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Abstract. We introduce the most general to date version of the
permutation-equivariant quantum K-theory, and express its total
descendant potential in terms of cohomological Gromov-Witten in-
variants. This is the higher-genus analogue of adelic characteriza-
tion [10], and is based on the application of the Kawasaki-Riemann-
Roch formula [12] to moduli spaces of stable maps.

Introduction

Cohomological Gromov-Witten invariants of a compact Kähler man-
ifold X are defined as various intersection numbers in moduli spaces
of stable maps, denoted here Xg,n,d with g, n, d standing for the
genus, number of marked points, and degree of the maps. The K-
theoretic counterpart of GW-theory studies holomorphic Euler char-
acteristics of appropriate vector bundles over the moduli spaces. The
action of permutations of the marked points on the sheaf cohomology
of such bundles leads to the refined version of the theory, which we
call permutation-equivariant. In genus 0, a complete description of K-
theoretic GW-invariants in terms of cohomological ones was obtained
in [10], and then applied to the permutation-equivariant theory in the
previous papers of the present series (see Part III [8] or Part VII [9].
Conceptually the cohomological description of K-theoretic invariants

is based on Kawasaki’s version of Hirzebruch–Riemann–Roch formula
[12] (or more precisely, its virtual variant [16]) applied on the moduli
spaces Xg,n,d. An early version of this approach to the higher genus
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2 A. GIVENTAL

problem is used in the preprint [18] by V. Tonita. I am thankful to
him for numerous discussions and corrections.1

As it was found in [10], in genus 0 the solution can be described in the
form of adelic characterization. Roughly speaking, genus-0 K-theoretic
GW-invariants of X are encoded by a certain Lagrangian cone in a
symplectic space whose elements are rational functions in one complex
variable, q, with vector values in K0(X). The adelic characterization
says that a rational function lies in the cone if and only if the Laurent
series expansion of it at each root of unity q = ζ passes a certain
test. Namely, the expansion (as an element in the symplectic space
of Laurent series with coefficients in K0(X)) should represent certain
cohomological GW-invariants of the orbifold target space X/ZM , where
M is the order of ζ as a root of unity.
This paper establishes the higher genus version of adelic characteri-

zation. It involves quantization of the aforementioned symplectic for-
malism. In this Introduction, we don’t give a complete formulation of
the ultimate theorem (because it requires so many poorly motivated
ingredients and notations, that the resulting formula, we fear, would
become incomprehensible), but merely outline the quantum-mechanical
structure of the adelic formula relating K-theoretic GW-invariants with
cohomological ones.
A thorough definition of the permutation-equivariant GW-invariants

and of the appropriate generating functions will be given in Section
1. In Section 2, we sketch the geometric machinery which shows, in
principle, how to reduce the computation of K-theoretic to cohomo-
logical GW-invariants. In Sections 3 and 4, we describe the language
of symplectic loop spaces and their Fock spaces where various gener-
ating functions for GW-invariants live. Using this language, we will
accurately build the ingredients of the ultimate formula starting from
cohomological GW-invariants. The remaining details of the proof will
be provided in Sections 5–9.

By definition, permutation-equivariant K-theoretic GW-invariants
take values in a ground coefficient ring, Λ, which is a λ-algebra, i.e.
is equipped with the action of Adams operations Ψr : Λ → Λ, r =
1, 2, 3, . . . , which are ring homomorphisms from Λ to itself, and satisfy
Ψ1 = id, ΨrΨs = Ψrs.
The total descendant potential DX for permutation-equivariant GW-

invariants of X is defined (in Section 1) as a Λ-valued function of a

1I am also thankful to Irit Huq-Kuruvilla for helping me fix several errors, and
to Jeongseok Oh for correcting numerous typos.
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sequence t = (t1, t2, . . . , tr, . . . ) of Laurent polynomials2 in q with vec-
tor coefficients in K0(X)⊗Λ. It also depends on the “Planck constant”
~, and can be interpreted as an element of the Fock space associated
with a certain symplectic space (K∞,Ω∞).
Namely, put K := K0(X)⊗Λ, and consider the space K or rational

K-valued functions of q which are allowed to have poles only at q =
0,∞, or at roots of unity. Equip K with the Λ-valued symplectic form

Ω(f ,g) := − [Resq=0 +Resq=∞] (f(q−1),g(q))
dq

q
,

where (a, b) := χ(X; a ⊗ b) is the K-theoretic Poincaré pairing on K,
and with the Lagrangian polarization K = K+ ⊕K−, where

K+ := K[q, q−1], K− := {f ∈ K | f(∞) = 0, f(0) 6= ∞} .
By definition, K∞ consists of sequences f = (f1, f2, . . . , fr, . . . ) of ele-
ments of K. It is equipped with the symplectic form

Ω∞(f ,g) :=
∞∑

r=1

Ψr

r
Ω(fr,gr),

and Lagrangian polarization K∞
± = {f = (f1, f2, . . . ) | ∀r, fr ∈ K±}.

The total descendant potential DX , which is naturally a function of
t = (t1, t2, . . . ) ∈ K∞

+ (depending on the parameter ~), is considered as
a function on K∞ constant in the direction of K∞

− , and in this capacity
is interpreted as a “quantum state”, 〈DX〉, an element of the Fock space
associated with (K∞,Ω∞).
On the cohomological side, for eachM = 1, 2, 3, . . . , let ZM = Z/MZ

denote the cyclic group of order M , and CM−1 = C[ZM ]/C be the quo-
tient of the regular representation of ZM by the trivial one. Over the
global quotient orbifoldX/ZM (where the action of ZM is trivial), intro-
duce the orbibundle TX⊗CM−1, and denote by EM its total (orbi)space.
What we need is a certain twisted cohomological GW-theory of X/ZM ,
which can be interpreted as the fake quantum K-theory3 of the non-
compact orbifold EM . Denote by Dtw

X/ZM
the total descendant potential

of such a theory. Using a series of “quantum Riemann-Roch theorems”
available in the literature (see [3, 4, 11, 17, 19, 20]), it will be shown in
Sections 6,7 how to link this generating function directly to the total

2Foreshadowing the definition let us mention here that tr will be used as the input
in the correlators of permutation-equivariant quantum K-theory at those marked
points which belong to cycles of length r in the cycle structure of the permutation.

3In fake quantum K-theory, genuine holomorphic Euler characteristics of orbi-
bundles over moduli spaces of stable maps are replaced with their fake versions:
χfake(M;V ) :=

∫
M

ch(V ) td(TM), and are therefore cohomological in nature.
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descendant potential DH
X of the ordinary cohomological GW-theory of

X. So we will assume here that all the functions Dtw
X/ZM

are given.

Each Dtw
X/ZM

can be considered as a quantum state, 〈Dtw
X/ZM

〉, an
element of the Fock space associated with the appropriate symplectic
space, (Ktw

(M),Ω
tw
(M)). This space is a direct sum of M sectors corre-

sponding to Mth roots of unity ζ. Each sector is represented by the
space K(ζ) isomorphic to the space K((q−1)) of vector-valued Laurent

series in q− 1. The symplectic form Ωtw
(M) pairs K(ζ) with K(ζ−1) by the

non-degenerate pairing

(f, g) 7→ 1

M
Resq=1(f(q

−1), g(q))(r)
dq

q
.

It is based on the twisted Poincaré pairing on K characterized by

(Ψra,Ψrb)(r) = rΨr(a, b),

where r = r(ζ) equals the index of the subgroup generated by ζ in the
multiplicative group of all Mth roots of unity.
Note that when M runs through all positive integers, each root of

unity ζ of primitive order m = m(ζ) occurs among Mth roots of unity
infinitely many times distinguished by the values of the index r(ζ) =
M/m(ζ) = 1, 2, 3 . . . . Consequently the direct sum ⊕∞

M=1Ktw
(M) can be

rearranged according to the indices r into the adelic space

K∞ := ⊕roots of unity ζ ⊕∞
r=1 K(ζ)

r

(here K(ζ)
r is the rth copy of K(ζ)) with the symplectic form

Ω∞(f ,g) =
∑

ζ

1

m(ζ)

∞∑

r=1

1

r
Resq=1(f

(ζ)
r (q−1), g(ζ

−1)
r (q))(r)

dq

q
.

Thus, the adelic tensor product

DX := ⊗∞
M=1Dtw

X/ZM

can be considered as an element 〈DX〉 in the Fock space associated
with the adelic symplectic space.
We define the adelic map : K∞ → K∞ by

f = (f1, f2, . . . , fr, . . . ) 7→ f = {f (ζ)
r } : f (ζ)

r := Ψr(fr(q
1/m/ζ)),

where the last expression is to be expanded into a Laurent series near
q = 1 after applying Adams’ operations Ψr, acting naturally on K =
K0(X)⊗Λ, and by Ψr(q) = qr on functions of q. The residue theorem
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implies that the adelic map is symplectic:

Ω∞(f ,g) =
∞∑

r=1

Ψr

r

∑

ζ

Resq=ζ(fr(q
−1),gr(q))

dq

q

=
∞∑

r=1

1

r2

∑

ζ

Resq=1(Ψ
r(fr(q

−1/mζ)),Ψr(gr(q
1/m/ζ))(r)

dqr/m

qr/m

=
∑

ζ

1

m(ζ)

∞∑

r=1

1

r
Resq=1 (f (ζ)r (q−1),g(ζ−1)

r
(q))(r)

dq

q
.

Our “higher genus quantum RR formula” can be stated this way.

Main Theorem. The adelic map : (K∞,Ω∞) → (K∞,Ω∞) between
the symplectic loop spaces transforms the adelic quantum state 〈DX〉
into the total descendant potential 〈DX〉 of permutation-equivariant
quantum K-theory of the target Kähler manifold X.

How does a map between symplectic spaces map respective Fock
spaces? Elements of the Fock space are functions on the symplectic
space constant in the direction of the negative space of a chosen La-
grangian polarization. A map between symplectic spaces respecting
the negative spaces of the chosen polarizations induces a map between
the quotients, and hence maps the Fock spaces naturally (in the re-
verse direction). When the given polarizations disagree, one needs first
to change one of them to identify the models of the Fock space based
on different polarizations by the construction of Stone-von Neumann’s
theorem, and only after that apply the natural pull-back.
In the situation of our theorem, the polarizations disagree, and the

precursory change of polarization in the adelic space is one of the key
ingredients of the relation between DX and DX as generating functions.
The space K∞

− consists of sequences f = (f1, f2, . . . , fr, . . . ) of vector-
values rational functions of q with poles at roots of unity ζ, but van-
ishing at q = ∞ and having no pole at q = 0. Such rational func-
tions uniquely decompose into the sums of their partial fractions, fr =∑

ζ f
(ζ)
r , i.e. reduced rational functions of q with only one pole q = ζ.

In fact the negative space of polarization K∞
− in the adelic space (we’ve

neglected to describe it so far, but it is involved in the interpretation
of the infinite product DX as an element of the Fock space) is exactly

the direct sum of subspaces {Ψr(f
(ζ)
r (q1/m(ζ)/ζ))} ⊂ K(ζ)

r = K((q − 1))
obtained from such partial fractions.
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By the way, we encounter here an interesting phenomenon impossible
in finite-dimensional symplectic geometry. The adelic map : K∞ →
K∞ is a symplectic injection which embeds the Lagrangian subspace
K∞

+ into the much bigger Lagrangian subspace K∞
+ , but it identifies

the Lagrangian subspaces K∞
− and K∞

− considered as quotient spaces
K∞/K∞

+ and K∞/K∞
+ .

At the same time, the image of K∞
− under the adelic map does not

coincide with K∞
− , and it is now easy to understand why: the image of

f
(ζ)
r consists of the expansions of Ψr(f

(ζ)
r (q1/m(η)/η)) for all roots of unity

η, and not only for η = ζ where the partial fraction f
(ζ)
r has its pole.

Consequently, the relation between the quantum states 〈DX〉 and 〈DX〉
described in the theorem actually means that the total descendant
potential DX is obtained from the infinite product DX as

DX = pull-back by : K∞
+ ⊂ K∞

+ of e
1
2

∑
r rΨ

r(~
∑

∇η,ζ) ⊗∞
M=1 Dtw

X/ZM
.

Here ∇η,ζ are certain 2nd order differential operators whose coef-
ficients are tautologically determined by expansions of partial frac-
tions with poles at roots of unity ζ into power series near all other
roots of unity, while the embedding : K∞

+ → K∞
+ maps sequences

t = (t1, t2, . . . , tr . . . ) of Laurent polynomial tr ∈ K[q, q−1] into the
collection of power series expansions Ψr(tr(q

1/m(ζ)/ζ)) of the Laurent
polynomials at the roots of unity.
The above description of our main formula is neither complete not

totally accurate, and should be supplemented with further clarifica-
tions.
1. The quantum state 〈DX〉 differs from the total descendant poten-

tial DX (though both are functions on K∞/K∞
− = K∞

+ ) by the transla-
tion of the origin called the dilaton shift: 〈DX〉(v+ t) = DX(t), where
v = ((1−q)1, (1−q)1, . . . ), and 1 stands for the unit element inK0(X).
Likewise, 〈Dtw

X/ZM
〉((1 − q)1 + t) = Dtw

X/ZM
(t). Here 1 belongs to the

unit sector, i.e. among the components t(ζ) ∈ K[[q− 1]] labeled by the
Mth roots of unity ζ only the component with ζ = 1 is dilaton-shifted.
2. In the generating functions for GW-invariants, one weighs contri-

butions of degree-d stable maps by the binomials Qd in Novikov’s vari-
ables Q = (Q1, . . . , Qr), where r = rkH2(X,Z). Novikov’s variables
are adjoined to the ground λ-ring Λ so that ΨrQd := Qrd. Furthermore,
the expression “rational functions” (“Laurent series,” “power series”,
etc.) of q should be understood as formal Q-series whose coefficients
are rational functions (formal Laurent series, power series etc.) of q,
and the notations like K[q, q−1], K((q−1)), etc. have to be understood
in the sense of such a Q-adic completion.
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3. To avoid some divergences, we require that Λ is a local algebra
with the maximal ideal Λ+, that Adams’ operations respect the filtra-
tion by its powers: ΨrΛ+ ⊂ Λr

+, and assume that the components of
the variables in generating functions lie in Λ+. In particular, the quan-
tum states 〈DX〉, 〈DX〉, etc. are functions on K∞

+ , K∞
+ , etc. defined in

a Λ+-neighborhood of the dilaton shift.
4. A peculiar phenomenon overlooked in the previous discussion is

that the symplectic structure Ω∞, the adelic map, and other ingre-
dient of our formalism are not Λ-linear in the usual sense. For in-
stance, for ν ∈ Λ and f = (f1, f2, . . . , fr, . . . ) ∈ K∞, the adelic image
νf = (νf1,Ψ

2(ν)f2, . . . ,Ψ
r(ν)f r, . . . ), i.e. the map between the rth

components is linear relative to the scalar transformation Ψr.4

5. The previous feature manifests in the quantization formalism as
well. Namely the Planck constant, which needs to be adjoint to the
ground ring Λ, is acted upon by Adams’ operations as Ψr~ := ~r. Re-
spectively, ~r plays the role of the Planck constant in the quantization
formalism on the rth component of the adelic space K∞. This is man-
ifest in our formula

∑
r r~

rΨr
∑∇η,ζ for the propagator, where ∇η,ζ

are 2nd order differential operators.
6. This brings up the question about the status of the Planck con-

stant in the adelic product ⊗∞
M=1Dtw

X/ZM
since each factor mixes up

sectors with different values of the index r. In fact the quantum
state 〈Dtw

X/ZM
〉(t, ~, Q)) (i.e. the generating function for twisted fake

K-theoretic GW-invariants of the orbifold EM after the dilaton shift)
is homogeneous (due to the so-called dilaton equation):

〈Dtw
X/ZM

〉(t, ~, Q)) = ~
M dimK0(X)

48 〈Dtw
X/ZM

〉( t√
~
, 1, Q).

By the rules of quantum mechanics, scalar factors don’t affect “quan-
tum states.” The accurate definition of the infinite tensor product in
our main theorem is

〈DX〉 ({t(ζ)r }, ~, Q) = ⊗∞
M=1〈Dtw

X/ZM
〉
(
{t(ζ)M/m(ζ)}√

~
, 1, QM

)
.

Note the change of Q into QM in the Mth factor.
7. Our final remark here is about equivariant generalizations of

the theorem. In applications of GW-theory, the target space is of-
ten equipped with an action of a torus T , and all holomorphic Eu-
ler characteristics are replaced with the characters of the T -action on

4Perhaps one can rectify this by noticing that de facto DX depends not on tr,
r = 1, 2, 3, . . . , but on Ψrtr.
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the sheaf cohomology. In particular, Lefschetz’ fixed point localiza-
tion technique, when combined with the formalism of symplectic loop
spaces, leads to dealing with fractions of the form 1/(1− qmτ), where
τ is a coordinate on T , and the poles in q are at roots of 1/τ rather
than roots of unity. Nevertheless our theory carries over verbatim to
the equivariant case. Namely, the homotopy theory construction of
equivariant K-theory yields K0

T (pt) = K0(BT ) which is not the char-
acter ring of T , but its completion into functions on T defined in the
formal neighborhood of the identity. Our ground λ-algebra Λ should
be changed into Λ⊗K0

T (pt). To make sense, the above fractions must
be expanded into series in τ − 1 with coefficients in rational fractions
of q having poles at roots of unity only:

1

1− qmτ
=

1

1− qm − qm(τ − 1)
=

∞∑

n=0

qmn(τ − 1)n

(1− qm)n+1
.

Thus, in the homotopy theory interpretation of T -equivariant K-theory,
localization to fixed points of T makes no sense, but our “quantum RR
formula” holds unchanged for T -equivariant GW-invariants, which take
values in Λ⊗K0

T (pt).

1. Redefining the invariants

Let us recall and generalize the definition of permutation-equivariant
K-theoretic GW-invariants given in Part I [7], and of the mixed genus-g
potential given in Part VII [9].
Let X be a compact Kähler manifold, K := K0(X) ⊗ Λ, where Λ

is a local λ-algebra that contains Novikov’s ring as it was explained in
Introduction.
Let Xg,n,d be the moduli space of degree-d stable maps to X of

complex curved of arithmetic genus g with n marked points, and let
h ∈ Sn be a permutation, acting on the moduli space by renumbering
the marked points. Let V be a holomorphic vector bundle over Xg,n,d

equivariant with respect to the action of the permutation h. Then
the sheaf cohomology π∗(V ) := H∗(Xg,n,d;V ⊗ Og,n,d), where Og,n,d is
the (Sn-invariant) virtual structure sheaf introduced by Y.-P. Lee [14],
inherits the action of h. Therefore the supertrace strh π∗(V ) is defined.
Denote lk = lk(h) the number of cycles of length k in the cycle

structure of h, and by l = (l1, l2, l3, . . . ) the corresponding partition of
n =

∑
rlr. Our current goal is to define correlators

〈u1, . . . ,ul1 ;v1, . . . ,vl2 ; . . . ;w1, . . . ,wlr ; . . .〉g,l,d,
where the inputs ui,vj ,wk, . . . are elements of K0(X)⊗Λ[q, q−1]. Note
that groups of the seats in the correlator have lengths l1, l2 etc., and
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the total number
∑
lr of the seats is equal to the number of non-empty

cycles.
Let σ1, . . . , σr be indices of the marked points cyclically permuted by

h, and let out of all the lr cycles of length r, this be the kth cycle. We
take the h-equivariant bundle Wk on Xg,n,d determined by the input
wk =

∑
m φmq

m (φm ∈ K0(X)) in the form

Wk :=
r⊗

α=1

∑

m

(ev∗σα
φm)L

m
σα
,

where evσα : Xg,n,d → X is the evaluation map, and Lσα is the universal
cotangent line bundle at the marked point with the index σα. This way,
for each cycle of length 1, 2, etc. we associate the inputs ui, vj, etc.
and define respectively the bundles Ui, Vj , etc. We define the above
correlator as

∏

r=1,2,...

r−lr strhH
∗

(
Xg,n,d;Og,n,d

l1⊗

i=1

Ui

l2⊗

j=1

Vj · · ·
lr⊗

k=1

Wk · · ·
)
.

The factor in front of the supertrace is motivated by the number
n!/
∏

r r
lr lr! of permutations with the cycle structure described by the

partition l.
Note that the correlator is poly-additive with respect to each input.

Namely, if wk = w′
k +w′′

k, then

r⊗

α=1

wk(Lα) =
∑

I⊂{ 1,...,r}

⊗

α∈I

w′
k(Lα)

⊗

β /∈I

w′′(Lβ).

The sheaf cohomology splits into 2r summands accordingly, but the
summands with I 6= ∅ or {1, . . . , n} are permuted by h non-trivially,
and hence don’t contribute to strh. Therefore

〈. . . ,wk, . . .〉g,l,d = 〈. . . ,w′
k, . . .〉g,l,d + 〈. . . ,w′′

k, . . .〉g,l,d.
We extend the correlator to inputs from K+ := K0(X)⊗Λ[q, q−1] in

the way linear relative to Ψr on each input corresponding to the cycles
of length r, i.e.

〈. . . , νwk, . . .〉g,l,d = Ψr(ν)〈. . . ,wk, . . .〉g,l,d.
This is motivated by the fact that if Λ = K0(Y ), then for a vector
bundle ν on Y , the trace bundle of the cyclic permutation of the factors
in ν⊗r coincides with Ψr(ν).
Now, we define the genus-g potential of permutation-equivariant

quantum K-theory of X as the sum over degrees and partitions l of
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all n = 0, 1, 2, . . . :

Fg(t) =
∑

d

Qd
∑

l

1∏
r lr!

〈. . . t1 . . . ; . . . , t2, . . . ; . . .〉g,l,d.

Here t = (t1, t2, . . . , tr, . . . ), each tr ∈ K+, and all the inputs in the
correlator corresponding to the cycles of length r are taken to be the
same and equal tr.
In fact we need to make one more adjustment to these definitions,

and redefine F0(t) as F0(t)+(Ψ2t2(1), 1)/2, i.e. add this linear function
to the above formula for F0. The reasons will become clear in Section 5
(see Remark (d) therein) on Kawasaki strata. In a way, this anomalous
term represents contributions of degree 0 curves with 2 marked poins
carrying Z2-symmetry: they are unstable as curves in X, but represent
stable maps in the Chen–Ruan theory of X/Z2.

Remark. The correlators 〈u, . . . ,u〉Sn
g,n,d defined in Part I [7] by taking

averages over Sn can be expressed in terms of the above correlators via
re-summation over the conjugacy classes labeled by partitions l of n:

〈u, . . . ,u〉Sn
g,n,d =

1

n!

∑

h∈Sn

strh[u, . . . ,u]g,n,d =
∑

l

1∏
r lr!

〈u; . . . ;u〉g,l,d.

Respectively the mixed genus-g potential of Part VII [9]
∑

m,n≥0,d

Qd〈x, . . . ,x; t, . . . , t〉Sn
g,m+n,d =

∑

d

Qd
∑

l

1∏
r lr!

〈x+t; t; t; . . .〉g,l,d

coincides with the specialization of Fg to the inputs t1 = x + t, t2 =
t, t3 = t, . . . .

While moduli spaces Xg,n,d parameterize stable maps of connected
curves, the total descendant potential is to account for contributions of
possibly disconnected curves, as well as for symmetries of such curves
caused by permutations of identical connected components.
Abstractly speaking, if ν ∈ Λ represents the contribution of “con-

nected” objects, then the sum over n of contributions of objects with
n components is given by

∑

n≥0

1

n!

∑

h∈Sn

∏

k>0

Ψk(ν)lk(h) =
∑

l

∏

k>0

(Ψk(ν)/k)lk

lk!
= e

∑
k>0 Ψ

k(ν)/k.

This motivates the following definition of the total descendant potential
of the permutation-equivariant quantum K-theory on X:

DX := e

∑
g≥0

[∑
k>0 ~

k(g−1)Ψk(RkFg)/k
]
,

where (RkF)(t1, t2, . . . , tr, . . . ) := F(tk, t2k, . . . , trk, . . . ).
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In order to explain the rescaling Rk of the indices in the variables tr,
note that automorphisms of

⊔∏k
α=1Xgα,nα,dα induced by cyclic permu-

tations of k connected components of a disconnected curve accompa-
nied by a renumbering h of marked points, generate traceless operators
on the sheaf cohomology unless gα, nα, dα don’t depend on α, and hk

renumbers the marked points of all components separately in consistent
ways. In this case, we have an automorphism of Xk

g,n,d whose kth power
is the automorphism of each factor Xg,n,d induced by the renumbering
hk. If the orbit of one of the marked points under the renumbering
hk has order r, then the orbit under the renumbering h has order rk.
Therefore the input corresponding to this cycle of marked points must
be trk.
Finally, the factor ~k(g−1), whose exponent is −1/2 times the Euler

characteristic of k copies of a genus-g Riemann surface, can be inter-
preted as Ψk(~g−1) by adjoining ~ to Λ and setting Ψk(~) = ~k.

Note that all Fg can be recovered from G := logDX by Möbius’
exclusion-inclusion formula

∑

g

~g−1Fg =
∏

p prime

(
1− Ψp

p
Rp

)
G.

2. Kawasaki’s Riemann–Roch formula

The expression of K-theoretic GW-invariants in terms of cohomolog-
ical ones is based on the use of the virtual variant [16] of Kawasaki’s
Riemann–Roch formula [12].
Let M be a compact complex orbifold, and V be a holomorphic

orbibundle on M. The holomorphic Euler characteristic of V , defined
in terms of Čech cohomology as χ(M;V ) :=

∑
i(−1)i dimH i(M;V ),

is expressed by Kawasaki’s RR formula in cohomological terms of the
inertia orbifold IM:

χ(M;V ) = χfake

(
IM;

trh V

strh ∧•N∗
IM

)
.

Recall that a point in IM is represented by a pair (x, h) where x ∈ M,
and h ∈ Γ(x) is an element of the inertia group of x ∈ M (i.e. the group
of local symmetries of x in the orbifold structure). In the formula,
N∗

IM denotes the conormal bundle to the stratum of fixed points of
the symmetry h. The bundle V can be restricted to the stratum and
decomposed into eigenbundles Vλ of h corresponding to the eigenvalues
λ. The trace operation trh V denotes the virtual bundle

∑
λ λVλ, and

the supertrace strh in the denominator denotes the similar operation
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on the Z2-graded bundle ∧•N∗
IM. Finally, the notation χfake stands

for the fake holomorphic Euler characteristic of an orbibundle over an
orbifold:

χfake(M ;W ) :=

∫

M

ch(W ) td(TM),

where ch(W ) is the Chern character of the orbibundle W , and td(TM)
is the Todd class of tangent orbibundle TM (both defined over Q).
In effect, the RHS of Kawasaki’s RR formula is the sum of certain

fake holomorphic Euler characteristics, i.e. of certain integrals over the
strata of the inertia orbifold, which are rational numbers adding up to
the integer defined by the LHS.

It is no accident that Kawasaki’s RR formula resembles Lefschetz’
holomorphic fixed point formula. To make the connection, let h be
an automorphism of a holomorphic bundle V over a compact complex

manifold M̃. For our goals it suffices to assume that h belongs to a
finite group G of such automorphisms (although abstractly speaking
this restriction can be relaxed). Lefschetz’ fixed point formula com-
putes the supertrace of h on the sheaf cohomology as an integral over

the fixed point submanifold M̃h:

strhH
∗(M̃;V ) = χfake

(
M̃h;

trh V

strh ∧•N∗
M̃h

)
.

On the other hand, V can be considered as an orbibundle over the quo-

tient orbifold M := M̃/G, and the holomorphic Euler characteristic
χ(M;V ) of the orbibundle can be found as the average over G:

1

|G|
∑

h∈G

strhH
∗(M̃;V ) =

1

|G|
∑

h∈G

χfake

(
M̃h;

trh V

strh ∧•N∗
M̃h

)
.

The last sum coincides with the right hand side of Kawasaki’s RR

formula on M = M̃/G since in the global quotient case

IM =

[⊔

h∈G

M̃h

]
/G.

In fact, we need a combination of Kawasaki’s RR with Lefschetz’
fixed point formula, computing strhH

∗(M;V ) where h is a finite order
automorphism of an orbibundle V over an orbifold M:

strhH
∗(M;V ) = χfake

(
IMh;

trh̃ V

strh̃ ∧•N∗
IMh

)
,
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where the “fixed point inertia orbifold” IMh can be described as fol-
lows. Let x ∈ M be a fixed point of h, and Ux → Ux/Γ(x) ⊂ M be its
orbifold chart. The transformation h can be lifted to automorphisms

h̃ of the chart (and of the bundle V over the chart) in |Γ(x)| possible
ways. Each transformation h̃ has a fixed point submanifold U h̃

x ⊂ Ux

whose union is Γ(x) invariant. The quotient
[⋃

h̃ U
h̃
x

]
/Γ(x) provides

the local description of the orbifold IMh near x ∈ M. The ingredients

trh̃ V and NIMh are obtained from the fibers of V over U h̃
x and from

the normal space to U h̃
x in Ux respectively.

A justification of Lefschetz-Kawasaki’s RR formula can be obtained
formally from Kawasaki’s RR formula applied to the orbifold M/G
where G is the cyclic group generated by h. Indeed, let Cλ denotes the
1-dimensional representation of G where h acts by a root of unity λ.
Then

strhH
∗(M;V ) :=

∑

λ

λ H∗(M;V )λ =
∑

λ

λ χ(M/G;V ⊗ Cλ−1).

The last sum can be computed on the inertia orbifold I(M/G) using
Kawasaki’s RR. However

∑
λ λCλ−1 is a virtual representation of G

whose character equals |G| on h and equals 0 on all other elements of

G. Therefore only the strata of I(M/G) made of fixed points of h̃
will contribute. Note that the factor |G| from the character is com-
pensated by the factor 1/|G| arising from the comparison between the
fundamental classes of strata in IMh with those in I(M/G).

In applications to quantum K-theory, the orbifoldM is replaced with
moduli space Xg,n,d of stable maps to X, which are virtual orbifolds,
or with products of such spaces (since the curves are allowed to be
disconnected). An automorphism h of such a product is induced by a
renumbering of the marked points on the curve. A fixed point of h is
represented by a stable map φ : Σ → X for which there exists a sym-
metry accomplishing the required permutation h, i.e. there exists an

isomorphism h̃ : Σ → Σ which permutes the marked points by h, and

such that φh̃ = φ. It is the result of [16] which justifies the application
of Kawasaki’s RR to virtual orbifolds.5 Respectively, our generating

5The set-up of the virtual Kawasaki RR is axiomatic, but it eventually employs
Kawasaki’s RR theorem for (ambient) compact orbifolds. For moduli spaces of
stable maps, the existence of such ambient orbifolds is easily obtained in genus
0 by projective embedding of X (since M0,n(CP

n, d) are orbifolds). In higher
genus, the existence of such compact ambient orbifolds is a result of A. Kresch
[13]. Of course, one expects Kawasaki’s RR formula to remain true for compactly
supported orbisheaves on non-compact orbifolds (which would settle this technical
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function DX (which incorporates contributions of all stable maps and
all renumberings of the markings) can be described in terms of suit-
able fake holomorphic Euler characteristics on the strata of the inertia
orbifold IMh. We will call them Kawasaki strata. They parameterize
stable maps with prescribed symmetries, i.e. equivalence classes of pairs

(φ, h̃), where φ is a stable map of a (possibly disconnected) curve to X,

and h̃ is a symmetry of the map, accomplishing a (possibly non-trivial)
permutation of the marked points.

Figure 1. Stable maps with prescribed symmetries

How does a Kawasaki stratum look like? Given a stable map φ :
Σ → X with a symmetry h (note that now on we omit the tilde), it

defines the map of the quotient Σ̂ of the curve Σ by the cyclic group
generated by h. On Figure 1, we attempt to show a typical picture

of a (connected) quotient curve. The quotient map Σ → Σ̂ may have
different number of branches (shown as the multiplicity of lines) over

different irreducible components of Σ̂. This shows that the summation
over Kawasaki strata will have the structure of Wick’s formula of sum-
mation over graphs. The vertices of the graphs represent contribution
of Kawasaki strata parameterizing irreducible quotient maps, while the
edges correspond to the nodes connecting the irreducible components.

issue in a more natural way). For compactly suppotred sheaves on manifolds, this
was proved in [15] some quarter of a century later than Hirzebruch’s celebrated
result for compact manifolds. The orbifold story develops slower, and almost 40
years after Kawasaki’s result [12], its vision for compactly supported orbisheaves
seems still missing in the literature. The most promising approximations we could
find were [6] and [5].
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Furthermore, an M -fold quotient map Σ → Σ̂ over an irreducible

curve Σ̂ can be described as the principal ZM -bundle over the com-
plement to marked and nodal points, possibly ramified at such points.
Consequently, Kawasaki strata representing the vertices can be iden-
tified with moduli spaces of stable maps to the orbifold target spaces
X/ZM (= X×BZM in the notation of [11], i.e. assuming that ZM acts
trivially on X).

We will denote by Dfake
X/ZM

the total descendant potential of the fake

quantum K-theory of the orbifold X/ZM . Using the results [19], one
can obtain the K-theoretic counterpart to the theorem of Jarvis-Kimura
[11] and expressDfake

X/ZM
in terms ofDfake

X , the total descendant potential

of quantum K-theory of X. The latter can be, in its turn, expressed in
terms of the cohomological total GW-potential DH

X , using the quantum
Hirzebruch-Riemann-Roch formula [3, 4] for fake GW-invariants with
values in complex cobordisms, specialized to the case of complex K-
theory. However, the vertex contributions in our Wick’s formula are
not Dfake

X/ZM
, but some twisted fake K-theoretic GW-invariants of these

orbifolds. This means that the virtual fundamental classes of moduli
spaces of stable maps to X/ZM need to be systematically modified —
in fact by the factors accounting for the denominators in the Kawasaki-
RR formula. The total descendant potential Dtw

X/ZM
for suitably twisted

fake quantum K-theory of X/ZM can be expressed in terms of Dfake
X/ZM

using the results of Tseng [20] and Tonita [17].
In the next two sections, we first explain (or recall) how to pass from

DH
X to Dfake

X , and then to Dfake
X/ZM

. Then we will formulate the twisting

result relatingDfake
X/ZM

withDtw
X/ZM

. Then the vertex contributions of our

graph summation formula will be described, roughly speaking, as the
product

⊗∞
M=1 Dtw

X/ZM
over all M = 1, 2, 3, . . . , leading to the concise

quantum-mechanical description of DX given in Introduction.

3. Symplectic loop spaces and quantization

The formalism of symplectic loop spaces and their quantizations
starts with the data: a vector space H (or a module over a ground
ring Λ), a symmetric Λ-valued Poincaré pairing (·, ·) on H, and a
nonzero vector v ∈ H. Using this datum, one cooks up a loop space H,
equipped with a symplectic Λ-valued form Ω, a Lagrangian polarization
H := H+ ⊕H−, and a vector v ∈ H+ called the dilaton shift.
Given a sequence of functions Fg : H+ → Λ, one combines them

into the total descendant potential D := e
∑

~g−1Fg , and interprets the
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latter as an “asymptotical element” in the Fock space associated with
(H,Ω) by lifting from H+ to H the dilaton-shifted function t 7→ D(t−
v) from H+ so that it stays constant along the Lagrangian subspaces
parallel to H−.
According to the ideology of quantum mechanics, the Heisenberg Lie

algebra of the symplectic space acts irreducibly in the Fock space (of
functions constant in the direction of H−), which by Schur’s lemma,
projectively identifies Fock spaces defined using different polarizations.
Furthermore, the symplectic group moves the polarizations around,
which therefore defines a projective action of the Lie algebra of qua-
dratic hamiltonians on the Fock space. Explicit formulas for this action
provide the standard quantization of quadratic hamiltonians. Namely,
let { qα} be coordinates onH+, and {pα} the Darboux-dual coordinates
on H−. Then the quantization ̂ of Darboux monomials is given by the
multiplication and differentiation operators on functions of {qα}:

q̂αqβ := ~−1qαqβ, q̂αpβ := qα∂qβ , p̂αpβ := ~ ∂qα∂qβ .

Finally, given a linear symplectic transformation� on (H,Ω), the Stone
- von Neumann quantization of it acts on the Fock space by the operator

�̂ := el̂og�.
A typical application of this formalism in GW-theory relates generat-

ing functions for two kinds of GW-invariants as follows. The functions
Di, i = 1, 2, are lifted to asymptotical elements 〈Di〉 of the respec-
tive Fock spaces associated with symplectic loop spaces (Hi,Ωi) us-
ing Lagrangian polarizations Hi

± and dilaton shifts vi. The respective
quantum states are related by

〈D1〉 = q̂ch �̂ 〈D2〉,
where � is a suitable symplectic automorphism of (H2,Ω2), while the
“quantum Chern character” qch : H1 → H2 is a symplectic isomor-
phism (i.e. qch∗ Ω2 = Ω1), and hence identifies the respective Fock
spaces. Note that the isomorphism qch may not respect the polariza-
tions (in practice, qch respects Hi

+, but not Hi
−), nor the dilaton shifts

(qchv1 6= v2). Consequently, the generating functions D1 and D2 are
obtained from each other by three consecutive transformations: the
quantized operator �, the change of polarization, and the correction
for the discrepancy in the dilaton shifts.

To begin with cohomological GW-invariants of X, we set

H := Heven(X; Λ), (a, b)H :=

∫

X

ab, v = 1,
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take H to be the space H((z)) of Laurent series in one indeterminate
z with vector coefficients from H. We assume that the ground ring Λ
contains Novikov’s variables, Q, and the Laurent series are Q-adically
convergent for z 6= 0, i.e. that modulo any fixed power of (Q), the
series in question contain finitely many negative powers of z. We equip
H with the symplectic form

ΩH(f ,g) := Resz=0(f(−z),g(z))H dz,

and Lagrangian polarization H = H+ ⊕H−, where H+ consists of the
power series part of the Laurent series, and H− of their principal parts.
Recall that genus-g generating functions for GW-invariants of X are

defined by

FH
g (t) :=

∑

d,n

Qd

n!

∫

[Xg,n,d]

n∏

i=1

∞∑

k=0

∑

α

tk,α ev
∗
i (φα)ψ

k
i ,

where [Xg,n,d] is the virtual fundamental classes of the moduli spaces
of stable maps to X, ψi := c1(Li) is the 1st Chern class of universal
cotangent line bundle at the ith marked point, and {φα} is a basis in
Heven(X,Λ). They are functions of t =

∑
k,α tk,αφαz

k, which lie in H+.
Respectively, the total descendant potential of the cohomological GW-

theory of X is defined as DH
X = e

∑
g ~g−1FH

g (t), subject to the dilaton
shift v = −z1, i.e. 〈DH

X 〉(t− z1) = DH
X (t).

In the fake quantum K-theory of X, one puts

H := K = K0(X)⊗ Λ, (a, b) := χ(X; a⊗ b) =

∫

X

ch(a) ch(b) td(TX),

uses Kfake = K((q−1)), i.e. the space of Q-adically convergent Laurent
series in q − 1 with vector coefficients in K, and equips it with the
symplectic form

Ωfake(f ,g) := Resq=1(f(q
−1),g(q))

dq

q
,

and Lagrangian polarization K = K+ ⊕ K−, taking K+ to consist of
power series, and K− of the principal parts of Laurent series in q − 1.
The genus-g generating functions Ffake

g are defined on K+ by

Ffake
g (t) =

∑

d,n

Qd

n!
χfake

(
Xg,n,d;

n⊗

i=1

∞∑

k=0

∑

α

tk,α ev
∗
i (φα)(Li − 1)k

)
,
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where {φα} form a basis in K0(X), and the fake holomorphic Euler
characteristic of a bundle V on Xg,n,d is defined using the virtual fun-
damental cycle [Xg,n,d] and the virtual tangent bundle bundle TXg,n,d

:

χfake(Xg,n,d;V ) :=

∫

[Xg,n,d]

ch(V ) td(TXg,n,d
).

The total descendant potential of fake quantum K-theory is defined by

Dfake
X = e

∑
~g−1Ffake

g (t) as a function on K+ subject to the dilaton shift

by v = (1− q)1, i.e. 〈Dfake
X 〉((1− q)1 + t) = Dfake

X (t). It is expressed
in terms of DH

X following [3, 4].
Namely, introduce the quantum Chern character qch : K → H by

K ∋ f =
∑

k

fk(q − 1)k 7→
√

td(TX)
∑

k

ch(fk)(e
z − 1)k ∈ H.

It is symplectic: qch∗ ΩH = Ωfake. Then

〈Dfake
X 〉 = q̂ch

∗ △̂ 〈DH
X 〉,

where △ is the Euler–Maclaurin asymptotics of the infinite product∏∞
r=1 td((TX − 1) ⊗ q−r). The equality holds up to a scalar factor

explicitly described in [3]. Recall that the Euler–Maclaurin asymptotics

of the product
√
S(E)

∏∞
r=1 S(E ⊗ q−r), where E is a vector bundle

over X, q is the universal line bundle (so that c1(q) = z), and S(·) =
e
∑

k sk chk(·)/k! is an invertible multiplicaive characteristic class, is

e

∑
m≥0

∑
l≥0 s2m−1+l

B2m

(2m)!
chl(E)z

2m−1

,

where B2m are Bernoulli numbers, and chl(E) in the exponent are
understood as operators of classical multiplication in the cohomology
algebra of X by the components of the Chern character.

Our next step is to describe in terms of Dfake
X the total descendant

potential Dfake
X/ZM

of the fake quantum K-theory of the orbifold X/ZM .

The Grothendieck group K0(X/ZM) of orbibundles on X/ZM is iden-
tified with K0(X) ⊗ Repr(ZM). Respectively, the total descendant

potential Dfake
X/ZM

in the fake quantum K-theory of X/ZM is a function

on the space of vector power series

t :=
∑

χ∈Repr(ZM )

tχχ,
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where each tχ is a power series in q− 1 with coefficients in K0(X)⊗Λ.
In down-to-earth terms we have:

Dfake
X/ZM

(t) =
∏

χ∈Repr(ZM )

Dfake
X (tχ).

This follows from the analogous cohomological result of Jarvis-Kimura
[11] by application of twisting theorems of Tseng [20] and Tonita [17]
(combined with a description of the virtual tangent bundles to the
moduli spaces of stable maps to X/ZM). Alternatively, this result can
be extracted from section 3 of their joint paper [19].
To go on, we need to describe the element of the Fock space defined

by Dfake
X/ZM

, and the respective symplectic loop space. We have

H := K ⊗ Repr(ZM), (a, b) :=
1

M2

∑

χ

(aχ, bχ)
fake, v =

∑

χ

1χ.

Respectively the loop space

Kfake
X/ZM

= Kfake
X ⊗ Repr(ZM),

is equipped with the symplectic form

Ωfake
X/ZM

(f ,g) =
1

M2

∑

χ∈Repr(ZM )

Ωfake(fχ,gχ).

The Lagrangian polarization is given by Kfake
± ⊗ Repr(ZM), and the

dilaton shift by v = (1− q)v.
The specifics of the orbifold situation, however, is that the evaluation

maps involved in the construction of the invariants take values in the
inertia orbifold IX, in the case of the orbifold X/ZM consisting of M
disjoint copies of X, which are labeled not by representations of ZM ,
but by its elements h ∈ ZM (referred to as sectors). In sector notation

f =
∑

χ∈Repr(ZM )

fχχ =
∑

h∈ZM

f (h)h,

where (by Fourier transform)

f (h) =
1

M

∑

χ

fχχ(h), fχ =
∑

h

f (h)χ(h−1).

Consequently,

(a, b) =
1

M

∑

h

(a(h), b(h
−1))fake,
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the symplectic form decomposes as

Ωfake
X/ZM

(f ,g) =
1

M

∑

h∈ZM

Ωfake(f (h),g(h−1)),

the polarization spaces have the form ⊕h∈ZM
Kfake

± h, where Kfake
+ h is

Darboux-dual to Kfake
− h−1, while the dilaton shift v = (1−q)1 belongs

to the sector of the unit element 1 ∈ ZM .
We will label the sectors by Mth roots of unity ζ (primitive or not)

as follows. To the element h = hrs0 , where h0 is the standard generator
of ZM ,M = rm, and (s,m) = 1, we assign ζ(h) to be the primitive root
of unity of order m such that ζs = e2πi/m. Conversely, to ζ = e2πit/m,
where m|M , and (t,m) = 1, we assign h(ζ) ∈ ZM to be hrs0 , where
r =M/m, and s is the multiplicative inverse to t modulo m.

4. Formulation of the results

We describe Dtw
X/ZM

in terms of Dfake
X/ZM

.

The Fock space where Dtw
X/ZM

lies quantizes the loop space

Ktw
(M) := ⊕ζ:ζM=1K(ζ)

equipped with the symplectic form Ωtw
(M) as follows. Let m = m(ζ)

denote the order of ζ as a primitive root of unity, and let M = mr. On
the space K = K0(X)⊗ Λ, introduce a new Λ-valued pairing

(a, b)(r) := χ

(
X; a⊗ b⊗ Eu(TX − 1)

Eu(Ψr(TX − 1))

)
.

Here Eu is the K-theoretic Euler class defined by EuL = (1− L−1) =

e−
∑

k>0 L
−k/k on line bundles, and extended to arbitrary complex vector

bundles by multiplicativity using the splitting principle. The pairing
satisfies

(Ψra,Ψrb)(r) = rΨr(a, b),

which is simply the abstract Grothendieck-RR formula (called also
Adams-RR) for the operation Ψr from K-theory to itself, while the
factor r comes from

Eu(Ψr1)

Eu(1)
= lim

L→1

1− L−r

1− L−1
= r.

Introduce the symplectic form on Ktw
(M):

Ωtw
(M)(f ,g) :=

1

M

∑

ζ: ζM=1

Resq=1(f
(ζ)(q−1),g(ζ−1)(q))(r(ζ))

dq

q
.
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To describe the polarization in Ktw
(M), introduce basis in K(ζ):

f
(ζ)
k,α := Ψr

(
φα(q1/m − 1)k

)
, g

(ζ)
k,α := rΨr

(
φα

qk/m

(1− q1/m)k+1

)
,

wherem = m(ζ), r = r(ζ), φα runs through a basis inK0(X) Poincaré-

dual to φα, and k run through non-negative integers. Then f
ζ
k,α run

through a basis in the positive space of polarization, while g
(ζ−1)
k,α run

through the Darboux-dual basis in the negative space of the polar-
ization in question. The generating function Dtw

X/ZM
is represented by

an element 〈Dtw
X/ZM

〉 in the Fock space of the symplectic loop space

(Ktw
(M),Ω

tw
(M)), using this polarization, and the dilaton shift v = (1 −

qM)1 = ΨM(1− q)1 (in the unit sector):

〈Dtw
X/ZM

〉((1− qM)1+ t) = Dtw
X/ZM

(t).

We will also assume that a quantum state does not change when the
function is multiplied by a non-zero constant (so that 〈D〉 actually
denotes the 1-dimensional subspace spanned by D.)
To state the quantum Riemann-Roch formula relating 〈Dtw

X/ZM
〉 with

〈Dfake
X/ZM

〉, define operator�(M) : Ktw
(M) → Kfake

X/ZM
acting block-diagonally

by sectors:

(�(M)f)
(ζ) = �ζ,r(ζ)(f

(ζ)),

where for a primitive mth root of unity η and r = 1, 2, 3, . . . ,

�η,r := e

∑
k>0

(
Ψkr(T ∗

X−1)

k(1−η−kqkr/m)
− Ψk(T ∗

X−1)

k(1−qk)

)
.

We claim that �(M) is symplectic, i.e.

Ωfake
X/ZM

(�(M)f ,�(M)g) = Ωtw
(M)(f ,g).

This follows from the identity

�η,r(q
−1)�η−1,r(q) = e

∑
k>0

Ψkr(T ∗
X−1)−Ψk(T ∗

X−1)

k =
Eu(TX − 1)

Eu(Ψr(TX − 1))
.

Note that�(M) respects positive spaces of our polarizations in its source
and target loop spaces, but does not respect the negative ones, nor the
dilaton shifts.

Proposition 1. 〈Dtw
X/ZM

〉 = �̂(M) 〈Dfake
X/ZM

〉.
Let us now recall the dilaton equation, which says that in the ex-

pression DH
X = e

∑
g ~g−1Fg , after the dilaton shift, the functions Fg are
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homogeneous of degree 2−2g (with some anomaly for g = 1). Namely,

(t∂t + 2~∂~)〈DH
X 〉(t, ~) = −eu(X)

24
〈DH

X 〉(t, ~).

In the transition from 〈DH
X 〉 to 〈Dtw

X/ZM
〉, the homogeneity property

is preserved, because our quantization formulas (from Section 3) for
quadratic Darboux monomials are homogeneous of zero degree. This
allows one to recast the dependence of ~ (omitting the scalar factors
such as ~eu(X)/48) this way:

〈Dtw
X/ZM

〉(t, ~, Q) = 〈Dtw
X/ZM

〉( t√
~
, 1, Q).

Note that t can be rewritten by sectors as
∑

ζ: ζM=1 t
(ζ)h(ζ), where each

t(ζ) ∈ Kfake
+ .

Now, for each primitive mth root of unity ζ, introduce a sequence

of variables t
(ζ)
r ∈ Kfake

+ , where r = 1, 2, 3, . . . , and define the adelic
tensor product

〈DX〉 ({t(ζ)r }, ~, Q) :=
∞⊗

M=1

〈Dtw
X/ZM

〉 (
∑

ζ: ζM=1

t
(ζ)
r(ζ)√
~r(ζ)

h(ζ), 1, Q
M ),

where for ζ of primitive order m|M , we put r(ζ) =M/m.

Proposition 2. The contribution to Wick’s formula for 〈DX〉 of
the one-vertex graph (i.e. by the moduli spaces of connected quotient

curves Σ̂ in the notation of Section 2) is given by the logarithm log〈DX〉
of adelic tensor product.

The technical point in this proposition is that the dependence of the
formula on ~ and Q correctly accounts for the Euler characteristics and

degrees of the covering curves Σ → Σ̂.
As we have already explained in Introduction, the adelic tensor prod-

uct belongs to the Fock space associated with the symplectic loop space
(K∞,Ω∞), which is obtained by rearranging sectors in the direct sum
of the spaces (Ktw

(M),Ω
tw
(M)). This direct sum comes with a Lagrangian

polarization inherited from those of the summands. Let us call this
polarization standard.
Recall now that adelic map : (K∞,Ω∞) → (K∞,Ω∞), defined in

Introduction, is symplectic but does not respect polarizations. More
precisely, the adelic image of K∞

+ is a proper subspace in the positive
space K∞

+ of the standard polarization, while the adelic image of K∞
− is

Lagrangian in K∞, but does not coincide with the negative space of the
standard polarization. Let us call uniform the polarization of the adelic
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loop space formed by the positive space of the standard polarization
and by the adelic image of K∞

− .

Proposition 3. The change from the standard to the uniform po-
larization accounts for the edges (propagators) of Wick’s summation
over graphs.

Sections 5-9 will be dedicated to the proof of Propositions 1-3. Also,
in Section 7 we will see that the adelic embedding : K∞

+ ⊂ K∞
+ of the

positive spaces of our polarizations correctly transforms the inputs tr
of 〈DX〉 into the inputs of the adelic tensor product (they occur in the
numerators of the fake holomorphic Euler characteristics in Kawasaki’s
RR formula). Altogether these results imply our Main Theorem:

The adelic map transforms the quantum state 〈DX〉 into 〈DX〉.

5. Kawasaki strata

We begin here with a detailed description of Kawasaki strata of mod-
uli spaces of stable maps to X in terms moduli spaces of stable maps
to orbifolds X/ZM .
Let φ : Σ → X be a stable map of a compact nodal curve (not

necessarily connected) with n non-singular marked points, and let h :
Σ → Σ be a symmetry of this stable map (i.e. φ ◦ h = φ) which is
allowed to permute the marked points. Due to the stability condition,
the symmetry has finite order, and therefore induces the quotient map

φ̂ : Σ̂ → X of the quotient curve Σ̂ := Σ/(h). Our nearest goal is to
represent the combinatorial structure of the quotient map by a certain
decorated graph Γ.

Let p : Σ → Σ̂ denote the projection of factorization.

The edges of Γ correspond to unbalanced nodes of Σ̂. For a node

σ̂ ∈ Σ̂, denote by r = r(σ̂) the cardinality of its inverse image p−1(σ̂)
in Σ. The inverse image is an orbit of the action of (h) on Σ, and
each point σ in it is a node of Σ fixed by hr. In the case (let’s call it
typical) when hr preserves each of the two branches of Σ at σ, it acts
on the tangent lines to these branches at σ by eigenvalues ζ±. The
node is unbalanced if ζ+ζ− 6= 1. The same becomes true in the atypical
case when hr interchanges the two branches of Σ at σ, but only after

a certain stabilysing modification of the curves gS and ĝS which will
be discussed later.
Normalizing the quotient curve Σ̂ at all unbalanced nodes, we obtain

a collection of connected curves Σ̂v which by definition correspond to

vertices v of graph Γ, and the maps φ̂v : Σ̂v → X, obtained by the
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restrictions of φ̂. Moreover, each vertex comes with the ramified (h)-

cover Σv := p−1Σ̂v → Σ̂v. More precisely, letM =Mv be the order of h

on Σv. Then outside the ramification locus, p : Σv → Σ̂v is a principal

ZM -bundle. This allows one to identify φ̂v with a stable map in the
sense of [1, 2, 11] to the orbifold target space X/ZM , the quotient of X
by the trivial action of the cyclic group (h)/(hM).
The moduli space of stable maps toX/ZM is characterized by certain

discrete invariants, which we now describe in terms of φ̂v. First, it is the

arithmetical genus ĝv of Σ̂v. Next, it is the degree d̂v, i.e. the homology

class in H2(X;Z) represented by the map φ̂v. Furthermore, the ver-

tex carries marked points, which represent in Σ̂v the orbits of marked
points in Σv, ramification points which are not marked in Σv, and (the

remnants in Σ̂v of) the unbalanced nodes. At each such marked point

σ̂ ∈ Σ̂v, the order r = r(σ̂) of the inverse image of σ̂ in Σv is defined, as
well as the eigenvalue ζ = ζ(σ̂) by which the symmetry hr of Σv acts on
the tangent line at any σ ∈ p−1σ̂. Note that ζ is a primitive mth root
of unity for some m = Mv/r. Therefore for some s (unique mod m),
we have ζs = e2πi/m. This determines the sector of the marked point,
i.e. the element, hrs, of the cyclic group ZMv which acts on TσΣv by

the generator e2πi/m of the isotropy group of σ̂ in the orbifold curve Σ̂.
Thus, the Kawasaki stratum in question is characterized by the graph

Γ whose vertices correspond to moduli spaces of genus ĝv degree d̂v
stable maps to X/ZMv with certain numbers n̂v of marked points. The
marked points (which are usually depicted as flags sticking out of the
vertices) are decorated by the sectors (or, equivalently, primitive mth
roots of unity ζ with m|Mv), while the edges pair the unbalanced flags
(ζ+ζ− 6= 1) of the same order: r+ =Mv+/m+ =Mv−/m− = r−.
Conversely, given such a decorated graph Γ, one can form the cor-

responding Kawasaki stratum by gluing stable maps to X/ZMv corre-
sponding to the vertices of Γ over the diagonal constraints (ev+ = ev−)
corresponding to the edges. More precisely, each stable map to X/ZMv

comes equipped with a principle ZMv -bundle, possibly ramified at the
markings. The generators of the groups ZMv define a symmetry h of the
total map to X from the union of the covers. Since the glued marked
points have the same order r, the covers can be glued h-equivariantly,
resulting in stable maps to X (possibly disconnected), equipped with
prescribed symmetries h (of order equal to the least common multiple
of all Mv).
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By applying this construction to all (possibly disconnected) deco-
rated graphs Γ, one obtains all Kawasaki strata of all moduli spaces of
(possibly disconnected) stable maps to X.

Remarks. (a) When a node σ̂ of the curve Σ̂ is balanced, i.e. hr

fixes a node σ ∈ p−1(σ̂) but acts on the branches of Σ at the node
by inverse primitive mth roots of unity (ζ+ζ− = 1), the stable map is
deformable, at least in the virtual sense, to a non-nodal curve within
the same Kawasaki stratum. The local model of hr near σ is given by

xy = ǫ, hr(x, y) = (ζ+x, ζ−y),

where ǫ = 0 corresponds to the nodal curve. The requirement above
that the nodes corresponding to the edges of the graph are unbalanced
prevents such deformations and guarantees that the stratum of sym-
metric maps glued according to a given graph is maximal (e.g. in the
sense that 1 does not occur as an eigenvalue of the symmetry on the
virtual normal bundle to the stratum).

1

Σ

Σ

−1

1

0

0
x

y

x+y

Figure 2. Z2-invariant nodes with interchanged branches

(b) One more type of deformable nodes of Σ occurs when hr fixes
a node σ but interchanges the branches of Σ. The local model of this
phenomenon can be described by the formulas:

xy = ǫ, hr(x, y) = (y, x), φ(x, y) = x+ y,

so that at ǫ = 0, the quotient curve doesn’t seem to have a node. Here
is how this situation is captured in terms of orbifold stable maps. For
ǫ 6= 0, the map φ = x + y restricted to xy = ǫ has two ramification
points: (x, y) = ±(

√
ǫ,
√
ǫ). Thus, the quotient curve has two marked

points ±2
√
ǫ with inertia groups Z2. When ǫ tends to 0, the quotient

curve becomes reducible, with a new component CP 1 mapped with
degree 0, and carrying both marked points with the inertia group Z2
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(as well as the node with the trivial isotropy group, see Figure 2). The
covering curve has now 3 components: two branches interchanged by
the symmetry and connected by CP 1, which carries two marked points
(say, at z = 0,∞), and two nodes (at z = ±1). The symmetry acts
on this component by z 7→ −z, so that the quotient has the node at
z2 = 1, and two marked points z2 = 0,∞. Thus, the quotient map,
properly understood in terms of stable maps to X/Z2, has a balanced
node of order r = 2 with the eigenvalues ζ± = 1.
(c) The constantly mapped curves CP 1 with the Z2-symmetry just

described also play the key role in the assessment of the mentioned
earlier atypical case of nodes σ ∈ Σ fixed by hr which interchanges

the branches of gS at the node. The projection p : Σ → ĝS in this
case does not qualify on the role of the principal bundle defining the

orbifold structure of ĝS in the Chen-Ruan theory. Instead, the curve
Σ needs to be modified by gluing to it at σ̂ a new (constantly mapped)
component CP 1/Z2 by the the marked point z2 = 1 (in the above
notation) as shown on the bottom right side of Figure 2. At the same
time, the curve gS needs to be modified by normalizing it at σ and
other nodes from its h-orbits and gluing in r copies of CP 1 attached
by its marked points z = ±1 as shown on the top right of Figure 2.
The symmetry h extends to the modified curve Σ in the obvious way
by cyclically permutting the r copies of CP 1 in such a way that hr,
though preserves each CP 1, acts on in it as the Z2-symmetry z 7→ −z.
Consequently h2r now fixes each of the 2r inverse images of the node

σ̂ ∈ ĝS and preserves each of the branches of the modified covering
curve, acting on them with the eigenvalues 1 (on the incerted CP 1)
and ζ. The balanced case ζ = 1 is deformable and was discussed in
Remark (b) above, while the case ζ 6= 1 is unbalanced. The order of
the node σ̂ in this case equals 2r.

(d) The newly attached component CP 1 of the quotient curve ĝS,
taken on its own, is a degree-0 stable map to X/Z2 with 3 marked
points, of which two (z2 = 0,∞) are ramification points of the covering
map z 7→ z2. On the covering r copies CP 1 considered as constantly
mapped curves with a Z2-symmetry in X, both points z = 0,∞ are un-
marked, making these covering CP 1 (carrying only the 2-cycle of nodal
points z = ±1) unstable. As far as stable maps to X are concerned,
these component have to be contracted, and thus the original stable
map φ : Σ → X is recovered.
Note, however, that such constantly mapped CP 1/Z2 (and r-fold

collections of them) not glued to anything are legitimate stable maps
to X/Z2. Their contributions to the respective descendant potentials



QUANTUM HRR IN ALL GENERA 27

Dtw
X/Z2

are present in the adelic tensor product and should therefore be
removed from it. Instead, we chose to include these contributions into
DX in the form of the anomalous term added to F0.

6. Twistings

The denominators strh ∧•N∗
IM in Kawasaki’s RR formula can be in-

terpreted as certain twistings of the fake quantum K-theory of X/ZM ,
in fact a combination of several types of twistings, corresponding to
different ingredients of the virtual conormal bundles.
Let M denote a Kawasaki stratum, i.e. (a component of) a moduli

space (X/ZM)ĝ,n̂,d̂. Let ft : C → M be the corresponding universal

curve, and ev : C → X/ZM the universal stable map, while f̃t : C̃ → M
and ẽv : C̃ → X denote ZM -equivariant lifts of ft and ev to the family
of ramified ZM -covers.
The Kawasaki stratum M carries (the restriction to M of) the vir-

tual tangent bundle (let’s call it T ) to the ambient moduli space of
stable maps to X (say, Xg,n,d). Following [3] (see p. 99), we describe
it in terms of the universal curve ft : C → M:

T = f̃t∗ẽv
∗(TX − 1) + f̃t∗(1− L̃−1) − (f̃t∗j̃∗OZ̃)

∨.

Here L̃ is the universal cotangent line bundle to the fibers of f̃t (i.e.

the cotangent line bundle Ln+1 at the marked point forgotten by f̃t :
C ⊂ Xg,n+1,d → Xg,n,d), and j̃ is the embedding of the nodal locus

Z̃ into C̃. Loosely speaking, the three summands correspond to: (A)
deformations of the maps of curves with a fixed complex structure, (B)
deformations of the complex structure of curves with fixed combina-
torics, and (C) the smoothing of the nodes.
The summands carry the action of ZM , and can be decomposed into

the eigenbundles corresponding to the eigenvalues λ = e2πik/M of the
generator. The normal bundle NIM, featuring in the denominator of
Kawasaki’s RR formula, consists of the eigenbundles corresponding to
λ 6= 1.
To decompose T into the eigenbundles, introduce the 1-dimensional

representation Cλ of ZM where the generator acts by λ. Then the
eigenbundles have the form

Tλ−1 = (T ⊗ Cλ)
ZM = ft∗ ev

∗[(TX − 1)⊗ Cλ]

+ ft∗[(1− L̃−1)⊗ ev∗ Cλ]− (ft∗[j∗OZ̃ ⊗ ev∗ Cλ])
∨,

where j is the embedding of Z = Z̃/ZM into C. The terms on the
right are interpreted as K-theoretic push-forwards by ft : C → M of
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orbibundles on the global quotient C = C̃/ZM . By the very definition,
such push-forward automatically extracts from the sheaf cohomology
its ZM -invariant part.
Now we use the three twisting results of [17] to express the effect of

the denominator in Kawasaki’s RR formula in terms of twisted GW-
invariants of orbifolds X/ZM .
The answer consists in the application of three operations:
(A) Transformation

Dfake
X/ZM

7→ Dtw
X/ZM

= �̂MDfake
X/ZM

by some quantized symplectic operator (to be described and calculated

later) acting block-diagonally by�
(hs)
M in the decomposition into sectors

hs ∈ ZM of the appropriate symplectic loop spaces.
(B) Change in the dilaton shift: (1−q)1 7→ (1−qM)1 = ΨM(1−q)1.
(C) Change of polarization, different on each sector (to be described

later).
In fact the three twisting theorems of [17] are stated in terms of co-

homological GW-invariants of the orbifold target (X/ZM in our case).
In order to relate the fake K-theory of M in Kawasaki’s formula with
cohomology theory, one needs to apply the three twistings with the
same bundles as above, but with λ = 1, and the Todd characteristic
class, td(x) = x/(1 − e−x). This results in the respective three op-
erations described in the previous section and transforming DH

X/Zm
to

Dfake
X/ZM

: by (A) application of q̂ch
−1△̂ (the same in each sector), (B)

change of the dilaton shift −z 7→ 1 − ez = 1 − q (in sector 1), and

(C) change of polarization from H− to Kfake
− (the same in each sector).

Such operations result in expressing Dfake
X/ZM

in terms of DH
X as it was

explained in Section 3. The twistings A,B,C with λ 6= 1 come on the
top of these, which makes it easy to phrase their outcomes directly in
terms of fake quantum K-theory of X/ZM .

(A) The first twisting result goes back to Tseng’s “orbifold quan-
tum RR Theorem” [20]. It allows us to expresses cohomological GW-
invariants of X/ZM twisted by the orbibundle E = (TX − 1) ⊗ Cλ

and by the multiplicative characteristic class tdλ defined by its value
1/(1− λe−x) on a line bundle with the 1st Chern class x. Namely,

〈Dtw
X/ZM

〉 =
[
M−1∏

k=1

△̂e2πik/M

]
〈Dfake

X/ZM
〉,



QUANTUM HRR IN ALL GENERA 29

where △e2πik/M is the operator Kfake
X/ZM

→ Ktw
X/ZM

which on the copy of

Kfake
X corresponding to the sector hs ∈ ZM acts as the multiplication

by the Euler–Maclaurin asymptotics of the following infinite product:

△e2πik/M ∼
∏∞

l=1(1− e2πik/Mqlq−{ks/M})∏∞
l=1

∏dimC X
i=1 (1− e2πik/Me−xiqlq−{ks/M})

.

Here xi are Chern roots of TX , and {ks/M} denotes the fractional part
of ks/M .

We rearrange the product
∏M−1

k=1 △e2πik/M . Let r = (s,M) be the
greatest common divisor of s and M , so that s = rs′,M = rm,
(s′,m) = 1, and ks/M = ks′/m. Let t′ be inverse to s′ modulo m.
Write k = k′t′ +mu with 0 ≤ k′ < m. Then {ks′/m} = k′/m for any
u. Since

∏r
u=1(1− Y e2πiu/r) = 1− Y r for any Y , we have

M−1∏

k=1

∞∏

l=1

(1− e2πik/MY qlq−{ks/M}) =
∏

k′

∞∏

l=1

(1− e2πik
′t′/mY rqrlq−k′r/m)

=
∞∏

l=0

(1− Y rqlr/mη−l)/
∞∏

l=0

(1− Y ql).

Here η := e2πit
′/m satisfies ηs

′

= e2πi/m, i.e. η is the eigenvalue by
which the symmetry hr acts on the tangent lines to the curves at the
marked point of order r and sector hs = hs

′r. Also note that the Euler–
Maclaurin asymptotics of the infinite product near q = 1 is written as

∞∏

l=0

(1− Y ql) ∼ e−
∑

k>0 Y
k/k(1−qk).

Using this, and the abbreviation
∑

j e
−kxj − 1 = ch(Ψk(T ∗

X − 1)), we
can summarize the above computation this way:

�
(hs)
M = e

∑
k>0

(
Ψkr(T ∗

X−1)

k(1−η−kqkr/m)
− Ψk(T ∗

X−1)

k(1−qk)

)
.

The answer for�
(hs)
M coincides with what was denoted by�η,r in Section

4, where η is a primitive mth root of unity, M = mr, s = rs′, and
ηs

′

= e2pii/m.

(B) The effect of the twisting by f̃t∗

[
(1− L̃−1)⊗ ẽv∗Cλ

]
is described

by Corollary 6.1 in [17]. That paper, instead of the bundle L̃ on the

covering universal curve C̃, deals with the universal cotangent line bun-

dle L = Ln+1 on C = C̃/ZM . To apply the result of that paper, it is

important to realize that L̃ = p∗L where p : C̃ → C is the projection of
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factorization. Indeed, L̃ is the canonical bundle of the covering curve
twisted by the marked points. In local coordinates, it has a local sec-
tion x−1dx near a marked point x = 0, and dx∧dy/d(xy) on the curves
xy = ǫ near a node. The formulas

dxm

xm
= m

dx

x
, and

dxm ∧ dym
d(xmym)

= m
dx ∧ dy
d(xy)

identify p∗L with L̃ near a ramifiedm-fold marked point and a balanced
m-fold node respectively. The answer, as we’ve already said, is the
change of the dilaton shift: (1− q)1 7→ ΨM(1− q)1 = (1− qM)1.
Remark. The result does not depend on the character λ of ZM .

To understand why, the reader is invited to examine the details of
the proof in [17], namely formula (4.2). The explanation is that the
bundle L is trivialized at the marked points and at the nodes (as the
above local coordinate sections indicate). Consequently, Kawasaki’s
Chern character of 1−L−1 vanishes on all twisted sectors of the inertia
orbifold IΣ of the orbi-curve Σ. On the unit sector, however, all Cλ

coincide.

(C) To describe the change of polarization caused by the twistings

of type C, consider the expression (1−L
1/m
+ ⊗L

1/m
− )−1. It comes from

the inverse to the K-theoretic Euler class 1 − L
1/m
+ L

1/m
− of the virtual

normal line bundle to the nodal stratum in M at the nodes of order
r =M/m, assuming that L± represent the universal cotangent lines to
the branches of quotient curve at the node. We expand the expression

in powers of L
1/m
− − 1:

1

1− L
1/m
+ ⊗ L

1/m
−

=
1

1− L
1/m
− − L

1/m
− ⊗ (L

1/m
+ − 1)

=
∑

k≥0

L
k/m
−

(1− L
1/m
− )k+1

⊗ (L
1/m
+ − 1)k.

Let {φα} and {φα} denote bases in K0(X) dual with respect to the K-

theoretic Poincaré pairing. In the subspace Kfake
+ h−s ⊂ Kfake

X/ZM
(here

h−s indicates the sector, and r = (s,M) is assumed), we have a topo-

logical basis in Kfake
+ (k ≥ 0, α = 1, . . . , dimK0(X)):

Ψr
(
φα(q1/m − 1)k

)
= Ψr(φα)(qr/m − 1)k.

Then the following rational functions

rΨr

(
φα

qk/m

(1− q1/m)k+1

)
= rΨr(φα)

qkr/m

(1− qr/m)k+1
,
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expanded into Laurent series near q = 1, span the negative space of
the polarization in question in the sector h−s of Kfake

X/ZM
. Moreover,

the indicated vectors altogether form a Darboux basis in Ktw
X/ZM

with
respect to the symplectic form based on the following twisted pairing:

(ahs, bht)(r) =
δhsht,1

M

∫

X

td(Ψr(TX − 1) ch(a) ch(b).

The result just described can be derived from a general theorem in
[17] (see Corollary 6.3 therein). It can be justified in a more direct
way as well. Namely, in the non-orbifold situation, the effect of the
nodal twisting leads, as it was found in the thesis [3] of T. Coates,
to the change of polarization based (as it has just been described) on
the “inverse Euler class” (1 − L+ ⊗ L−)

−1. In our situation of the
target X/ZM , the smoothing of the nodes of order r = 1 contributes
into the virtual tangent bundle to Kawasaki’s stratum M the same

1-dimensional summand, L̃−1
+ L̃−1

− = L
−1/M
+ L

−1/M
− , as into the virtual

tangent bundle T to the ambient moduli space of stable maps to X.
This means that Coates’ computation still applies, with the only change

that the “inverse Euler class” has the form (1−L1/M
+ ⊗L1/M

− )−1. In the
case of nodes of order r > 1, the covering curves contain the ZM -orbit
consisting of r copies Zm-invariant nodes (mr =M), each contributing

into T a copy of L
−1/m
+ L

−1/m
− , cyclically permuted by Zr = ZM/Zm.

The “inverse Euler class” of their sum is Ψr(1 − L
1/m
+ ⊗ L

1/m
− )−1 =

(1 − L
r/m
+ ⊗ L

r/m
− )−1 due to the following fact that Ψr(V ) = trh V

⊗r,
where h acts on the tensor product by the cyclic permutation of the r
factors.

This completes the proof of Proposition 1.

Remark. We should revisit the phenomenon of Z2-invariant nodes
with interchanged branches to examine their contribution to the type
C twistings. The cotangent line bundles L± to the branches at the
node are identified by the Z2-symmetry: L+ = L− =: L. Respectively
the smoothing of the node contributes L−1

+ L−1
− = L−2 to the tangent

bundle T , and the corresponding Euler factor in the denominator of
Kawasaki’s formula is 1 − L2. It turns out that the interpretation of
the situation in terms of maps to X/Z2 leads to the same contribution
of the nodal locus. The line bundles L± are now identified with the
cotangent lines to the interchanged branches at the two nodes ±1 of
the resolved curve (top right on Figure 2). Since the configuration of
0,∞, 1,−1 on the exceptional CP 1 (vertical line at the top right) is
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standard, the tangent lines to this CP 1 at ±1 are trivialized. Con-
sequently the smoothing deformation modes of the curve add up to
L−1
+ ⊕ L−1

− with the Z2-action interchanging the summands. There-
fore the Euler factors representing the Z2-invariant and anti-invariant
modes in the denominator of Kawasaki’s formula are 1− L and 1 + L,
and their product is 1− L2, i.e. the same as above.

7. Inputs

We denote by tr(q) =
∑

k∈Z tr,kq
k the inputs in the total descendant

potential DX of quantum K-theory on X, corresponding to the cycles
of length r = 1, 2, 3, . . . , and examine how they contribute to the nu-
merators in Kawasaki’s RR formula on the stratum M (still assuming
that the decorated graph of the stratum consists of one vertex).
The numerators have the form of the trace trh of the tensor product

of contributions which come from the marked points.
Let M be the degree of the covers associated with a given vertex.

Let L = Li denote the universal cotangent line at a marked point on

the quotient curve Σ̂ = Σ/ZM , r = ri the order of the marked point,
m = M/r the ramification index (of the r copies in Σ) of this marked
point, and ζ the primitive mth root of unity by which the symmetry hr

acts on the tangent line to Σ at each of the r copies of the marked point.
Omitting the index i and the pull-back by the evaluation map evi, we
can express the resulting input of Dtw

X/ZM
in the sector determined by

ζ this way:

trh[tr(ζ
−1L1/m)]⊗r = Ψr[tr(ζ

−1L1/m)] =
∑

k∈Z

Ψr(tr,k)ζ
−kLkr/m.

Note the presence of the weight factors 1/
∏
rlii in front of the super-

traces strh in the definition of the correlators involved in DX . In the
expression of the correlators in terms of Kawasaki strata, these factors

are compensated in the following way. Given a stable map Σ̂ → X/ZM ,

a marked point σ̂ ∈ Σ̂ with the ramification index m =M/r represents
stable maps Σ → X with a prescribed symmetry, which in particular
cyclically permutes r marked points σ1, . . . , σr over σ̂. Even when the
indices of the r marked points are already decided (e.g. 1 goes to 2 etc.
goes to r goes to 1), there still remain r choices for deciding which of
the marked points σi ∈ Σ is numbered by 1. Thus totally for each map

Σ̂ → X/ZM in the Kawasaki stratum there are
∏
rlii symmetric maps

Σ → X, and this compensates the weight factor.

It is now time to realize that not all marked points of Σ̂ come from
marked points of φ : Σ → X. Namely, in the theory of stable maps
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to X/ZM , all ramification points are declared marked, even if they are
unmarked for the covering stable map to X. Consequently, the virtual
cotangent bundle T ∗ which was analyzed in the previous section, and
whose Euler class occurs in the denominator of Kawasaki’s formula,
is in fact the cotangent bundle to the ambient moduli space of stable
maps to X with extra marked points introduced at the ramifications.
To compensate for these modes of deformation of stable maps, we thus
need to multiply the numerator by the appropriate Euler class. Namely,
if our marked point is such a ramification point, the correction has the
form (one factor 1−ζ−1L1/m per each of the r copies of the ramification
points):

trh(1− ζ−1L1/m)⊗r = Ψr(1− ζ−1L1/m) = 1− ζ−1Lr/m.

There is an exception: the unramified marked points (m = 1, r =M) of

Σ̂ can come only from the orbits of marked points on Σ. Note however,
that in this case the same formula yields

ΨM(1− L) = 1− LM ,

which agrees with the dilaton shift in Dtw
X/ZM

in the unramified sector.
To summarize our observations, let us assume that the generating

function Dtw
X/ZM

is already dilaton-shifted by 1− qM in the unit sector,

and denote by t
(ζ)
r ∈ Kfake

+ the input of it through the sector indicated
by the primitive mth root of unity ζ, where r = M/m. Then the
substitution

t(ζ)r (q) = Ψr
[
1− ζ−1q1/m + tr(ζ

−1q1/m)
]
,

factors correctly into the numerators (and denominators) of Kawasaki’s

RR formula. In other words, the inputs t
(ζ)
r ∈ Kfake

+ of Dtw
X/ZM

(dilaton-

shifted by 1 − qM when ζ = 1) are obtained from the inputs tr ∈
K[q, q−1] of DX dilaton shifted by (1 − q)1 for each r = 1, 2, 3, . . . by
expanding Ψrtr(ζ

−1q1/m) into q − 1-series.
This is what we claimed at the end of Section 4.

8. Hurwitz’ formula

Here we determine the discrete characteristics of the covering of the
map φ : Σ → X, given the decorated graph Γ of the quotient map

φ̂ : Σ̂ → X.

The degree of φ is given by d =
∑

v d̂vMv, where d̂v ∈ H2(X;Z) is the

degree of the vertex v, and Mv is the degree of the covering Σv → Σ̂v.
Let us find the topological Euler characteristic eu of typical curves

from the moduli spaces to which φ : Σ → X belongs. The computation
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is similar to that in Hurwitz’ genus formula. The vertex curves Σ̂v with
all the n̂v ramification (i.e. marked or special) points removed have the
Euler characteristics 2− 2ĝv − n̂v, which need to be multiplied by the
degrees Mv of the coverings. Gluing in the orbits of the ramification
points of order ri, i = 1, . . . , n̂v, adds ri units for each respective orbit.
Each edge e of order re corresponds to an Zre-orbit of (unbalanced)
nodes. This subtracts

∑
e re units from eu(Σ), but the smoothing of

all nodes subtracts
∑

e rr once more. We get

eu =
∑

v

Mv(2− 2ĝv − n̂v) +
∑

v

n̂v∑

i=1

ri − 2
∑

e

re.

Recall that our eventual goal is to represent the total descendant
potential of X by Kawasaki’s RR formula as the sum over decorated
graphs of the contributions of the respective Kawasaki strata. The
contribution of the stratum represented by a given Γ should be some-
how obtained, starting from the product of the twisted fake potentials
Dtw

X/ZMv
, corresponding to the vertices of Γ, and then “marrying” them

appropriately by the edges. What we want to discuss now is how to
dispose of the Planck constant variable ~ and Novikov’s variables Q in
the vertex factors in order to achieve the correct overall occurrence of
~ and Q in the total descendant potential of X.
Recall that contributions to DX are weighted by the powers ~− eu /2,

where eu is the Euler characteristic of the curve, connected or not,
mapped to X. We have:

−eu

2
=
∑

v

Mv(ĝv − 1) +
∑

v

Mv
n̂v

2
−
∑

v

n̂v∑

i=1

ri
2
+
∑

e

re.

The four terms of the sum lead to the following strategy.
(i) In each factor 〈Dtw

X/ZMv
〉, replace ~ with ~Mv .

(ii) Replace the (dilaton-shifted) input t of the marked points with
~Mv/2t.
(iii) At each marked point of order r divide the input by (another)

factor ~r/2.
(iv) Each “marriage” by an edge of order r should be accompanied

by the factor ~r.

(v) Each monomial Qd̂v representing in 〈Dtw
X/ZMv

〉 the contributions

of degree d̂ orbicurves in X/ZMv should be replaced with QMv d̂v .
Now, the point is that due to the homogeneity of 〈Dtw

X/ZM
〉, the steps

(i) and (ii) of our strategy cancel each other, and so the steps (iii), (iv),
and (v) suffice.



QUANTUM HRR IN ALL GENERA 35

In particular, referring to (iii) and (v), together with the results of
the previous section, we find that the vertex contribution into Wick’s
formula can be described in terms of 〈Dtw

X/ZM
(t, ~, Q)〉 as the adelic

product:

∞∏

M=1

〈Dtw
X/ZM

〉


 ∑

ζ: ζM=1

Ψr(ζ)

[
tr(ζ)(ζ

−1q1/m(ζ))√
~

]
h(ζ), 1, Q

M


 ,

where tr ∈ K[q, q−1] are the arguments of 〈DX〉.
This completes the proof of Proposition 2.

9. Propagators

Recall that the edges of decorated graphs Γ correspond to unbalanced

nodes of the quotient curves Σ̂. Such a node of order r represents r-
tuples of nodes of the covering curve Σ cyclically permuted by the
symmetry h. On the two branches of the curve Σ at such a node,
hr acts with the eigenvalues η±, which are primitive roots of unity of
certain orders m±. The node is unbalanced if η+η− 6= 1 (regardless of
whether m± coincide or not). The effect of the unbalanced node on the
contribution of the stratum M (determined by Γ) to Kawasaki’s RR
formula can be described as follows.
Let L± denote the cotangent lines to the two branches of the quotient

curve Σ̂ at the node, so that L
1/m±

± denote such cotangent lines to the
covering curves. The following expression

Ψr∇η+,η− = Ψr

∑
α φα ⊗ φα

1− η−1
+ L

1/m+

+ ⊗ η−1
− L

1/m−

−

=

∑
α Ψ

rφα ⊗Ψrφα

1− η−1
+ L

r/m+

+ ⊗ η−1
− L

r/m−

−

can be considered as an element of K[[L
r/m+

+ − 1]] ⊗ K[[L
r/m−

− − 1]],
where K = K0(X)⊗Λ, and {φα} and {φα} are Poincaré-dual bases in
K0(X). In this capacity, Ψr∇η+,η− act as biderivations in the variables

t
(η±)
r of the factors 〈Dtw

X/ZM±

〉 (with M± = rm±) in the adelic tensor

product 〈DX〉. With this notation, Wick’s summation over all graphs
consists in the application to 〈DX〉 (i.e. to the contribution of one-
vertex graphs) of the following “propagator” (edge) operator:

〈DX〉 7→ exp


⊕

r>0

r

2
~rΨr


 ∑

η+η− 6=1

∇η+,η−




 〈DX〉.

The summation sign ⊕ is to emphasize that the operator is block-
diagonal, namely the sums with different values of r act on different
groups of variables, tr.
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The justification of this description is quite standard. The ingredient∑
α φα⊗φα is responsible for the “ungluing” of the diagonal constraint

△ ⊂ X ×X at the node. The denominator 1− η−1
+ L

1/m+

+ ⊗ η−1
− L

1/m−

−

represents the trace str (from the denominator of the Kawasaki-RR
formula) of the smoothing deformation of the curve at the node, which
is normal to the Kawasaki stratum of stable maps with the prescribed
symmetry h. The Adams operation Ψr occurs at the nodes of order
r due to the general fact: trh(V

⊗r) = Ψr(V ), assuming that h acts
on the tensor product by the cyclic permutation of the r factors. The
factor r accounts for the number of Zr-equivariant ways of gluing the
components of the covering curve Σ over a node of order r on the

quotient curve Σ̂. The factors ~r comes from the item (iv) in our
strategy of the previous section to account for the change of the Euler
characteristic of the covering curves Σ under gluing at the r nodes.
The factor 1/2 is due to the symmetry between η+ and η−.
Our goal is to show that the application of the operator

e

⊕
r>0 rΨ

r~
∑

η+η− 6=1 ∇η+,η−/2

to a function on K+, considered as a quantum state in the standard
polarization on the adelic loop space (K∞,Ω∞), is equivalent to repre-
senting the same quantum state in the uniform polarization.
In traditional Darboux coordinate notation p = {pα},q = {qα} a

second order differential operator ~∇/2 = (~/2)
∑

αβ sαβ∂qα∂qβ quan-

tizes the quadratic hamiltonian (p, Sp)/2. The time-one map gener-
ated by the corresponding hamiltonian system q̇ = Sp, ṗ = 0 trans-
forms the negative polarization space q = 0 into q = Sp. According
to Stone-von Neumann’ theorem, the operator exp ~∇/2 intertwines
the representations of the Heisenberg Lie algebra in the Fock spaces
corresponding to these polarizations. Thus, we need to compute the
operator S in our situation, and check that the space q = Sp is the
adelic image of K∞

− . In invariant terms, the operator S : K− → K+ is
computed by contracting the symmetric tensor S ∈ K+⊗K+ using the
symplectic pairing K− ⊗K+ → Λ.
Since our operator is block-diagonal, let us first do the computation

for the block r = 1. Here we have the adelic space K = ⊕ζK(ζ), where
each sector K(ζ) is isomorphic to Kfake = K((q − 1)). It is equipped
with the symplectic form

Ω(f ,g) :=
∑

ζ

1

m(ζ)
Resq=1(f

(ζ)(q−1), g(ζ
−1)(q))

dq

q
.
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The spaces K+ and K− of the standard polarization are spanned re-
spectively by (the superscript indicates the only non-zero component):

f
(ζ)
k,α = φα(q1/m − 1)k and g

(ζ−1)
k,α = φα

qk/m

(1− q1/m)k+1
,

which form a Darboux basis as k,α and ζ run through their ranges.

Namely Ω(f
(ζ)
k,α,g

(ζ−1)
k,α ) = −1, and = 0 in all the cases when the indices

mismatch.
As it was discussed earlier,

∇η,ζ =

∑
α φα ⊗ φα

1− η−1x1/m ⊗ ζ−1y1/n
∈ K[[x1/m − 1]]⊗K[[y1/n − 1]]

defines a biderivation on the space of functions on K(η)
+ ⊕K(ζ)

+ . Here η
and ζ are primitive roots of unity of orders m and n respectively with
ηζ 6= 1 (and we write x, y instead of L± used earlier). Equivalently,

∇η,ζ can be considered as a bilinear form on K(η−1)
− ⊕K(ζ−1)

− (the symbol

of the biderivation), or as a linear map ∇ζ
η : K(ζ−1)

− → K(η)
+ , which is

what we want to compute.
In explicit form, the linear map ∇ζ

η is described by6

K(ζ−1)
− ∋ f =

∑

α

fα(q)φα 7→ −Resy=1

∑
α φαf

α(y)

(1− η−1ζ−1q1/my−1/n)

dy1/n

y1/n
.

Take f = φαq
k/n/(1− q1/n)k+1, and put x = y1/n. Then

∇ζ
ηf = −φa Resx=1

xk

(1− x)k+1

1

(1− η−1ζ−1q1/mx−1)

dx

x

= φα Resx=η−1ζ−1q1/m
xk

(1− x)k+1

dx

(x− η−1ζ−1q1/m)

= φα
(η−1ζ−1q1/m)k

(1− η−1ζ−1q1/m)k+1
.

The last expression is interpreted as an element of K(η)
+ by expanding

it as a power series in q1/m − 1.
Note that when η runs through all roots of unity, k runs through

all non-negative integers, and φα runs through a basis of K0(X), the
vector monomials f = fα,k,ζ := φα(ζ

−1q)k/(1− ζ−1q)k+1 run through a
basis in K−. The adelic map is defined so that

f (ζ
−1) = φα

qk/n

(1− q1/n)k+1
, f (η) = φα

(η−1ζ−1q1/m)k

(1− η−1ζ−1q1/m)k+1
,

6The negative sign comes from Ω(f
(ζ)
k,α,g

(ζ−1)
k,α ) = −1.
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where n andm are the orders of ζ and η 6= ζ−1, and the expressions have
to be expanded into Laurent series near q = 1. The above computation

shows that f (η) ⊕ f (ζ
−1) ∈ K(η)

+ ⊕ K(ζ−1)
− lies in the graph of ∇ζ

η. Since

f
(ζ−1)
α,k,ζ form a basis in the domain K(ζ−1)

− of∇ζ
η when α and k run through

their ranges, we find that fα,k,ζ form a basis in the graph of

⊕η 6=ζ−1∇ζ
η : K(ζ−1)

− → K+,

and altogether form a basis in the direct sum of the graphs over ζ.

For general block r ≥ 1, we have the adelic map: K(r) = K → K(r),
which maps f ∈ K to Ψrf . It satisfies

Ω(r)(Ψrf ,Ψrg) =
Ψr

r
Ω(f ,g) =

Ψr

r
Ω(f ,g),

where ΨrΩ/r is the restriction of Ω∞ to K(r), and Ω(r) is the restriction

of Ω∞ to the block K(r) in the total adelic space K∞. It is equal to

Ω(r)(f ,g) :=
1

r

∑

ζ

1

m(ζ)
Resq=1(f

(ζ)(q−1), g(ζ
−1)(q))(r)

dq

q
.

In fact the factor 1/r interacts with the factor r in the biderivation

rΨr∇η,ζ in such a way that the operator from Ψr(K(η)
− ) to K(r)

+ gener-

ated by it (or by the corresponding bilinear form on Ψr(K(η)
− ⊕ K(ζ)

− ))
acts as

Ψr

(
φα

qk/n

(1− q1/n)k+1

)
7→ Ψr

(
φα

(η−1ζ−1q1/m)k

(1− η−1ζ−1q1/m)k+1

)
.

Therefore the graph of the map (defined by all rΨr∇η,ζ) from the neg-

ative space K(r)
− of the standard polarization to K(r)

+ indeed coincides

with the negative space of the uniform polarization on K(r), defined as

the adelic image of K(r)
− = K−.

This completes the proof of Proposition 3, and our Main Theorem
follows.
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