PERMUTATION-EQUIVARIANT
QUANTUM K-THEORY VIII.
EXPLICIT RECONSTRUCTION

ALEXANDER GIVENTAL

ABSTRACT. In Part VII, we proved that the range Lx of the big
J-function in permutation-equivariant genus-0 quantum K-theory
is an overruled cone, and gave its adelic characterization. Here we
show that the ruling spaces are D ,-modules in Novikov’s variables,
and moreover, that the whole cone Lx is invariant under a large
group of symmetries of Lx defined in terms of g-difference oper-
ators. We employ this for the explicit reconstruction of Ly from
one point on it, and apply the result to toric X, when such a point
is given by the g-hypergeometric function.

ADELIC CHARACTERIZATION

We begin where we left in Part VII: at a description of the range
L C K in the space K of K°(X) ® A-value rational functions of ¢ of
the J-function of permutation-equivariant quantum K-theory of a given
Kahler target space X:

¢O{
J=1-¢q+ t(Q) + Z¢a Z Qd<1 — qL7t(L)7 s at(L)>gﬁ+n,d‘
« n,d

We proved that £ is an overruled cone, i.e. it is swept by a family of
certain A[q, ¢~ !]-modules, called ruling spaces:

L={J0-980 Ky,

teA L

where S; is a certain family of “matrix” functions rational in ¢, whose
construction we are not going to remind here. Let us recall the adelic
characterization of £, which will be our main technical tool.

It is given in terms of the overruled cone L£f%¢ C K in the space
of vector-valued Laurent series in ¢ — 1, describing the range of the
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2 A. GIVENTAL

J-function in fake quantum K-theory of X:
[fake — U(l _ Q)T‘ty T, = Sfake(Q);ll/C\+.

teA

Here S{** is some “matrix” Laurent series, T} is a tangent space to

L£/a%ke  containing (1 — ¢)T;, and tangent to £/%¢ at all points of the
ruling space (1 — q)T;.

According to the last section of Part VII, a rational function f € IC
lies in L if and only if its Laurent series expansions £y near ¢ = 1/
satisfy the following three conditions:

(Z) f(l) c ﬁfake;

(i1) when ¢ # 0,1,00 is a primitive mth root of unity,

fio)(q"™/¢) € L,

a certain subspace in }?, determined by the tangent space Ty to LTo*e
at the point f(1);

(iii) when ¢ # 0,00 is not a root of unity, f¢) is a power series in
q—1/C, i.e. £ has no pole at ¢ =1/C.

The subspace £§O is described as V U™(T}) @gm(a) A, where the
Adams operation U™ acts by U™ (q) = ¢™ and naturally on the -
algebra K°(X) ® A, and V. is the operator of multiplication by

Z Tk(T%) o whm(Ty)
k>0 \ k(1=C=Fgh/m)  k(1—g"™)

In its turn, the cone L£/%¢ C K (and hence its tangent spaces T;)
can be expressed in terms of the cone £# C H, describing the range
of cohomological J-function in the space H of Laurent series in one
indeterminate z with coefficients in H"*"( X )®A. Namely, according to
the Hirzebruch-Riemann—Roch theorem [2] in fake quantum K-theory,

qch(ﬁfake) =ALH

where the quantum Chern character qch : K — H acts by qch g = €7,
and by the natural Chern character ch : K°(X) ® A — H®"(X) ® A
on the vector coefficients, while A acts as the multiplication in the
classical cohomology of X by the FEuler-Maclaurin asymptotics (see
3, 2, 6]) of the infinite product:

o0
A~ Tty @q).
r=1
Using all these descriptions, we are going on explore how the string
and divisor equations of quantum cohomology theory manifest in the
genus-0 permutation-equivariant quantum K-theory.
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DIVISOR EQUATIONS AND D,-MODULES

Let py, ..., px be abasis in H?(X, R) consisting if integer numerically
effective classes, and let Q¢ = Q%" - - CIl{K , where d; = p;(d), represent
degree-d holomorphic curves in the Novikov ring. We remind that the
Novikov variables are included into the ground A-algebra A.

The loop space H of Laurent series in z with vector coefficients in
H*"(X) ® A is equipped with the structure of a module over the
algebra D of differential operators in the Novikov variables, so that Q);
acts as multiplication by @);, and @Q);0, acts as 2Q);0q, —p;- The divisor
equations in quantum cohomology theory imply (see e.g. [4]), that

linear vector fields £ — (Q;0q, —pi/2)f in H are tangent to LT C H.

In follows that the ruling spaces (as well as tangent spaces) of LH are
D-modules, i.e. are invariant with respect to each differential operator
D(Q,2Q0g — p, z), and moreover the flow € — eP/% of the vector field
f — Df/z preserves LH.

Indeed, for f € £, the vector (Q;0q, — p;)f lies in T}, £, and hence
(20;0¢, — p:)f lies in the same ruling space 2Ty L as f does. Therefore
so does Df, and hence Df/z € TeLT | i.e. the vector field f — Df/z is
tangent to £

Note that the operator A relating £7 and £7% involves multipli-
cation in the commutative classical cohomology algebra H¢*"(X), but
does not involve Novikov’s variables. Consequently, the tangent and
ruling spaces of qch(L£/%¢) are D-modules too, and moreover, the flows
e = eP/# preserve qch(L/%e).

We equip the space I of vector-valued rational functions of ¢ with
the structure of a module over the algebra D, of finite difference op-
erators. It is generated (over the algebra of Laurent polynomials in q)
by multiplication operators, acting as multiplications by ();, and trans-
lation operators, acting as P;g9i%:, where P; is the multiplication in
K°(X) by the line bundle with the Chern character ch P; = e 7.

Proposition (cf. [6,4]). The ruling spaces of the overruled cone L C
KC of permutation-equivariant quantum K-theory is are Dy-modules.

Proof. If f € L, it passes the tests (i),(ii),(iii) of adelic characteri-
zation. We need to show that g := P;¢@9@:f, which obviously lies in
K, also passes the tests (and with the same t € K°(X) ® A,). This is
obvious for test (iii), and is true about test (i) because of the above D-
module (and hence D,-module) property of the ruling spaces (1 — ¢)T;
of L/a¢  To verify test (ii), we write:

g (@™ /C) = Pi(qg"/™) @%@t (¢ /C).
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First, note that the operator V. relating £ with W™ (T}) does not
involve Novikov’s variables and commutes with D,. Next, let us elu-
cidate the notation W™(T;) ®yma) A. In fact the space so indicated
consists of linear combinations ) | A,(Q, q)¥™(f,), where f, € T}, and
Ao € Al[g — 1]]. We have the following commutation relations:

CQiaQi Pm — CsznaQ;" ym — g

Therefore

Pighm) 200,00, <Z Aa@m(f”) i

D (gm0, ) w (P (gm0,

a

which lies in ¥™(T}) ®gm(a) A since T is invariant under the operator
Pl/m(ql/m)QiaQi — o(2Qidq; —pi)/m U

Let D(Pq%9%, q) be a constant coefficient finite difference operator,
by which we mean a Laurent polynomial expression in translation op-
erators P;g?%:, and maybe ¢, with coefficients from A independent
of Q). We assume below that ¢ € A, to assure e-adic convergence of
infinite sums.

Theorem 1. The operator
e>is0 VFH(eD(PgH?%, ) k(1 — ¢¥)
preserves L C K.

Proof. We show that if (1 — ¢)f passes tests (i), (ii), (iii) of the
adelic characterization of £, then (1 — q)g, where

g = om0 PH(ED(PE%, @) /(1 — ¢") ¢

also does.

(i) Suppose (1—q)f() lies in the ruling space (1—q)T; C L/%*¢. Note
that the exponent Y_,_, U*(eD(P¢*?%, q))/k(1 — ¢*) has first order
pole at ¢ = 1. Accor§ing to the discussion above the flow defined by
such an operator on K preserves £/%%¢ and therefore maps its tangent
spaces to tangent spaces, and ruling spaces to ruling spaces, and more-
over, the operators regular at ¢ = 1 preserve each ruling and tangent
space. It follows that (1 — ¢)ga) € (1 — ¢)Ty C L%, where

Ty = e2k>0 Uk(eD(P¢*?% 1)) /k*(1 — )7,
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(ii) We have
U™ (Ty) = 62k>0 ‘I’mk(GD(quQaQa 1))/k2(1 - qm>\pm(Tt)
On the other hand, for a primitive mth root of unity ¢,
(/™ /¢) = eZns0 VH(eD(P@/™ /()" AR (MM ¢

_ WA D10 T (eD(Pg%, 1)) fmi(1 — ql)f( o(a/™)0),

where A is some operator regular at ¢ = 1. It comes out of refactoring
eAtB/(0-9) where A and B are regular at ¢ = 1, as e?e?/(1-9 We use
here the fact that the operators A and B have constant coefficients,
and hence commute.

Note that the exponents Y., ,¥™*(eD(Q, P¢"?% 1))/k*(1 — ¢™)
and Y., U™ (eD(Q, Pq'?%, 1)) /ml(1—q') agree modulo terms regular
at ¢ = 1 (which, again, commute with the singular terms). Since we
are given that

8(¢)

£ (¢ /C) € Ve W™ (T}) @gmay A,

and since V. commutes with D,, we conclude (using the refactoring
again), that

gc(q"/™/¢) € Ve U™(Ty) Rgm(ny A

Note that the exponent in e involves translations P,q?i%: as well as

(~@%;i  and so it is important, that (as we’ve checked in the proof of
above Proposition), such operators preserve the space U™ (T} ) @gm(a)A.

(iii) If f is regular at ¢ = 1/¢, where ¢ # 0,00 is not a root of unity,
g is obviously regular there too. 0

Corollary (the g-string equation). The range L C K of permutation
-equivariant J-function is invariant under the multiplication operators:

£ s e2ak>0 Uh(e)/k(1 = q%) f, eeA,.

Proof: Use Theorem 1 with D = 1.

EXAMPLES

Example 1: d = 0. In degree 0, i.e. modulo Novikov’s variables,
the cone £ C K coincides with the cone £,; over the A-algebra K°(X)®
A. Theorem 1 and Proposition allow one to recover the part of £,; over
the A-algebra A’ = K°(X),,®A, where by K°(X),, (the primitive part)
we denote the part of the ring K°(X) generated by line bundles.
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Let monomials P := P --- P2X run a basis of K°(X),,. Applying
the above theorem to the finite difference operator

K
a

a =1

and acting on the point J = 1 — ¢ modulo Novikov’s variables, we
recover over A’ the small J-function of the point:

(]_ _ q)eZa Zk>0 \Ijk(ea)Pka/k(l - qk> = ]_ —q + Z Eapa mod ’C_'

Furthermore, applying linear combinations

> calg) PUq %%

with coefficients ¢, € A[g,¢!] which are arbitrary Laurent polynomi-
als in ¢, we get, according to Proposition, points in the same ruling
space of the cone £. Modulo Novikov’s variables this effectively results
in multiplying by arbitrary elements > ¢,(¢)P* from A'[g,¢ '], and
therefore yields the entire cone £, over A’.

Example 2: X = CP'. We know' one point on £ = L¢p1, the
small J-function:
Qd
0)=(1- )
IO =0=0 2 T e =P (1= P

d>0

Here P = O(—1) is the generator of K°(CP"). It satisfies the relation
(1 — P)? = 0. The K-theoretic Poincaré pairing is determined by

o(P) dP
a-pr P

We use Theorem 1 with the operator D = X + ePq®% X, e € A, and
obtain a 2-parametric family of points on Lcpr:

o isa(TFN) + UHPR9) [k(1 = ¢) 7

Q’ o2kso VE(E) PP k(1 — ¢")
(1— Pg2(1— P@)?--(1— Pgd)?’

X(CP1§¢(P)) = Resp=1

(1— q)62k>0 UE(N) k(L — ¢¥) Z

Examine now two specializations.

'From various sources: Part IV (by localization), or [6] (by adelic characteriza-
tion), or [5] (by toric compactifications).
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Firstly, as a consistency check, let us extract from this the degree-1
part of Fo. Modulo Q?, we are left with

7 = oXaso PEO) K1) (1 g % ezbowe)mk/kuqk)) .

Modulo K_ (and Q?%), we have: [J]y =1 — ¢+ X+ eP. According to
Part VII, Corollary 3,

Folt) = —5 T ()], T(6) ~ Z(F(6(1), 1)

For degree d = 1 part [J; of J, we have

1 (1—-q) dgq

—Q = _ 1— 2= p -1 JAl) L

([T)+,TJ1) = Resg—o,00 ( . + A+ €P, e e .

where A(q) = >, (T*(N) + U*(e) P*¢") /k(1 — ¢*). The 1-form has no

pole at ¢ = oo. Since ((1 —¢)/(1 — Pq)2);:0 = 2P — 1, and A'(0) =
A+ €P, the residue at ¢ = 0 is calculated as

(1+A+eP, eA(O)) — (1,(2P - Det@ 4+ (X + eP)eA(O)) =
ReSp:1 WF = 2e = 2€Ek>0 .

Let us check this rather trivial result “by hands”. The degree d = 1
part of Fo(t) at t = A+ eP is defined as ) (A +€P,..., A+ eP}OSj;Z’l.
Since there is only one rational curve of degree 1 in CP', the moduli
space Xo,1 = My,(CP', 1) is obtained from (CP')" by some blow-
ups along the diagonals. The evaluation maps ev; : Xg,; — CP!

factor through (CP')™ as the projections (CP')" — CP!. Therefore
the correlator sum can be evaluated as

Z (H* (CPY; A+ eP)®n> - Z(XX’”)S’L
n>0 n>0

because for P = O(—1) we have H*(CP'; P) = 0. Let us remind from
Part I that for elements of a A-algebra,

1
(A= = 3 e,
s h€Sn k>0

where [ (h) is the number of cycles of length k in the permutation h.
Thus, the correlator sum indeed coincides with e2=r>o TN /k,
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Secondly, let us return to our 2-parametric family of points on L¢p1,
and specialize it to the symmetrized theory, where only the S,,-invariant
part of sheaf cohomology is taken into account. For this, we specialize
the A-algebra to A = Q[[\, e, Q]] with UF(\) = X\ ¥F(e) = € (and
U*(Q) = Q as before). Some simplifications ensue. Since

¢ =1-(1-¢")1+q" + -+ "),

we have
d—l

e2 k>0 e PrgH k(1 = ¢") _ 22k>0 " Pr/k(1 - ¢* H e Lk Pk
r=0

d—1
= @Zk>0 " P [k(1 — ¢*) (1 —€Pq").

r=0

Thus, we obtain the following 2-parametric family of points on L2775

w1 e DN+ PR /(L — ¢) 5 o Izl = Pa)
Jebr = (1 = g)ett 2 Py

Note that the projection of this series to I, along K_ picks contribu-
tions only from the terms with d =0 and k = 1:

[Ty =1—q+ A+ eP.

Therefore the series represents the small J-function of the symmetrized
quantum K-theory of CP!. The exponential factor is actually equal to
exp,(A/(1 — q)) exp,(eP/(1 — q)). Thus, we obtain:

Tept (A +€P) = mod 1-py2

_ e A el PLQ? Hf;é(l—quT)
- ZZZTL 1 )Hl (1_‘]8)1_[;{:1(1_]3(17").

m=0 [=0 d=0 s=1

RECONSTRUCTION THEOREMS

As in Example 1, assume that py,...,px is a numerically effective
integer basis in H2(X,Q), that Novikov’s monomials Q% = Q%" ... Qix
represent degree d holomorphic curves in X in coordinates d; = p;(d) on
H,(X), that P; are line bundles with ch P; = e7?i, and that monomials
P* = PM... P run a basis in K(X),,, the primitive part of the
K-ring. We also write a.d for the value > a;d; of —c;(P*) on d.
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Theorem 2 (explicit reconstruction). Let [ =, 1,Q% be a point in
the range L C K of the J-function of permutation-equivariant quantum
K-theory on X, written as a vector-valued series in Novikov’s variables.
Then the following family also lies in L:

3 [Q k0 20 V() P D [R(L = ") oy
d

Moreover, for arbitrary Laurent polynomials c, € A[q, ¢ '], the follow-
ing series also lies in L:

3 [, k0 200 WH(€a) PRgM D /R (1 — ¢F) 3 cala) g™,
d a

Furthermore, when K°(X) = K°(X),,, the whole cone L C K is pa-

rameterized this way.

Proof. We first work over A’ freely generated as A-algebra by the
“time” variables ¢,, and use Theorem 1 with the Q)-independent finite
difference operator D =) €, P*q*?% . We conclude that the family

eXin0 2o VP KA [ § 1m0 R0 W) PUae A 1)
d

lies in the cone £, defined over A’. To obtain the second statement, we
apply Proposition, using finite difference operators Y, c,(q) P.q*@%2.
Afterwards we specialize the “times” €, to any values ¢, € A (which
at this point may become dependent on Q). Finally, when K°(X) =
K°X),», we use the formal Implicit Function Theorem to conclude
that the whole cone L is parameterized, because this is true modulo
Novikov’s variables, as Example 1 shows. O

Example: X = CPY. According to Theorem 2, the entire cone £
is parameterized as follows:

j _ (1 _ q) Z Qd €Zk>0 Zfzvzo \Ilk(Ea)Pkaqkad/k(l_qk) Zfl\[:o Ca<Q)Paqad
(1 _ pq)N+1(1 _ Pq2)N+1 A (1 _ pqd)N+1

d>0

Of course, this is obtained by applying Theorem 2 to the small J-
function J(0) from [5] (also [6], or Parts II-IV in the non-equivariant
limit). Here €, € A, c,(q) are arbitrary Laurent polynomials in ¢ with
coefficients in A, and P* a = 0,...,N, P = O(—1), are used for a
basis in K°(X). Perhaps, the basis (1 — P)*,a = 0,..., N, is more
useful (cf. [4]), and we get yet another parameterization of L:

(1- g 3 gu e VP I 5 g ala)1— Py

q (1 — Pg)NtI(1 — P@)N+1... (1 — Pg?)N+L

d>0
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We return now to the context of Part VII, where we studied the
mixed J-function J(x,t), involving two types of inputs: permutable t
and non-permutable x, both taken from ;. The cone £ C K repre-
sents the range of t — J(0,t). Recall that according to the general
theory, it is the union of ruling spaces (1—q)T;, where t = T (t) is given
by a certain non-linear map

T - K'X)oA @(1-9K,y - K'(X)®A,.

At the same time, for a fixed value of t, the range of the ordinary J-
function x — J(x,t) is an overruled Lagrangian cone £; C K, which
shares with £ one ruling space, T}, corresponding to ¢ = 7 (t). Each
tangent space of each cone L, is tangent to £; along one of the ruling
spaces (e.g. T is tangent along (1 — ¢)7;), and is related with this
ruling space by the multiplication by 1 —¢. As a consequence, not only
each ruling (and tangent) space of each £; is a D,-module (which is
proved on the basis of adelic characterization as in Proposition above),
but also each cone L; is invariant under the flow

f— eeD(QquQaQ 7‘1)/(1—Q)f’

where D € D,. We use this to reconstruct the family £,.
Theorem 3. Let I =Y 1,Q% (as in Theorem 2). Then

I(e) = Z Ly(6)Q* = Z 1,Q%e k>0 Lo VH(ea) PR D k(=) o o p
d d

represent a family of points on the cones Ly (one point on each cone),
and the following family of points, parameterized by 7, € A and by
ca € Mg, q7 1], lies on Ly

aa.d
Z ]d(g) Qd @Za TCLP q /(1 - q) Z CQ(Q)Paqa'd.
d a
Moreover, if K°(X) = K°%X),, for each t € K°(X) ® A, the whole

cone L; is thus parameterized.

Proof. It is clear from computation modulo Novikov’s variables
that the family /(e) has no tangency with the ruling spaces, hence
represents at most one point from each £; (and does represent one,
when K°(X) = K°(X),,). Given one point, I(€), on Ly(), we generate
more points by machinery discussed above: applying the commuting
flows

eZaTeP /1= (o) = > Q1€)X 00,
d
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followed by the application of the operators > c,(q) P1¢*?%2, where 7,
and the coefficients of ¢, are independent variables. Afterwards they
can be specialized to some values in A (in particular, depending on
Q). In the case when K°(X) = K°(X),,, it follows from the Implicit
Function Theorem and Example 1 about the limit to d = 0, that the
entire cone £; for each t is thus obtained. O

Example: X = CPV. It follows that for fixed values of ¢,, the
corresponding cone L, is parameterized as

N Taipaqad \Ilk €q M
(1 - q) Z Qd eZa:O( a2 k>0 ¥ (€a) k(1—qF) ) Zivzo Ca(q>Paqad
(1 — Pg)N+L(1 — P@)N+1... (1 — Pgh)N+1

d>0

and all £; are so obtained.

Remarks. Reconstruction theorems in quantum cohomology and
K-theory go back to Kontsevich-Manin [9] and Lee-Pandharipande
[10] respectively. Theorem 3 is a slight generalization (from the case

= 0) of the “explicit reconstruction” result [4] in the ordinary (non-
permutation-equivariant) quantum K-theory, which in its turn mimics
the results of quantum cohomology theory already found in [1, 7], and
shares the methods based on finite difference operators with the K-
theoretic results of [8].

Theorems of this section show that when K°(X) is generated by
line bundles, the entire range £ of the J-function in the permutation-
equivariant genus-0 quantum K-theory of X, as well as the entire family
L; of the overruled Lagrangian cones representing the “ordinary” J-
functions, depending on the permutable parameter, ¢, can be explicitly
represented in a parametric form, given one point on any of these cones.
In essence, all genus-0 K-theoretic GW-invariants of X, permutation-
equivariant, ordinary, or mixed, are thereby reconstructed from any
one point: a K°(X)-valued series Y, [,Q¢ in Novikov’s variables.

In the case of a toric X, the results of Part V exhibit such a point in
the form of the g-hypergeometric series mirror-symmetric to X. Need-
less to say, the same applies to toric bundles spaces, or super-bundles
(a.k.a. toric complete intersections), as well as to the torus-equivariant
versions of K-theoretic GW-invariants. Thus “all” (torus-equivariant or
not; permutation-equivariant, ordinary, or mixed) K-theoretic genus-0
GW-invariants of toric manifolds, toric bundles, or toric complete in-
tersections are computed in a geometrically explicit form, illustrated
by the above example.
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