=4

n−2
CP

p

p

p

n

n+1

Moreover, as it follows from the exact description of the succession
of the blow-ups (see [2], Theorem 4.3.3), the section M0,n+1 ⊂ M0,n+2

of the forgetful map ftn+2 : M0,n+2 → M0,n+1 defined by the n + 1-
st marked point is obtained by blowing up CP n−1 at pn+1, and then
taking the proper transform of the exceptional divisor CP n−2 under
all further blow-ups. Their centers come from higher-dimensional sub-
spaces passing through pn+1, and are transverse to the the divisor. This
means that conormal bundle to the section (which is the official defini-
tion of Ln+1 over M0,n+1) coincides with the pull-back of the conormal
bundle to the exceptional CP n−2 (which is O(1)) by the blow-down
map π : M0,n+1 → CP n−2. Thus, Ln+1 = π∗O(1).
Note that since Ln+1 = π∗O(1), then π∗L

m
n+1 = O(m), because the

K-theoretic push-forward of the structure sheaf along a blow-down
map has trivial higher direct images. Thus the problem of comput-
ing Jpt receives the following elementary interpretation. Let Sn act on
CP n−2 = proj(Cn−1) by permutations of the vertices p1, . . . , pn of the
standard simplex. Then the Sn-module denoted in the previous sec-
tion [1, . . . , 1, Lm]0,n+1 is the space of degree m polynomials in Cn−1.
Respectively,

〈ν, . . . ν,
1

1− qL
〉Sn

0,n+1 =
1

n!

∑

h∈Sn

trh S
∗
q (C

n−1)
∏

r>0

Ψr(ν)lk(h),
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where S∗
q (C

n−1) = ⊕m≥0q
mSm(Cn−1)∗ is the graded (and weighted by

powers of q) algebra of polynomial functions on Cn−1.
The series Jpt, the total sum of the correlators over all n, can be

computed by Lefschetz fixed point formula. In fact summation over
all symmetric groups can be rewritten in terms of conjugacy classes.
The action of h ∈ Sn on Cn (rather than Cn−1) decomposes into the
direct product of elementary k-cycles ck acting on Ck by the cyclic
permutation of the coordinates. The trace trck S

∗
q (C

k) can be computed

as
∏k

s=1(1− e2πis/kq)−1 = (1− qk)−1, since e2πis are simple eigenvalues
of ck on Ck. Taking in account the size n!/

∏
k lk!k

lk of the conjugacy
class with lk cycles of length k, we conclude that

∑

n≥0

1

n!

∑

h∈Sn

trh S
∗
q (C

n)
∏

k>0

Ψk(ν)lk(h) =
∑

l1,l2,···>0

∏

k>0

1

lk!

(
Ψk(ν)

k(1− qk)

)lk

.

The latter sum coincides with e
∑

k>0Ψ
k(ν)/k(1− qk). The extra fac-

tor (1− q) in the theorem takes care of the excess (comparing to Cn−1)
1-dimensional subspace in Cn with the trivial action of Sn, because the
Poincaré polynomial trid S

∗
q (C) = 1/(1− q). �

Corollary 1. In the symmetrized theory, the value of the J-function

Jsym
pt := 1− q + x+

∑

n≥2

xn dim[
1

1− qL
, 1, . . . , 1]Sn

0,n+1

is expressed in terms of the q-exponential function eq(y) :=
∑

n≥0
yn

[n]q !
:

Jsym
pt = (1− q)eq

(
x

1− q

)
=
∑

n≥0

xn

(1− q2) . . . (1− qn)
.

Proof. Taking in the theorem Λ = Q[[x]] (i.e. choosing GLN to be
GL1), and sertting ν = x, we find

f(x) := (1− q)−1Jsym
pt = e

∑
k>0

xk/k(1−qk).

Note that f satisfies the following finite-difference equation:

f(x)− f(qx) = f(x)
(
1− e−

∑
k>0

xk/k
)
= f(x)(1− (1− x)) = xf(x).

For eq, we also have:

eq(
x

1− q
)− eq(

qx

1− q
) =

∑

n≥0

xn(1− qn)

(1− q)(1− q2) . . . (1− qn)
= xeq(

x

1− q
).

Since both are power series in x with the free term 1, they coincide. �
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Corollary 2. When Λ is the algebra of symmetric functions in

x1, . . . , xN , and ν = tν1, where t is a scalar, we have

Jpt(tν1) = (1− q)
∏

i

eq

(
xi

1− q

)t

.

Proof. Write Ψk(tν1) = t(xk
1 + · · ·+ xk

N) for each k. �
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