PERMUTATION-EQUIVARIANT
QUANTUM K-THEORY IV.
D,-MODULES

ALEXANDER GIVENTAL

ABSTRACT. In Part II, we saw how permutation-equivariant quan-
tum K-theory of a manifold with isolated fixed points of a torus
action can be reduced via fixed point localization to permutation-
equivariant quantum K-theory of the point. In Part III, we gave
a complete description of permutation-equivariant quantum K-
theory of the point by means of adelic characterization. Here we
apply the adelic characterization to introduce the action on this
theory of a certain group of ¢-difference operators. This action en-
ables us to prove that toric g-hypergeometric functions represent
K-theoretic GW-invariants of toric manifolds.

OVERRULED CONES AND D,-MODULES

In Part III, we gave the following adelic characterization of the big
J-function [J,; of the point target space. In the space K of “rational
functions” of ¢ (consisting in fact of series in auxiliary variables with
coefficients which are rational functions of ¢), let £ denote the range of
Jpt. We showed that an element f € K lies in L if and only if Laurent
series expansions fo) of f near ¢ = (' satisfy

(i) fay = (1 — q)e™/=9 x (power series in ¢ — 1) for some 7 € Ay,!

(ii) when ¢ # 1 is a primitive m-th root of unity,

o (@™ Q) = W™ (f) /(1 — ) x (power series in g — 1),

where W™ is the Adams operation extended from A by V™ (q) = ¢™;
(iii) when ¢ # 0,00 is not a root of unity, f¢)(¢/C) is a power series
mqg—1.
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IFor convergence purposes, we assume that the Adams operations ¥* on A with
k > 1 increase certain filtration A D Ay D A4y D ---, and that the domain of the
J-function is Ay.
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Another way to phrase (i) is to say that f() lies in the range £/

of the ordinary (or fake) J-function J5¢ in the space K=A(qg—1))
of Laurent series in g — 1:

~

rlake _ U (1— q)ef/(lfq)f&r, K, = Al[lqg—1]].

TEAL

The range £ is an example of an overruled cone: Its tangent spaces
T, = /09|, are tangent to £/%¢ along the subspaces (1 —q)T
(which sweep £/%¢ as the parameter 7 varies through A, .?) As it will
be explained shortly, this property leads to the invariance of £7%¢ to
certain finite-difference operators.

Recall that in permutation-equivariant quantum K-theory, we work
over a A-algebra, a ring equipped with Adams homomorphisms ¥,
m=1,2,..., Ul =1d, U™¥! = U™ Let us take A := Ag[[)\, Q]] with
Um(N) = A", U™(Q) = Q™, where A is any ground A-algebra over C.

Consider the algebra of finite-difference operators in ). Such an
operator is a non-commutative expression D(Q,1—¢%%, ¢*!). Clearly,
the space Ky = Af[g — 1] (as well as (1 — ¢)K4) is a D,module.
Consequently each ruling space (1 — ¢)T, = e™/079(1 — q)[/&r is a
D,-module too. Indeed,

qQaQ eT(@)/(1=a) — eT(Q)/(lfq)e(T(qQ)*T(Q))/(lfq)7

where the second factor lies in K. Moreover, we have

Proposition. AD@1-472.0)/(1=q) pfake — pfake

Proof. The ruling space (1 —¢)7; is a D,-module, and hence invari-
ant under D. Therefore for f € (1—¢)T;, we have Df/(1—¢q) € T}, i.e.
the vector field defining the flow ¢t — *P/(1=9) is tangent to £7%*¢ and
so the flow preserves £7%¢. It remains to take ¢ = 1, which is possible
thanks to A-adic convergence.

Remark. Generally speaking, linear transformation e*”/(*=9 does
not preserve ruling spaces (1 — ¢)7T, but transforms each of them into
another such space. Indeed, preserving £f%¢ it transform tangent
spaces T, into tangent spaces, and since it commutes with multipli-
cation by 1 — ¢, it also transforms ruling spaces (1 — ¢)7; into ruling
spaces.

%In terminology of S. Barannikov [1], this is a variation of semi-infinite Hodge
structures: The flags -+ C (1 —¢)T> C Ty C (1 —¢q)~'T, C --- vary in compliance
with “Griffiths’ transversality condition”.
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Likewise, cone £ C K is ruled by subspaces comparable to (1—¢)K,
namely by (1 — ¢)L,, where L, := e>k>0 vE/RA=M L However L,
are not tangent to £. Nonetheless the following result holds.

Theorem. The range L of the big J-function J in the permutation-
equivariant quantum K-theory of the point target space is preserved by
operators of the form

k0 WU (D(1— 272 g+1)) /k(1-¢%)

Remarks. (1) The operator D has constant coefficients, i.e. is inde-
pendent of ().

(2) Note that Uk(q@%) = qukaQ’“ = ¢9%  and not ¢*?% as in the
exponent.

(3) The reader is invited to check that the theoem and its proof are
extended without any changes to the case finite difference operators
in several variables )1, ..., Qx. We will use the theorem in this more
general form in Part V.

Proof. Assuming that (1 —¢q)f € L, we use the adelic characteriza-
tion of £ to show that (1 — ¢)g € L, where
g(Q) = k>0 Ak‘I’k(D(lquQaQ’qil))/k(liqk)]ﬁ(Q).
First, this relationship between g and f also holds between g(;) and fy)
where however both sides need to be understood as Laurent series in
g — 1. Since f1) € £/, Proposition implies that gy € £/*** too.
Next, applying U™ to both sides, we find

U (ga)) = 2150 /\"”‘I’m’(D(l—quaQ,qil))/l(l—qm)\pm(f(l))'

On the other hand, for an m-th primitive root of unity (, taking into
account that U™ (q) = ¢™ turns after the change ¢ — ¢*/™/( into ¢!,
and that ¢™@% turns after this change into ¢/?%e, we find

m mlyyml _ lQBQ +1/m m 1 -
90 (@™ )C) = eB o XMV (DU R gE™)) fmi(1=d) ¢ o (g1/m /iy

where the finite-difference operator A has coefficients regular at ¢ =
1. Here we factor off the terms regular at ¢ = 1 using the fact that
our operators have constant coefficients, and hence commute. Namely,
eAtB/(1-9) where A and B are regular at ¢ = 1, can be rewritten as
eAeB/(1—q)

We are given that f(o(ql/m/{’) = pU™(fn)) where p € l€+. Since
[¢9%, Q] = (¢ — 1)Qq%?% is divisible by ¢ — 1, for any finite-difference
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operator B, the commutator adg(p) = [B, p| with the operator of mul-
tiplication by p is divisible by ¢ — 1. Therefore e8/(1=0p = peB/01-a),
where P = ¢*8/0-a)(p) is regular at ¢ = 1. Thus, for some P regular
at ¢ = 1 we have:

9(4) (ql/m/c> _ GAPGZl>0 )\ml\I/ml(D(lfquaQ ,qil/m))/ml(lfql) \IJm(f(l))

Comparing this expression with U™ (g(1)), take into account that g*/™

coincides with ¢! modulo ¢ — 1, and 1/(1 — ¢~"™) — 1/m(1 — ¢7)
is regular at ¢ = 1. Thus, again factoring off the terms regular at
g = 1, we conclude that g(o(ql/m/(’) is obtained from W™ (g(1)) by the
application of an operator regular at ¢ = 1. R

From the explicit description of £/%€ we have gy € e/ fC,
for some 7. Therefore W(gpy)) € e¥"(M/MI-0K,  The latter is a
D,-module, and hence g(¢)(¢"/™/¢) € ¥ (gq)) K. as required.

Finally, for ¢ # 0, oo, which is not a root of unity, regularity of g at
q = (! is obvious whenever the same is true for f. [J

I'-OPERATORS

Lemma. Let [ be a positive integer. Suppose that Zdzo F4Q% represents
a point on the cone L C K. Then the same is true about:

ld—1

- Q?
S re Tlow Y I T,andedeﬂl AT,
d>0 d>0 Hr 1(1 d>0
Proof. We use g-Gamma-function
Y A |
Fq(x) = e2k>0 " /k(1=aY) H T
r=0
for symbols of ¢-difference operators:
IO il PRV | e PV R
—— Q=0 == =Q" ||A =),
]'—‘qfl()\) r:ld—oo(l - )\qr) 71;([)
Fq_l()\quaQ) Qd — d H?“zfoo<1 - )\qT) _ Qd and
P () [TL (1=2¢)  ILL0 =)
P i i T
W Q Q ];[(1 - )\q ) respectlvely.

The result follows now from the theorem of the previous section. [J
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APPLICATION TO FIXED POINT LOCALIZATION

In Part II, we used fixed point localization to characterize the range
(denote it Lx) of the big J-function in permutation- (and torus-) equi-
variant quantum K-theory of X = CPY. Namely a vector-valued “ra-
tional function” f(q) = Zi]\;O fD(q)¢; represents a point of Lx if and
only if its components pass two tests, (i) and (ii):

(i) When expanded as meromorphic functions with poles g # 0,00
only at roots of unity, f© € L, i.e. represent values of the big J-
function Jp in permutation-equivariant theory of the point target space;

(ii) Away from q = 0,00, and roots of unity, f? may have at most
simple poles at ¢ = (N;j/A)Y™, § # i, m =1,2,..., with the residues
satisfying the recursion relations

Res,_aaym fP(q)— = ——=— FO((A;/A)Y™
eSqf(A]/AZ) / f (Q) q Cz(m) f (( ]/ ) )’
where C;;(m) are explicitly described rational functions.
We even verified that the hypergeometric series

. Q!
JD=(1-q))
U S (L0 ) T T (- )

pass test (ii). Now we are ready for test (i). Indeed, we know from
Part I (or from Part IIT) that

(1= @)Ty(@Q) = (1 = )Xo @M = (1 —q) 3 ﬁ

lies in £. According to Lemma,
, [,-1 (AAT1gR%)
JO = : i (1= q)Ty(Q)
I e ey ot
also lies in £. Thus, we obtain

Corollary 1. The K°(CPN)-valued function

N
. Q¢
Jepy =Y JO = (1—q) >
zz_; ; [L5 [T (1= PAS )

where P = O(—1) satisfies H;.V:O(l — PA;Y) =0, represents a value of
of the big J-function Jcpn.
Remark. Note that all summands with d > 0 are reduced rational

functions of ¢, and so the Laurent polynomial part of Jcp~ consists of
the dilaton shift term 1 — ¢ only. This means that Jzp~ represents the
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value of the big J-function Jepn(t) at the input t = 0. Hence it is the
small J-function (not only in permutation-equivariant but also) in the
ordinary quantum K-theory of CPY. In this capacity it was computed
n [4] by ad hoc methods.

One can derive this way many other applications. To begin with,
consider quantum K-theory on the target E which is the total space of
a vector bundle £ — X. To make the theory formally well-defined, one
equips F with the fiberwise scaling action of a circle, 7", and defines
correlators by localization to fixed points E7" = X (the zero section of
E). This results in systematic twisting of virtual structure sheaves on
the moduli spaces X, 4 as follows:

Omrt ( )

Ovrt (F) = . Eyna= (ftni1)eevi (B,
g,n,d( ) EulerT/<Eg7n’d) g,n,d ( +1) n+1( )

where the T"-equivariant K-theoretic Euler class of a bundle V is de-
fined by

Euler?, (V) := traep (Z(—l)k/k\v*> .

The division is possible in the sense that the T’-equivariant Euler class
is invertible over the field of fractions of the group ring of 7’. The
elements Ey, 4 € K O(Xgm,d) are invariant under permutations of the
marked points. (In fact [2, 3], for d # 0, E,,q = ft" E,04 where
ft © Xyna — Xyna forgets all marked points.) Thus, we obtain a
well-defined permutation-equivariant quantum K-theory of E.

Corollary 2. Let X = CPY, and E = ®}L,0(~l;). Then the
following q-hypergeometric series

e SO 1 1 Fas R Ve ed
e 0 e L L e

d>0 T*—oo

represents a value of the big J-function in the permutation-equivariant
quantum K-theory of E.

Here A\ € T" = C* acts on the fibers of F as multiplication by
A~!. The K-theoretic Poincaré pairing on X is twisted into (a,b)p =
x(X; ab/ Euler} (E)).
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Example. Let X = CP!, E = O(—1) ® O(-1). In Ig, pass to the
non-equivariant limit Ag = A; = 1:
Ig=(1—-¢q)+ (1 - AP 71)’x

1_qZQd1_)\P q1)2 (1—)\P11d>2
(1 = Pq)?(1 — Pg?)?--- (1 — Pq%)?

d>0

The factor (1—AP~!)? equal to Euler’,, reflects the fact that the part
with d > 0 is a push-forward from CP! to E. In the second non-
equivariant limit, A = 1, it would turn into 0 (since (1 — P71)? = 0
in K°(CP'). However, what the part with d > 0 is push-forward of,
survives in this limit:

Q 2
(1—9q) Zp2d2 dl)l_qu)2,Where(1—P) = 0.
d>0

This example is usually used to extract information about “local” con-
tributions of a rational curve CP~! lying in a Calabi-Yau 3-fold with
the normal bundle O(—1) & O(-1).

Note that decomposing the terms of this series into two summands:
with poles at roots of unity, and with poles at 0 or oo, we obtain
non-zero Laurent polynomials in each degree d. They form the input
t =3 ,0ta(q, ¢ )Q? of the big J-function whose value Jg(t) is given
by the series.

Finally, note that though the input is non-trivial, it is defined over
the A-algebra Q[[@]]. This means that, although we are talking about
permutation-equivariant quantum K-theory, the hypergeometric func-
tions here, and in Corollary 2 in general, represent symmetrized K-
theoretic GW-invariant, i.e. S,-invariant part of the sheaf cohomology.

Similarly, one can introduce K-theoretic GW-invariants of the super-
bundle TIE (which is obtained from E — X by the “parity change” II
of the fibers) by redefining the virtual structure sheaves as

Omrt ( ) Ovzrt ( ) Eulerf«/ (Eg,n,d)'

g,n,d g,n,d
When genus-0 correlators of this theory have non-equivariant limits
(e.g. when F is a positive line bundle, and d > 0), the limits coincide
with the appropriate correlators of the submanifold Y C X given by a
holomorpfic section of I1E.

Corollary 3. Let X = CPY, and E = ®}L,0(l;). Then the fol-
lowing q-hypergeometric series

Q* 177 (1= APYq")
Ing = (1 —
e q); [ TTy (1= PAj ) H [[— (1= AP4q)
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represents a value of the big J-function in the permutation-equivariant
quantum K-theory of E.

Here A € T" = C* acts on fibers of £ as multiplication by A. The
Poincaré pairing is twisted into (a,b)ng = x(X; abEuler? (E)).

Example. When all [; > 0, it is safe pass to the non-equivariant
limit A; =1 and A = 1:

15, T14, (1 — Phgr)
]HE:<1_Q)ZQd jdl : rYN+1
q>0 HT:1<1 - Pq )

which represents a value of the big J-function of Y C CP¥, pushed-
forward from K°(Y) to K°(CPY). Here Y is a codimension-M com-
plete intersection given by equations of degrees [;. Taking in account
the degeneration of the Euler class in this limit, one may assume that
P satisfies the relation (1 — P)NT1=M =,

When > ; l]2~ < N + 1, the Laurent polynomial part of this series is
1 —gq, i.e. the corresponding input t of the J-function vanishes. In this
case the series represents the small J-function of the ordinary quantum
K-theory on Y. This result was obtained in [5] in a different way: based
on the adelic characterization of the whole theory, but without the use
of fixed point localization. As we have seen here, when t # 0, the series
still represents the value Jy (t) in the symmetrized quantum K-theory
of Y.

In Part V these results will be carried over to all toric manifolds
X, toric bundles £ — X, or toric super-bundles I1F. In fact, the
intention to find a home for toric ¢-hypergeometric functions with non-
zero Laurent polynomial part was one of the motivations for developing
the permutation-equivariant version of quantum K-theory.
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